



### Goal and Outline



- Goal: gain a basic understanding of how you can build a (small) packet switched network
  - Focus is to convince you that this is feasible
  - A bit more detail later in the course for Ethernet and WiFi
- Physical and Datalink functions
- Physical layer: Modulation
- Datalink
  - Medium access control
  - Scaling up

2

### What Do We Need?



- Physical layer:
  - Modulation: send a stream of bits to a receiver using an electromagnetic signal
  - Coding: add redundancy for error detection, meet electrical constraints, ...
- Datalink layer:
  - Framing: identify packet boundaries and headers
  - · Error control: error detection and correction
  - Media access control: arbitrating access to the "link"
  - Bridging, switching, ...: extending network size
- Described "by example"

4

### Outline



- PHY and DL functions
- Modulation
- Datalink layer
  - · Media access control
  - Scaling up

# Transferring Information



• Information transfer is a physical process

"The wireless telegraph is not difficult to understand. The ordinary telegraph is like a very long cat. You pull the tail in New York, and it meows in Los Angeles. The wireless is exactly the same, only without the cat."

- In this class, we generally care about
  - Electrical signals (on a wire)
  - Optical signals (in a fiber)
  - RF signals (wireless)
  - More broadly: electromagnetic signals

# What is Modulation?



- The sender changes a signal in a way that the receiver can recognize - conveys information
- Ways to modulate a signal (think: sinusoidal wave)
  - Change frequency, phase, or amplitude
- Similar to AM/FM radio:
  - But we encode bits!
- Analogy from music:
- Volume: Amplitude Modulation (AM)
  - Pitch: Frequency Modulation (FM)
  - Timing: Phase Modulation (PM)

**Binary Modulation** AM: change the strength of the signal • FM: change frequency: PM: change phase

### Looks Straightforward, but ...



- •Bad things happen to the signal as it travels to receiver:
- Noise: "random" energy is added to the signal
- Attenuation: some of the signal's energy leaks away
- Dispersion: signal is distorted due to frequency-dependent effects distorts the signal
- •These effects get worse with distance and depend on the transmission medium

# What is the impact of a Bad Signal?



- The receiver may no longer be able to determine what bits were sent, resulting in bit errors
  - Bit error rate increases with the bit rate
- The result is that we need to limit the bit rate and the length of the links.
- For wired network, that standard specifies both
  - E.g., standards for 10 Mbs, 100 Mbs, .. Ethernet
- For wireless networks many other factors impact the bit error rate requires more complex solutions
  - Wait for wireless lectures

10

### Sketch of Solution



- Solutions for optimizing bandwidth and recovering from errors fall in two classes:
- 1. Retransmission by a higher layer protocol
- 2. Coding: add redundancy to the bit stream so the receiver can recover from the errors (FEC)
- Can be used in any layer of the stack, but a common approach is:
  - 1. Retransmission in datalink or transport protocol
  - 2. FEC in PHY layer

1

## Outline



- PHY and DL functions
- Modulation
- Datalink layer
  - · Media access control
  - Scaling up

12

### **Datalink Functions**



- Framing: encapsulating a network layer datagram into a bit stream.
  - Add header, mark and detect frame boundaries
- Flow control: avoid that sender outruns the receiver
- Error control: error detection and correction to deal with bit errors.
  - May also include other reliability support, e.g. retransmission
- Media access: controlling which frame should be sent next over a link.
- Bridging, switching: extend the size of the network

13

### **Datalink Architectures** • Switches connected by point-to-point links -store-and-forward. · Used in WAN, LAN, and for home connections Conceptually similar to "routing" · But at the datalink layer instead of the network layer MAC = (local) scheduling Multiple access networks -- contention based. · Multiple hosts are sharing the same transmission medium · Used in LANs and wireless · Access control is distributed and much more complex









# How Can We Avoid Collisions? • Natural scheme – listen before you talk... Works well in practice • A cheap form of coordination • But sometimes this breaks down • When? How do we fix/prevent this?

# **Random Access Protocols** When a node has a packet to send • Transmit at full channel data rate R • No a priori coordination among nodes • If you are lucky, receiver will receive packet, but .. Multiple simultaneous transmissions → "collision" Random access MAC protocol specifies: • How to avoid and/or detect collisions • How to recover from collisions (e.g., via retransmissions) Examples of random access MAC protocols: Slotted ALOHA and ALOHA CSMA/CD (~Ethernet) and CSMA/CA (~WiFi)



### **Ethernet MAC Features**



- Carrier Sense: listen before you talk
  - Avoid collision with an ongoing transmission
- Advantage is that it is very efficient
  - No coordination overhead or transmission delay
- But it does not always work: simultaneous transmissions can happen
  - Speed of light is "only" 1 foot/nsec
- Collision Detection during transmission
  - · Listen while transmitting
  - If you notice interference → assume collision
  - Abort transmission immediately and schedule a retransmission

### **Ethernet Frame Structure**



 Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame



- Addresses are 48 bit IEEE MAC addresses
  - Used by all IEEE 802 LAN standards, including WiFi
  - In practice used as a flat address no structure

### How Well Does Ethernet Work?



- The protocol is broken, right?
  - You would not design a traffic light this way!
- The protocol is very effective in practice
  - Most LANs are under-utilized
  - Scheduled access protocols have high overhead
- Transmission is fairly reliable in practice
  - Collisions can be detected reliably and corrupted packets are transmitted
  - No need for acknowledgements low overhead!
  - Error rates due to random bit errors are very low in practice

## Other Datalink Technologies



- WiFi is sometimes called "wireless Ethernet"
  - Same "listen before you talk" concepts
- But the details are very different!
  - Collision detection does not work, attenuation is much higher, bit error rates are much higher – life is rough
- WAN has used a variety of technologies
  - Early days: framerelay based on virtual circuits
  - SONET: very widely over several generations of fiber
    - Supports both voice and data effectively
  - Today: Ethernet (of course)

24





# Scaling Up the Ethernet Speed Technology improvements lead to higher bit rates: 10Mbps, 100Mbps, 1Gbps, 40 Gbps, ... Problem: carrier sense becomes completely ineffective For example, for 40 Gps links →0.3 microsec to send a maximum sized Ethernet frame →forget about carrier sense Solution: use a bridge or switch-based design And call it Ethernet!























# Bridges make it possible to increase LAN capacity. Packets are no longer broadcasted - they are only forwarded on selected links Adds a switching flavor to the broadcast LAN Ethernet switch is a special case of a bridge: each bridge port is connected to single host. Simplifies the protocol and hardware used (only two stations on the link) – no longer full CSMA/CD Can make the link full duplex (really simple protocol!) Can have different port speeds on the same switch



