

Today's Lecture

- Modulation.
- · Bandwidth limitations.
- · Multiplexing.
- Media: Copper, Fiber, Optical, Wireless.

5

Why Do We Care?

- I am not an electrical engineer?
 - Well, most of you aren't
- Reality matters: Physical layer places constraints on what the network infrastructure can deliver
 - Bandwidth limitations of various types of wiring?
 - How long can a wire be?
 - What are the error characteristics and failure modes?
- Our focus: impact on the networked system
 - Impact on performance
 - Impact on the design of the higher protocol layers

6

Modulation

- Changing a signal to convey information
- From Music:
 - Volume
 - Pitch
 - Timing

Modulation

- Changing a signal to convey information
- Ways to modulate a sinusoidal wave
- Volume: Amplitude Modulation (AM)
- Pitch: Frequency Modulation (FM)
- Timing: Phase Modulation (PM)

In our case, modulate signal to encode a 0 or a 1. (multi-valued signals sometimes)

8

Let us Look at Some Quesions

- How much bandwidth can I get out of a specific wire (transmission medium)?
- What limits the physical size of the network?
- How can multiple hosts communicate over the same wire at the same time?
- How can I manage bandwidth on a transmission medium?
- How do the properties of copper, fiber, and wireless compare?

13

Bandwidth

- Bandwidth is width of the frequency range in which the Fourier transform of the signal is non-zero.
- Sometimes referred to as the channel width
- Or, where it is above some threshold value (Usually, the half power threshold, e.g., -3dB)
- dB short for decibel
 - Defined as 10 * $\log_{10}(P_1/P_2)$
 - When used for signal to noise: 10 * log₁₀(S/N)
- Also: dBm power relative to 1 milliwatt
 - Defined as 10 * log₁₀(P/1 mW)

14

Multiple channels can coexist if they transmit at a different frequency, or at a different time, or in a different part of the space. Three dimensional space: frequency, space, time Space can be limited using wires or using transmit power of wireless transmitters. Frequency multiplexing means that different users use a different part of the spectrum. Similar to radio: 95.5 versus 102.5 station Controlling time (for us) is a datalink protocol issue. Media Access Control (MAC): who gets to send when?

Can we Increase Distance? Regeneration and Amplification • At end of span, either regenerate electronically or amplify. • Electronic repeaters are potentially slow, but can eliminate noise. • Amplification over long distances made practical by erbium doped fiber amplifiers offering up to 40 dB gain, linear response over a broad spectrum. Ex: 40 Gbps at 500 km. pump laser source

Things to Remember

- •Bandwidth and distance of network links is limited by physical properties of media.
- Attenuation, noise, dispersion, ...
- •Network properties are determined by transmission medium and transmit/receive hardware.
- Nyquist gives a rough idea of idealized throughput
- Can do much better with better encoding
- Low b/w channels: Sophisticated encoding, multiple bits per wavelength.
- High b/w channels: Simpler encoding (FM, PCM, etc.), many wavelengths per bit.
- Shannon: $C = B \times \log_2(1 + S/N)$
- Multiple users can be supported using space, time, or frequency division multiplexing.
- Properties of different transmission media.

41