15-441 _
"N 15641 Computer Networking

Link Layer: Implementation i‘.

¢ Implemented in “adapter”
¢ E.g., Ethernet card or chip

¢ Typically includes: RAM, DSP chips, host bus interface, and link
interface

Lecture 4 - Coding and Error Control
Peter Steenkiste

Fall 2015
www.cs.cmu.edu/~prs/15-441-F15

application
Hil M || transport

Fde:] M]| network data link 7| nefwor'ﬂ
HilHH:] M link Lpetocel) link HilHnHt| M
physical v physical frame

adapter card

Datalink Functions “

» Framing: encapsulating a network layer datagram
into a bit stream.

e Add header, mark and detect frame boundaries

» Media access: controlling which frame should be
sent next over alink.

e Error control: error detection and correction to deal
with bit errors.

« May also include other reliability support, e.g.
retransmission

* Flow control: avoid that sender outruns the receiver
» Hubbing, bridging: extend the size of the network

Outline i‘.

* Encoding and decoding

¢ Translate between bits and digital signal
e Framing

 Bit stream to packets
e Packet loss & corruption

e Error detection

¢ Flow control

e Loss recovery

How Encode? “.

» Seems obvious, why waste time on this? Just
modulate the signal!
0 1 0 0 0 1 1 0 1

.85 |
\% 0
-.85 |

e But:

< How easily can the receiver retrieve the bit stream?
« What happens when there are errors: a bit gets flipped?

How about the Poor Receiver? i‘,

_

0 1 0 1 How many more ones?

» Sender needs to help the receiver by “shaping”
the digital bit stream so it easy to correctly
interpret
e Applies to combination of modulation and coding

e Problem in this case: not enough transitions

From Signals to Packets “

Packet CH-
Transmission sender{) —_— { ’Receiver

0100010101011100101010101011101110000001111010101110101010101101011010111001

Packets
Header/Body Header/Body Header/Body
Bit Stream 00101110001
1Encoding
“Digital” Signal

l 1Modu|ation
Analog Signal

Why Do We Need Encoding? i‘.

» Keep receiver synchronized with sender.
 Create control symbols, in addition to regular data
symbols.
» E.g. start or end of frame, escape, ...
» Error detection or error corrections.

* Some codes are illegal so receiver can detect certain
classes of errors

« Minor errors can be corrected by having multiple adjacent
signals mapped to the same data symbol
* Encoding can be done one bit at a time or in multi-bit
blocks, e.g., 4 or 8 bits.

« Encoding can be very complex, e.g. wireless

Non-Return to Zero (NRZ) “.

.85 |
\ 0
-.85 |

* 1 - high signal; 0 - low signal
» Long sequences of 1's or 0's can cause problems:
» Sensitive to clock skew, i.e. hard to recover clock

» DC bias hard to detect — low and high detected by difference
from average voltage

* Encoding needs to break up long strings of 1 or O

Non-Return to Zero Inverted
(NRZI) i“

.85

\% 0

-.85

« 1 - make transition; 0 - signal stays the same

» Solves the problem for long sequences of 1's, but
not for O’s.

« Still need help from encoding layer

10

Manchester Encoding “

.85

\% 0

-85 —

L]

ps

» Used by Ethernet
» 0O=low to high transition, 1=high to low transition.

+ Transitions simplifglclock recovery and good electrical
properties for any bit stream
* But you pay a price!
» Doubles the number of transitions — more spectrum!
« Circuitry must run twice as fast
11

Take-away: i‘.

Encoding and Modulation

« Encoding and modulation work together

e Must generate a signal that works well for the receiver —
has good electrical properties

« Must be efficient with respect to spectrum use
¢ Can shift some of the burden between the two layers
¢ Tradeoff is figured out by our electrical engineers

» Maintaining good electrical properties
» Spectrum efficient modulation requires more encoding
* For example: 4B/5B encoding (next)

* Error recovery

« Aggressive modulation needs stronger coding
12

4B/5B Encoding “.

» Data coded as symboils of 5 line bits 2> 4 data
bits, so 100 Mbps uses 125 MHz.

» Encoding ensures no more than 3 consecutive 0's

» Uses NRZI to encode resulting sequence

¢ Uses less frequency than Manchester encoding
» 16 data symbols, 8 control symbols

» Data symbols: 4 data bits

» Control symbols: idle, begin frame, etc.

e Example: FDDI.

