
15-441: Computer Networks

Project 2: Congestion Control with Bittorrent

Lead TA: Harshad Shirwadkar <harshad@cmu.edu>

Assigned: October 11, 2015

Checkpoint 1 due: October 24, 2015

Final version due: November 10, 2015

1 Overview

In this assignment, you will implement a BitTorrent-like file transfer application. The application will run on top of

UDP, and you will need to implement a reliability and congestion control protocol (similar to TCP) for the application.

The application will be able to simultaneously download different parts, called “chunks,” of a file from different

servers. Please remember to read the complete assignment handout more than once so that you know exactly what is

being provided and what functionality you are expected to add. Project documents, FAQ, and starter files are at:

http://www.cs.cmu.edu/˜prs/15-441-F15/assignments.html

This is a group project and you must find exactly one partner to work with. Select your partner and email

harshad@cmu.edu with your selection and “15441 GROUP” as the subject line. If you can’t find a partner start

by posting on Piazza.

1.1 Help Sessions, Checkpoints and Deadlines

The timeline for the project is below, including several checkpoints. To help you pace your work, remember that

checkpoints represent a date by which you should easily have completed the required functionality. Given the timeline,

you can see that this means you should get started now! This project was originally a three week project, but we are

giving you a whole four weeks, so don’t abuse this. The late policy is explained on the course website. We will not be

making any exceptions for late submissions

Date Description

October 11 Project released. PLEASE START RIGHT AWAY!

October 24 Checkpoint 1: WHOHAS flooding and IHAVE responses

November 10 Deadline by 11:59 P.M.

There is one mandatory checkpoint. It is worth 10 points of the total project grade1.

2 Where to get help

A big part of being a good programmer is learning how to be resourceful during the development process. The first

places to look for help are (1) carefully re-reading the assignment, (2) looking at the assignments page for updates to

the FAQ, (3) scanning previous bulletin board posts, and (4) googling any standard compiler or script error messages.

If you still have a question AFTER doing this, general questions should be posted to the class bulletin board, Piazza,

1Note that Checkpoint 1 only covers a relatively small part of the whole project, since you will have the midterm and homework 2 before its

deadline.

http://www.cs.cmu.edu/~prs/15-441-F15/assignments.html
harshad@cmu.edu

Original File

Chunks

)

".torrent" =

Hash(

Figure 1: Diagram of bittorrent chunking and torrents: Bittorrent takes a large file and breaks it down into separate

chunks which can be downloaded from different “peers”. Chunks are identified by a “hash-value”, which is the result

of computing a well-known hash function over the data in the chunk. When a client wants to download a file, it first

grabs a “torrent” file, which contains all of the hash values for the desired data file. The torrent lets the client know

what chunks to request from other peers in the network.

we will be happy to help. If you have more specific questions (especially ones that require us to look at your code),

please drop by office hours.

3 Project Outline

During the course of this project, you will do the following:

• Implement a BitTorrent-like protocol to search for peers and download/upload file parts.

• Implement flow control and congestion control mechanisms to ensure fair and efficient network utilization.

4 Project specification

4.1 Background

This project is loosely based on the BitTorrent Peer-to-Peer (P2P) file transfer protocol. In a traditional file transfer

application, the client knows which server has the file, and sends a request to that specific server for the given file. In

many P2P file transfer applications, the actual location of the file is unknown, and the file may be present at multiple

locations. The client first sends a query to discover which of its many peers have the file it wants, and then retrieves

the file from one or more of these peers.

While P2P services had already become commonplace, BitTorrent introduced some new concepts that made it

really popular. Firstly BitTorrent splits the file into different “chunks”. Each chunk can be downloaded independently

of the others, and then the entire collection of chunks is reassembled into the file. In this assignment, you will be using

a fixed-size chunk of 512 Kbytes.

BitTorrent uses a central “tracker” that tracks which peers have which chunks of a file. A client begins a download

by first obtaining a “.torrent” file, which lists the information about each chunk of the file. A chunk is identified by the

cryptographic hash of its contents; after a client has downloaded a chunk, it must compute the cryptographic hash to

determine whether it obtained the right chunk or not. See Figure 1.

