

Forwarding Packets

- (Table of virtual circuits ids)
 - More on this later
- Table of global destination addresses (IP)
 - Routers keep next hop for destination
 - Packets carry destination address
- Source routing no forwarding table!
 - Packet carries a path

9

Source Routing

- List entire path in packet
 - Driving directions (north 3 hops, east, etc..)
- Router processing
 - Strip first step from packet
 - · Examine next step in directions and forward
- Rarely used
 - End points need to know a lot about network
 - Economic and security concerns
 - Variable header size

10

Global Address Example Packet R 2 R 2 R 3 R 3 R 74 R 73 Receiver R 73

Forwarding based on Global Addresses

- Advantages
 - · Conceptually simple
 - · Lines up with roles of actors (ISPs, endpoints)
 - Stateless (soft state) simple error recovery
- Disadvantages challenges
 - Every switch knows about every destination
 - Potentially large tables today's topic
 - · All packets to destination take same route
 - Potentially inefficient "Traffic engineering" lecture
 - Need routing protocol to fill table
 - Next couple of lectures

Addressing in IP

- IP addresses identify interfaces
 - E.g., 128.2.1.1
 - Multiple interfaces -> multiple IP addresses
- Domain Name System (DNS) names are names of hosts
 - E.g., www.cmu.edu
- DNS binds host names to interfaces
 - More on DNS later in the course
- · Routing binds interface addresses to paths

13

Addressing Considerations

- Flat addresses one address for every host
 - Peter Steenkiste: 123-45-6789
 - Does not scale router table size explodes
 - 630M (1/09) entries, doubling every 2.5 years
 - · Why does it work for Ethernet?
- Hierarchical add structure
 - Pennsylvania / Pittsburgh / Oakland / CMU / Steenkiste or Peter Steenkiste: (412)268-0000
 - Common "trick" to simplify forwarding, reduce forwarding table
- What type of Hierarchy?
 - How many levels?
 - · Same hierarchy depth for everyone?
 - Who controls the hierarchy?

14

IP Address Structure

Challenge: Accommodate networks of different very sizes Initially: classful structure (1981) (not relevant now!!!)

Original IP Route Lookup

- Address specifies prefix for forwarding table
 - · Extract address type and network ID
- Forwarding table contains
 - List of class+network entries
 - A few fixed prefix lengths (8/16/24)
 - Prefix part of address that really matters for routing
- www.cmu.edu address 128.2.11.43
 - Class B address class + network is 128.2
 - Lookup 128.2 in forwarding table for class B
- Tables are still large!
 - 2 Million class C networks

Subnet Addressing RFC917 (1984)

- Some "LANs" are very big, class A & B networks
 - · Large companies, universities, ...
 - Internet became popular quickly
- · Cannot manage this as a single LAN
 - · Hard to manage, becomes inefficient
- Need simple way to partition large networks
 - Partition into multiple IP networks that share the same prefix – called a "subnet", part of a network
- CMU case study in RFC
 - Chose not to adopt concern that it would not be widely supported ☺

17

Subnetting

- · Add another layer to hierarchy
- · Variable length subnet masks
 - · Could subnet a class B into several chunks
- Subnetting is done internally in the organization
 - It is not visible outside important for management

Subnetting Example

- Assume an organization was assigned address 150.100
- Assume < 100 hosts per subnet
- How many host bits do we need?
 - Seven
- What is the network mask?
 - 11111111 1111111 11111111 10000000
 - 255.255.255.128

19

Forwarding Example • Assume a packet arrives with address 150.100.12.176 • Step 1: AND address with class + subnet mask · Subnet masks stored on router 150.100.12.154 150.100.12.176 H1 H2 150.100.12.128 150.100.12.129 150.100.12.24 150.100.12.55 150.100.0.0 R1 Н3 To Internet 150.100.12.4 150.100.12.0

Outline

- · IP design goals
- Traditional IP addressing
 - Addressing approaches
 - · Class-based addressing
 - Subnetting
 - CIDR
- IP protocol and friends
- Routing

21

IP Address Problem (1991)

- · Address space depletion
 - Suppose you need 2¹⁶ + 1 addresses?
 - · Class A too big for all but a few domains
 - Class C too small for many domains but they don't need a class B address
 - Class B address pool allocated at high rate
 - · Many allocated address block are sparsely used
- Developed a strategy based on a three solutions
 - · Switch to a "classless" addressing model
 - · Network address translation
 - · Definition of IPv6 with larger IP addresses

22

Classless Inter-Domain Routing (CIDR) – RFC1338

- Arbitrary split between network & host part of address → more efficient use of address space
 - · Do not use classes to determine network ID
 - Use "prefix" that is propagated by routing protocol
 - E.g., addresses 192.4.16 192.4.31 have the first 20 bits in common. Thus, we use these 20 bits as the prefix (network number) → 192.4.16/20
- Merge forwarding entries → smaller tables
 - Use single entry for range in forwarding tables even if they belong to different destination networks
 - "Adjacent" in address space and same egress

2

CIDR Example

- Network is allocated 8 class C chunks, 200.10.0.0 to 200.10.7.255
 - Move 3 bits of class C address to host address
 - Network address is 21 bits: 201.10.0.0/21
- Replaces 8 class C routing entries with 1 entry
- But how do routers know size of network address?
 - Routing protocols must carry prefix length with address

IP Addresses: How to Get One?

Network (network portion):

Get allocated portion of ISP's address space:

ISP's block	11001000	00010111	<u>0001</u> 0000	00000000	200.23.16.0/20
Organization 0	11001000	00010111	<u>0001000</u> 0	00000000	200.23.16.0/23
Organization 1	11001000	00010111	<u>0001001</u> 0	00000000	200.23.18.0/23
Organization 2	11001000	00010111	<u>0001010</u> 0	00000000	200.23.20.0/23
Organization 7	11001000	00010111	<u>0001111</u> 0	00000000	200.23.30.0/23

25

IP Addresses: How to Get One?

- How does an ISP get block of addresses?
 - From Regional Internet Registries (RIRs)
 - ARIN (North America, Southern Africa), APNIC (Asia-Pacific), RIPE (Europe, Northern Africa), LACNIC (South America)
- How about a single host?
 - · Assigned by sys admin (static or dynamic)
 - DHCP: Dynamic Host Configuration Protocol: dynamically get address: "plug-and-play"
 - · Host broadcasts "DHCP discover" msg
 - DHCP server responds with "DHCP offer" msg
 - · Host requests IP address: "DHCP request" msg
 - DHCP server sends address: "DHCP ack" msg

Important Concepts

- Hierarchical addressing critical for scalable system
 - Don't require everyone to know everyone else
 - Reduces number of updates when something changes
- Classless inter-domain routing supports more efficient use of address space
 - Adds complexity to routing, forwarding, ...
 - Not a problem today