13

4B/5B Encoding

N

Data | Code Data
0000 | 11110 1000
0001 | 01001 1001
0010 | 10100 1010
0011 | 10101 1011
0100 | o1010 1100
0101 | o1012 1101
0110 | o1110 1110
0111 | o1111 1111

From
datalink

To
modulator

Code

10010
10011
10110
10111
11010
11011
11100
11101

14

Other Encodings “

e 8B/10B: Fiber Channel and Gigabit Ethernet
64B/66B: 10 Gbit Ethernet (& 40 and 100 Gb/S)
B8ZS: T1 signaling (bit stuffing)

Things to Remember

» Encoding and modulation must work together
Lots of approaches

Rule of thumb:
« Little bandwidth - complex encoding
 Lots of bandwidth = simple encoding

15

From Signals to Packets

"N

Packet
Transmission

Packets

SenderO g_’

O Receiver

0100010101011100101010101011101110000001111010101110101010101101011010111001

Bit Stream

“Digital” Signal

Analog Signal

Header/Body Header/Body

Header/Body

001011100001

16

Outline i‘.

» Encoding
« Bits to digital signal
* Framing
 Bit stream to packets
* Packet loss & corruption
* Error detection
* Flow control
* Loss recovery

17

Framing “.

» How do we break up a stream of bits into frames?

0100010101011100101010101011101110000001111010101110101010101101011010111001

18

Framing i‘.

» Alink layer function, defining which bits have
which function.
» Minimal functionality: mark the beginning and end
of packets (or frames).
* Some techniques:
e QOut of band delimiters (e.g. 4B/5B control symbols)
e Frame delimiter characters with character stuffing
e Frame delimiter codes with bit stuffing

19

Out-of-band: E.g., 802.5 O\ Y

e 802.5/token ring uses 4b/5b
» Start delim & end delim are “illegal” data codes

End BEEWE
delim ESEUS

S{ET Access Frame Dest Src

delim ctrl ctrl adr adr By |checksum |

20

Delimiter Based i‘. Character and Bit Stuffing “.

« SYN: sync character » Mark frames with special character.
. * What happens when the user sends this character?
* SOH: start of header » Use escape character when a control symbol appears in data:
* STX: start of text . *abc*def >*abc*def
. * Very common on serial lines, in editors, etc.
* ETX:end of text » Mark frames with special bit sequence

e must ensure data containing this sequence can be transmitted

.. * example: suppose 11111111 is a special sequence.
What happens when ETX s in BOdy? transmitter inserts a 0 when this appears in the data:

e 11111111 - 111111101 - receiver deletes a 0 after seven 1's

¢ Means that we must stuff a zero any time seven 1s appear:
Header 5TX| Body |ETX| CRC | + 11111110 > 111111100

« receiver unstuffs: 111111100 = 11111110

21 22

Ethernet Framing “ Outline i‘.

* Preamble is 7 bytes of 10101010 (5 MHz square * Encoding

wave) followed by one byte of 10101011 + Bits to digital signal
 Allows receivers to recognize start of transmission e Framing

after idle channel « Bit stream to packets

» Packet loss & corruption

¢ Error detection
¢ Flow control

e Loss recovery

23 24

«

Error Coding

» Transmission may introduce errors into a message.
* Received “digital signal” is different from that transmitted
¢ Single bit errors versus burst errors

» Detection:

* Requires a convention that some messages are invalid
¢ Hence requires extra bits

¢ An (n,k) code has codewords of n bits with k data bits and r
= (n-k) redundant check bits

e Correction

e Forward error correction: many related code words map to
the same data word

e Detect errors and retry transmission

25

Error Detection

N

» EDC= Error Detection and Correction bits (redundancy)
« D =Data protected by error checking, may include header fields

¢ Error detection not 100% reliable!

¢ Protocol may miss some errors, but rarely
e Larger EDC field yields better detection and correction

+d data bits—+

¥

all
bits in D' N
—
OK detected
? ermor

+

| D [EDCH [

D' |EDC']

L— (] bit-error prone link {}

26

L\

Parity Checking

Single Bit Parity:

Detect single bit errors

+—— d data bits —{ g:"w

0111000110101011] 0 |

27

Internet Checksum

"N

e Goal: detect “errors” (e.g., flipped bits) in transmitted

segment

Sender

« Treat segment contents
as sequence of 16-bit
integers

e Checksum: addition (1's
complement sum) of
segment contents

e Sender puts checksum

value into checksum field
in header

Receiver
Compute checksum
received segment
Check if computed
checksum equals ch
field value:

* NO - error detected
* YES - no error detected.

But maybe errors
nonethless?

of

ecksum

28

Basic Concept: i‘.

Hamming Distance

» Hamming distance of two bit
strings = number of bit
positions in which they differ.

« If the valid words of a code
have minimum Hamming
distance D, then D-1 bit
errors can be detected.

* If the valid words of a code
have minimum Hamming
distance D, then [(D-1)/2] bit
errors can be corrected.