To download a particular chunk, the receiving peer obtains from the tracker a list of peers that contain the chunk,

and then directly contacts one of those peers to begin the download. BitTorrent uses a “rarest-chunk-first” heuristic

where it tries to fetch the rarest chunk first. The peer can download/upload four different chunks in parallel.

You can read more about the BitTorrent protocol details from http://webcache.googleusercontent.

com/search?q=cache:Dm_oT-YzmiYJ:www.bittorrent.org/beps/bep_0003.html (the original

seems to have disappeared, so here is Google’s cache of it). Bram Cohen, its originator also wrote a paper on the design

2

http://webcache.googleusercontent.com/search?q=cache:Dm_oT-YzmiYJ:www.bittorrent.org/beps/bep_0003.html
http://webcache.googleusercontent.com/search?q=cache:Dm_oT-YzmiYJ:www.bittorrent.org/beps/bep_0003.html

decisions behind BitTorrent. The paper is available at http://www.ittc.ku.edu/˜niehaus/classes/

750-s06/documents/BT-description.pdf.

This project departs from real BitTorrent in several ways:

• Instead of implementing a tracker server, your peers will flood the network to find which peers have which

chunks of a file. Each peer will know the identities of every other peer in the network; you do not have to

implement routing.

• To simplify set-up and testing, all file data is actually accessed from a single “master data file”. Peers are

configured with a file to tell them what chunks from this file they “own” upon startup.

• You do not have to implement BitTorrent’s incentive based mechanism to encourage good uploaders and dis-

courage bad ones.

• You do not need to store the chunks that you own on reliable storage medium.

But the project adds one complexity: BitTorrent obtains chunks using TCP. Your application will obtain them

using UDP, and you will have to implement congestion control and reliability. It is a good idea to review congestion

control concepts, particularly TCP, from both lecture and the textbook (Peterson & Davie Section 6.3).

4.2 Programming Guidelines

Your peer must be written in the C programming language, no C++ or STL is allowed. You must use UDP for all the

communication for control and data transfer. Your code must compile and run correctly on andrew linux machines.

Refer to slides from past recitations on designing modular code, editing makefiles, using subversion, and debugging.

As with project 1, your implementation should be single-threaded.

For network programming, you are not allowed to use any custom socket classes. We will provide a hashing

library, and you may use public code for basic data structures, but not any code performing higher-level functionality.

These guidelines are similar to project 1, except that you may freely use any code from your project1 and the use of

external libraries for basic data structures is allowed. However, all code you do not freshly write for this assignment

must be clearly documented in the README.

4.3 Provided Files

Your starter code includes:

• hupsim.pl - This file emulates a network topology using topo.map (see Section 7)

• sha.[c|h] - The SHA-1 hash generator

• input buffer.[c|h] - Handle user input

• debug.[c|h] - helpful utilities for debugging output

• bt parse.[c|h] - utilities for parsing commandline arguments.

• peer.c - A skeleton peer file. Handles some of the setup and processing for you.

• nodes.map - provides the list of peers in the network

• topo.map - the hidden network topology used by hupsim.pl. This should be interpreted only by the hupsim.pl,

your code should not read this file. You may need to modify this file when using hupsim.pl to test the congestion

avoidance part of your program.

• make-chunks - program to create new chunk files given an input file that contains chunk-id, hash pairs, useful

for creating more larger file download scenarios.

3

http://www.ittc.ku.edu/~niehaus/classes/750-s06/documents/BT-description.pdf
http://www.ittc.ku.edu/~niehaus/classes/750-s06/documents/BT-description.pdf

4.4 Terminology

• master-data-file - The input file that contains ALL the data in the network. All nodes will have access to this

file, but a peer should only read the chunks that it “owns”. A peer owns a chunk if the chunk id and hash was

listed in that peer’s has-chunk-file.

• master-chunk-file - A file that lists the chunk IDs and corresponding hashes for the chunks in the master data

file.

• peer-list-file - A file containing list of all the peers in the network. For a sample of the peer-list-file, please look

at nodes.map.

• has-chunk-file - A per-node file containing list of chunks that a particular node has at startup. However, a peers

will have access to more chunks as they download the chunks from other peers in the network.

• get-chunk-file - A file containing the list of chunk ids and hashes a peer wants to download. This filename is

provided by the user when requesting a new download.

• max-downloads - The maximum number of simultaneous connections allowed in each direction (download /

upload)

• peer-identity - The identity of the current peer. This should be used by the peer to get its hostname and port

from peer-list-file

• debug-level - The level of debug statements that should be printed out by DPRINTF(). For more information,

please look at debug.[h,c].

4.5 How the file transfer works

The code you write should produce an executable file named “peer”. The command line options for the program are :

peer -p <peer-list-file> -c <has-chunk-file> -m <max-downloads>

-i <peer-identity> -f <master-chunk-file> -d <debug-level>

The peer program listens on standard input for commands from the user. The only command is “GET <get-chunk-

file> <output filename>”. This instruction from the user should cause your program to open the specified chunks file

and attempt to download all of the chunks listed in it (you can assume the file names contain no spaces). When your

program finishes downloading the specified file, it should print “GOT <get-chunk-file>” on a line by itself. You do

not have to handle multiple concurrent file requests from the user. Our test code will not send another GET command

until the first has completed; you’re welcome to do whatever you want internally. The format of different files are

given in Section 4.7.

To find hosts to download from, the requesting peer sends a “WHOHAS <list>” request to all other peers, where

<list> is the list of chunk hashes it wants to download. The list specifies the SHA-1 hashes of the chunks it wants

to retrieve. The entire list may be too large to fit into a single UDP packet. You should assume the maximum packet

size for UDP as 1500 bytes. The peer must split the list into multiple WHOHAS queries if the list is too large for a

single packet. Chunk hashes have a fixed length of 20 bytes. If the file is too large, your client may send out the GET

requests iteratively, waiting for responses to a GET request’s chunks to be downloaded before continuing. For better

performance, your client should send these requests in parallel.

Upon receipt of a WHOHAS query, a peer sends back the list of chunks it contains using the “IHAVE <list>”

reply. The list again contains the list of hashes for chunks it has. Since the request was made to fit into one packet, the

response is guaranteed to fit into a single packet.

The requesting peer looks at all IHAVE replies and decides which remote peer to fetch each of the chunks from. It

then downloads each chunk individually using “GET <chunk-hash>” requests. Because you are using UDP, you can

think of a “GET” request as combining the function of an application-layer “GET” request and a the connection-setup

function of a TCP SYN packet.

4

Packet Type Code

WHOHAS 0

IHAVE 1

GET 2

DATA 3

ACK 4

DENIED 5

Table 1: Codes for different packet types.

When a peer receives a GET request for a chunk it owns, it will send back multiple “DATA” packets to the

requesting peer (see format below) until the chunk specified in the GET request has been completely transferred.

These DATA packets are subject to congestion control, as outlined in Section 6.2. The peer may not be able to satisfy

the GET request if it is already serving maximum number of other peers. The peer can ignore the request or queue

them up or notify the requester about its inability to serve the particular request. Sending this notification is optional,

and uses the DENIED code. Each peer can only have 1 simultaneous download from any other peer in the network,

meaning that the IP address and port in the UDP packet will uniquely determine which download a DATA packet

belongs to. Each peer can however have parallel downloads (one each) from other peers.

When a peer receives a DATA packet it sends back an ACK packet to the sender to notify that it successfully

received the packet. Receivers should acknowledge all DATA packets.

4.6 Packet Formats

• Packet Header

All the communication between the peers use UDP as the underlying protocol. All packets begin with a common

header:

1. Magic Number [2 bytes]

2. Version Number [1 byte]

3. Packet Type [1 byte]

4. Header Length [2 bytes]

5. Total Packet Length [2 bytes]

6. Sequence Number [4 bytes]

7. Acknowledgment Number [4 bytes]

Just like in the previous assignment, all multi-byte integer fields must be transmitted in network byte order (the

magic number, the lengths, and the sequence/acknowledgment numbers). Also, all integers must be unsigned.

The magic number should be 15441, and the version number should be 1. Peers should drop packets that do not

have these values. The “Packet Type” field determines what kind of payload the peer should expect. The codes

for different packet types are given in Table 1. By changing the header length, the peers can provide custom

optimizations for all the packets (if you choose). Sequence number and Acknowledgment number are used for

congestion control mechanisms similar to TCP as well as reliable transmission.