Cyclic Redundancy Codes
(CRC) “‘

e Commonly used codes that have good error
detection properties.

e Can catch many error combinations with a small
number of redundant bits

» Based on division of polynomials.
e Errors can be viewed as adding terms to the polynomial
* Should be unlikely that the division will still work
e Can be implemented very efficiently in hardware.
» Examples:
e CRC-32: Ethernet
* CRC-8, CRC-10, CRC-32: ATM

30

CRC: Basic idea i\.

» Treat bit strings as polynomials:
101 11
X4 X2+ X1+X0
» Sender and Receiver agree on a divisor polynomial
of degree k
» Message of M bits = send M+k bits
* No errors if M+k is divisible by divisor polynomial
* If you pick the right divisor you can:
* Detectall 1 & 2-bit errors
» Any odd number of errors
» All Burst errors of less than k bits
* Some burst errors >= Kk bits

31

Outline i‘.

* Encoding
« Bits to digital signal
e Framing
 Bit stream to packets
e Packet loss & corruption
 Error detection
« Flow control
e Loss recovery

32

Link Flow Control and i‘.

Error Recovery

» Dealing with receiver overflow: flow control.
» Dealing with packet loss and corruption: error control.
» Meta-comment: these issues are relevant at many
layers.
e Link layer: sender and receiver attached to the same “wire”

* End-to-end: transmission control protocol (TCP) - sender
and receiver are the end points of a connection

» How can we implement flow control?
* “You may send” (windows, stop-and-wait, etc.)
* “Please shut up” (source quench, 802.3x pause frames, etc.)
* Where are each of these appropriate?

33

A Naive Protocol “.

e Sender simply sends to the receiver whenever it
has packets.

» Potential problem: sender can outrun the receiver.
» Receiver too slow, runs out of buffer space, ..

* Not always a problem: receiver might be fast
enough.

. CACaCECa .

Sender Receiver

34

Adding Flow Control i\.

» Stop and wait flow control: sender waits to send
the next packet until the previous packet has been
acknowledged by the receiver.

¢ Receiver can pace the receiver

* When does this work well?

O @
) [

Sender Receiver

35

Drawback: Performance i‘.

RTT
Sender >

Receives =
— Time =—p

1 pkt
Roundtrip Time

Max Throughput =

36

Window Flow Control i‘.

» Stop and wait flow control results in poor throughput
for long-delay paths: packet size/ roundtrip-time.
» Solution: receiver provides sender with a window that
it can fill with packets.
e The window is backed up by buffer space on receiver

» Receiver acknowledges the a packet every time a packet is
consumed and a buffer is freed

‘I:II:II:I‘
0 0 @O

Sender Receiver

37

Bandwidth-Delay Product “.

Sender \\\\ \\1_\T >
\\\\
NN\
A\;\i\\\\\\ :

Receives
— Time =——p
Max Throughput = Wme\,N S|.ze
Roundtrip Time

38

Error Recovery i\.

Two forms of error recovery
e Error Correcting Codes (ECC)
e Automatic Repeat Request (ARQ)
« ECC
» Send extra redundant data to help repair losses
* ARQ
¢ Receiver sends acknowledgement (ACK) when it
receives packet

e Sender uses ACKs to identify and resend data that was
lost

» Which should we use? Why? When?

39

Stop and Wait i‘.

* Simplest ARQ

protocol

* Send a packet, Sender Receiver
stop and wait until | Packe;
acknowledgement | fme | 3| —
arrives Eil ack

* Will examine ARQ ;
issues later in
semester

40

Recovering from Error “.

How to Recognize i“

Retransmissions?

q:; mi cK mé NS
Time | & £l ?\A/ £l 2
| | < Pack
e e P
nu§ wi wi /
£l pE—| L AE— &
Packet lost ACK lost Early timeout
41
Implementation Issues with “
Window-based Protocol

» Window size: # of total outstanding packets that
sender can send without acknowledged

» How big a sequence number do we need?
» For m-bit sequence number: W, = 2m-1

« Reason: if window could be 2™, then if the first packet in
a window is lost, the receiver cannot not distinguish a
retransmission from a new packet

» How to deal with sequence number wrap around?
¢ Use unsigned arithmetic, modulo 2™

43

» Use sequence numbers
¢ both packets and acks Pkt o
* Sequence # in packet is \Q‘
finite > How big should it RS>
be? Pkt o
e For stop and wait? oK
* One bit —won't send seq #1 1
until received ACK for seq | ACK1
#0
42
What is Used in Practice? i‘.

* No flow or error control.

¢ E.g. regular Ethernet, just uses CRC for error detection
Flow control only

« E.g. Gigabit Ethernet

e Flow and error control.

e E.g. X.25 (older connection-based service at 64 Kbs
that guarantees reliable in order delivery of data)

¢ Flow and error control solutions also used in
higher layer protocols
e E.g., TCP for end-to-end flow and error control

44

11