If you extend the header length, please begin your extended header with a two-byte “extension ID” field set

to your group’s number, to ensure that you can interoperate cleanly with other people’s clients. Similarly, if

your peer receives an extended header and the extension ID does not match your group number, just ignore the

extensions.

• WHOHAS and IHAVE packets

The payload for both WHOHAS and IHAVE contain the number of chunk hashes (1 byte), 3 bytes of empty

5

Ack Num

Seq Num

Header Len Packet Len

TypeVersionMagic

4 bytes

(a) The basic packet header, with each

header field named.

15441 01

16

invalid

invalid

4 bytes

padding 2

60

Chunk Hash #1 (20 bytes)

Chunk Hash #2 (20 bytes)

(b) A full WHOHAS request with two

Chunk hashes in the request. Note that

both seq num and ack num have no

meaning in this packet.

Chunk Data (1000 bytes)

16 1016

invalid

24

3115441

4 bytes

(c) A full DATA packet, with seq

number 24 and 1000 bytes of data.

Note that the ack num has no meaning

because data-flow is one-way.

Figure 2: Packet headers.

padding space to keep the chunk 32-bit aligned, and the list of hashes (20 bytes each) in them. The format of

the packet is shown in Figure 2(b).

• GET Packet

The payload of GET packet is even more simple: it contains only the chunk hash for the chunk the client wants

to fetch (20 bytes).

• DATA and ACK Packets

Figure 2(c) shows an example DATA packet. DATA packets do not have any payload format defined; normally

they should just contain file data. The size of data in each data packet is variable. ACK packet does not

contain any data.

The sequence number and acknowledgment number fields in the header have meaning only in DATA and ACK

packets. In this project the sequence numbers always start from 1 for a new “GET connection”. A receiving

peer should send an ACK packet with acknowledgment number 1 to acknowledge that is has received the data

packet with sequence number 1 and so on. Even though there are both a sequence number and an acknowledg-

ment number fields in the header, you should not combine DATA and ACK packets. Do not use a DATA packet

to acknowledge a previous packet and do not send data in a ACK packet. This means that for any DATA packet

the ACK num will be invalid and for any ACK packet the SEQ num field will be invalid. Invalid fields still take

up space in the packet header, but their value should be ignored by the peer receiving the packet.

4.7 File Formats

Chunks File:

File: <path to the file which needs sharing>

Chunks:

6

id chunk-hash

.....

.....

The master-chunks-file has above format. The first line specifies the file that needs to be shared among the peers.

The peer should only read the chunks it is provided with in the peer’s has-chunks-file parameter. All the chunks have

a fixed size of 512KB. If the file size is not a multiple of 512KB then it will be padded appropriately.

All lines after “Chunks:” contain chunk ids and the corresponding hash value of the chunk. The hash is the SHA-1

hash of the chunk, represented as a hexadecimal number (it will not have a starting “0x”). The chunk id is a decimal

integer, specifying the offset of the chunk in the master data file. If the chunk id is i, then the chunk’s content starts at

an offset of i× 512k bytes into the master data file.

Has Chunk File

This file contains a list of the ids and hashes of the chunks a particular peer has. As in the master chunk file, the

ids are in decimal format and hashes are in hexadecimal format. For the same chunk, the id of the chunk in the has-

chunk-file will be the same as the id of that chunk in the master-chunks-file. Note that your code should not modify

has-chunk-file.

id chunk-hash

id chunk-hash

.....

Get Chunk File

The format of the file is exactly same as the has-chunk-file. It contains a list of the ids and hashes the peer wishes to

download. As in the master chunk file, the ids in decimal format and hashes are in hexadecimal format. For the same

chunk of data, the id in the get-chunk-file might NOT be the same as the id of that chunk in the master-chunks-file.

Rather, the id here refers to the position of the chunk in the file that the user wants to save to. Note that your code

should not modify get-chunk-file.

id chunk-hash

id chunk-hash

.....

Peer List File

This file contains the list of all peers in the network. The format of each line is:

<id> <peer-address> <peer-port>

The id is a decimal number, peer-address the IP address in dotted decimal format, and the port is port integer in

decimal. It will be easiest to just run all hosts on different localhost ports.

5 Example

Assume you have two images A.gif and B.gif you want to share. These two files are available in the ‘example’

subdirectory of the code. We strongly suggest that you walk through these steps as you read them in order to get a

better understanding of what each file contains (the hash values in this document are not the actual hash values, to

improve readability).

First, create two files whose sizes are multiple of 512K, using:

tar cf - A.gif | dd of=/tmp/A.tar bs=512K conv=sync count=2

tar cf - B.gif | dd of=/tmp/B.tar bs=512K conv=sync count=2

7

With padding, A.tar and B.tar are exactly 1MB big (ie: 2 chunks long).

Let’s run two nodes, one on port 1111 and one on port 2222

Suppose that the SHA-1 hash of the first 512KB of A.tar is 0xDE and the second 512KB is 0xAD. Similarly, for

B.tar the 0-512KB chunk hash is 0x15 and the 512KB-1MB chunk hash is 0x441.

First, do the following:

cat /tmp/A.tar /tmp/B.tar > /tmp/C.tar

make-chunks /tmp/C.tar > /tmp/C.chunks

make-chunks /tmp/A.tar > /tmp/A.chunks

make-chunks /tmp/B.tar > /tmp/B.chunks

This will create the master data file at /tmp/C.tar. The contents of C.chunks will be:

0 00000000000000000000000000000000000000de

1 00000000000000000000000000000000000000ad

2 0000000000000000000000000000000000000015

3 0000000000000000000000000000000000000441

Recall that ids are in decimal format, while the hash is in hexadecimal. The contents of A.chunks will be:

0 00000000000000000000000000000000000000de

1 00000000000000000000000000000000000000ad

The contents of B.chunks will be:

0 0000000000000000000000000000000000000015

1 0000000000000000000000000000000000000441

Next, edit the C.chunks file to add two lines and save this as C.masterchunks:

File: /tmp/C.tar Chunks: 0 00000000000000000000000000000000000000de 1

00000000000000000000000000000000000000ad 2

0000000000000000000000000000000000000015 3

0000000000000000000000000000000000000441

Next create a peer file called /tmp/nodes.map It should contain

1 127.0.0.1 1111

2 127.0.0.1 2222

Finally, you need to create files that describe the initial content of each node. Let node 1 have all of file A.tar and none

of file B.tar. Let node 2 have all of file B.tar and none of A.tar.

Create a file /tmp/A.haschunks whose contents are:

0 00000000000000000000000000000000000000de

1 00000000000000000000000000000000000000ad

Create a file /tmp/B.haschunks whose contents are:

2 0000000000000000000000000000000000000015

3 0000000000000000000000000000000000000441

Note that the ids in the above two files are obtained from C.masterchunks, which in turn refers to the offset in the

master data file.

Now, to run node 1, type:

peer -p /tmp/nodes.map -c /tmp/A.haschunks -f /tmp/C.masterchunks -m 4 -i 1

8

and to run node 2, type in a different terminal:

peer -p /tmp/nodes.map -c /tmp/B.haschunks -f /tmp/C.masterchunks -m 4 -i 2

After the peer for node 1 starts, you can type GET /tmp/B.chunks /tmp/newB.tar. This command tells

your peer to fetch all chunks listed in /tmp/B.chunks and save the downloaded data chunks to the file /tmp/newB.tar

ordered by the id values in /tmp/B.chunks.

Here is an example of what your code should to do (note that messages are displayed here in plain text, but the

actual packet content will be binary). Node 1 should send a ‘‘WHOHAS 2 0000...015 0000..00441’’ (for

the 2 chunks that are named 00...15 and 00.441) to all the peers in nodes.map. It will get one IHAVE reply from node

2 that has ‘‘IHAVE 2 0000...015 0000..00441’’. Node 1 should then send a message to Node 2 saying

‘‘GET 0000...015’’. Node 2 starts sending Data packets as limited by flow/congestion control and Node 1

sends ACK packets as it gets them. After the GET completes (i.e. 512KB has been transferred), Node 1 should then

send a message to Node 2 saying ‘‘GET 0000...00441’’ and should perform this transfer as well.

At the end, you should have new file called /tmp/newB.tar. To make sure you got it right, you can compare this file

with /tmp/B.tar to make sure they are identical (use the unix “diff” utility).

In summary, there are basically three chunk description formats (get-chunks, has-chunks and master-chunks) and

a peer list format.

6 Project Tasks

This section details the requirements of the assignment. This high-level outline roughly mirrors the order in which

you should implement functionality.

6.1 Task 1 - 100% Reliability & Sliding Window

The first task is to implement a 100% reliable protocol for file transfer (ie: DATA packets) between two peers with

a simple flow-control protocol. Non-Data traffic (WHOHAS, IHAVE, GET packets) does not have to be transmitted

reliably or with flow-control. The peer should be able to search the network for available chunks and download them

from the peers that have them. All different parts of the file should be collected at the requesting peer and their validity

should be ensured before considering the chunks as received. You can check the validity of a downloaded chunk by

computing its SHA-1 hash and comparing it against the specified chunk hash.

To start the the project, use a fixed-size window of 8 packets2. The sender should not send packets that fall out of

the window. The Figure 3 shows the sliding windows for both sides. The sender slides the window forward when it

gets an ACK for a higher packet number. There is a sequence number associated with each packet and the following

constraints are valid for the sender (hint: your peers will likely want to keep state very similar to that shown here):

Sending side

• LastPacketAcked ≤ LastPacketSent

• LastPacketSent ≤ LastPacketAvailable

• LastPacketAvailable− LastPacketAcked ≤ WindowSize

• packet between LastPacketAcked and LastPacketAvailable must be “buffered” – you can either implement

this by buffering the packets or by being able to regenerate them from the datafile.

When the sender sends a data packet it starts a timer for it. It then waits for a fixed amount of time to get the ac-

knowledgment for the packet. Whenever the receiver gets a packet it sends an acknowledgment for NextPacketExpected−
1. That is, upon receiving a packet with sequence number = 8, the reply would be “ACK 8”, but only if all packets

with sequence numbers less than 8 have already been received. These are called cumulative acknowledgements. The

sender has two ways to know if the packets it sent did not reach the receiver: either a time-out occurred, or the sender

received “duplicate ACKs.”

2Note that TCP uses a byte-based sliding window, but your project will use a packet-based sliding window. It’s a bit simpler to do it by packet.

Also, unlike TCP, you only have a sender window, meaning that window size does not need to be communicated in the packet header

9

Sender

LastPacketAvailable

LastPacketSentLastPacketAcked

Receiver

LastPacketRead

LastPacketRcvd
NextPacketExpected

Sender

LastPacketAvailable

LastPacketSentLastPacketAcked

Receiver

LastPacketRead

LastPacketRcvd
NextPacketExpected

Figure 3: Sliding Window

• If the sender sent a packet and did not receive an acknowledgment for it before the timer for the packet expired,

it resends the packet.

• If the sender sent a packet and received duplicate acknowledgments, it knows that the next expected packet (at

least) was lost. To avoid confusion from re-ordering, a sender counts a packet lost only after 3 duplicate ACKs

in a row.

If the requesting client receives a IHAVE from a host, and then it should send a GET to that same host, set a timer

to retransmit the GET after some period of time (less than 5 seconds). You should have reasonable mechanisms in

your client to recognize when successive timeouts of DATA or GET traffic indicates that a host has likely crashed.

Your client should then try to download the file from another peer (reflooding the WHOHAS is fine).

We will test your your basic functionality using a network topology similar to Figure 4(a). A more complicated

topology like Figure 4(b) will be used to test for concurrent downloads and robustness to crashes, as well as for

measuring performance in the competition. As suggested by the checkpoints, you can first code-up basic flow control

with a completely loss free virtual network to simplify development.

6.2 Task 2 - Congestion control

You should implement a TCP-like congestion control algorithm on top of UDP for all DATA traffic (you don’t need

congestion control for WHOHAS, IHAVE, and GET packets). TCP uses an end-to-end congestion control mechanism.

Broadly speaking, the idea of TCP congestion control is for each source to determine how much capacity is available

in the network, so it knows how many packets it can safely have “in transit” at the same time. Once a given source has

this many packets in transit, it uses the arrival of an ACK as a signal that one of its packets has left the network, and it

is therefore safe to insert a new packet into the network without adding to the level of congestion. By using ACKs to

pace the transmission of packets, TCP is said to be “self-clocking.”

TCP Congestion Control mechanism consists of the algorithms of Slow Start, Congestion Avoidance, Fast Re-

transmit and Fast Recovery. You can read more about these mechanisms in Peterson & Davie Section 6.3 .

In the first part of the project, your window size was fixed at 8 packets. The task of this second part is to dynamically

determine the ideal window size. When a new connection is established with a host on another network, the window

is initialized to one packet. Each time an ACK is received, the window is increased by one packet. This process is

10

A B

C

D

F

E

File

A B

C

D

F

E

F

E

File

(a) A simple scenario that tests most of the required functionality.

Peer D has all the chunks in the file. Peer A wants to get the file from

D. In this problem, the file should reach the Peer A, 100% reliably.

Peers themselves should not drop valid packets.

A B

C

D

F

E

File

File

A B

C

D

F

E

F

E

File

File

(b) An example topology for the speed competition. Peers D and

E between them have the entire file. Peers A, B want to get the

complete file. The peers should recognize that A and B are close

together and transfer more chunks between them rather than getting

them from D and E. One test might be to first transfer the file to A,

pause, and then have B request the file, to test if A caches the file and

offers it. A tougher test might have them request the file at similar

times.

Figure 4: Test topologies

called Slow Start. The sender keeps increasing the window size until the first loss is detected or until the window size

reaches the value ssthresh (slow-start threshold), after which it enters Congestion Avoidance mode (see below). For

a new connection the ssthresh is set to a very big value—we’ll use 64 packets. If a packet is lost in slow start, the

sender sets ssthresh to max(currentwindowsize/2, 2), in case the client returns to slow start again during the same

connection.

Congestion Avoidance slowly increases the congestion window and backs off at the first sign of trouble. In this

mode when new data is acknowledged by the other end, the window size increases, but the increase is slower than

the Slow Start mode. The increase in window size should be at most one packet each round-trip time (regardless how

many ACKs are received in that RTT). This is in contrast to Slow Start where the window size is incremented for

each ACK. Recall that when the sender receives 3 duplicate ACK packets, you should assume that the packet with

sequence number = acknowledgment number + 1 was lost, even if a time out has not occurred. This process is called

Fast Retransmit.

Similar to Slow Start, in Congestion Avoidance if there is a loss in the network (resulting from either a time out, or

duplicate acks), ssthresh is set to max(windowsize/2, 2). The window size is then set to 1 and the Slow Start process

starts again.

The last mechanism is Fast Recovery. You do not need to implement Fast Recovery for the project. You can read

up more about these mechanisms from Section 6.3.3 of Peterson & Davie.

6.2.1 Graphing Window Size

Your program must generate a simple output file (named problem2-peer.txt) showing how your window size varies

over time for each chunk download. This will help you debug and test your code, and it will also help us grade your

code. implement. The output format is simple and will work with many Unix graphing programs like gnuplot. Every

time a window size changes, you should print the ID of this connection (choose something that will be unique for the

duration of the flow), the time in milliseconds since your program began, and the new window size. Each column

11

should be separated by a tab. For example:

f1 45 2

f1 60 3

f1 78 4

f2 84 2

f1 92 5

f2 97 3

..

You can get a graph input file for a single chunk download using grep. For example:

grep f1 problem2-peer.txt > f1.dat

You can then run gnuplot on any andrew machine, which will give you a gnuplot prompt. To draw a plot of the file

above, use the command:

plot "f1.dat" using 2:3 title ’flow 1’ with lines

For more information about how to use gnuplot, see http://www.duke.edu/˜hpgavin/gnuplot.html.

7 Spiffy: Simulating Networks with Loss & Congestion

To test your system, you will need more interesting networks that can have loss, delay, and many nodes causing

congestion. To help you with this, we created a simple network simulator called “Spiffy” which runs completely

on your local machine. The simulator is implemented by hupsim.pl, which creates a series of links with limited

bandwidth and queue sized between nodes specified by the file topo.map (this allows you to test congestion control).

To send packets on your virtual network, change your sendto() system calls to spiffy sendto(). spiffy sendto() tags

each packet with the id of the sender, then sends it to the port specified by SPIFFY ROUTER environment variable.

hupsim.pl listens on that port (which needs to be specified when running hupsim.pl), and depending on the identity

of the sender, it will route the packet through the network specified by topo.map and to the correct destination. You

hand spiffy sendto() the exact same packet that you would hand to the normal UDP sendto() call. All packets

should be sent using spiffy and spiffy sendto().

7.1 hupsim.pl

hupsim.pl has four parameters which you must set.

hupsim.pl -m <topology file> -n <nodes file> -p <listen port> -v <verbosity>

• <topology file>: This is the file containing the configuration of the network that hupsim.pl will create. An

example is given to you as topo.map. The ids in the file should match the ids in the <nodes file>. The format

is:

src dst bw delay queue-size

The bw is the bandwidth of the link in bits per second. The delay is the delay in milliseconds. The queue-size is

in packets. Your code is NOT allowed to read this file. If you need values for network characteristics like RTT,

you must infer them from network behavior.

• <nodes file>: This is the file that contains configuration information for all nodes in the network. An example

is given to you as nodes.map.

12

http://www.duke.edu/~hpgavin/gnuplot.html

• <listen port>: This is the port that hupsim.pl will listen to. Therefore, this port should be DIFFERENT than

the ports used by the nodes in the network.

• <verbosity>: How much debugging messages you want to see from hupsim.pl. This should be an integer

from 1-4. Higher value means more debugging output.

7.2 Spiffy Example

We have created a sample server and client which uses spiffy to pass messages around as a simple example. The

server.c and client.c files are available on the project website.

7.2.1 To make:

gcc -c spiffy.c -o spiffy.o

gcc server.c spiffy.o -o server

gcc client.c spiffy.o -o client

7.2.2 Usage:

usage: ./server <node id> <port>

usage: ./client <my node id> <my port> <to port> <magic number>

Since server and client use spiffy, you must specify the <node id> and <port> to match nodes.map. <magic

number> is a number we put into the packet header and the server will print the magic number of the packet it receives.

7.2.3 Example run:

This example assumes you did not modify nodes.map or topo.map that was given.

setenv SPIFFY_ROUTER 127.0.0.1:12345

./hupsim.pl -m topo.map -n nodes.map -p 12345 -v 0 &

./server 1 48001 &

./client 2 48002 48001 123

The client will print

Sent MAGIC: 123

and the server will print

MAGIC: 123

8 Grading

This information is subject to change, but will give you a high-level view of how points will be allocated when grading

this assignment. Notice that many of the points are for basic file transmission functionality and simple congestion

control. Make sure these work well before moving to more advanced functionality or worrying about corner-cases.

• Search for and reliably retrieve files [40 points]: the peer program should be able to search for chunks and

request them from the remote peers. We will test if the output file is exactly the same as the file peers are

sharing. Note, in addition to implementing WHOHAS, IHAVE, and GET, this section requires reliability to

handle packet loss.

• Basic congestion control [20 points]: The peer should be able to do the basic congestion control by imple-

menting the basic “Slow Start” and “Congestion Avoidance” functionality for common cases.

13

• Support and Utilize Concurrent Transfers [30 points]: The peer should be able to send and retrieve content

from more than one node simultaneously (note: this does not imply threads!). Your peers should simultaneously

take advantage of all nodes that have useful data, instead of simply downloading a chunk from one host at a

time.

• Congestion control corner cases [20 points]: The congestion control should be robust. It must handle issues

like lost ACKs, multiple losses, out of order packets, etc. Additionally, it should have Fast Retransmit. We will

stress test your code and look for tricky corner cases.

• Robustness: [10 points]

1. Peer crashes: Your implementation should be robust to crashing peers, and should attempt to download

interrupted chunks from other peers.

2. General robustness: Your peer should be resilient to peers that send corrupt data, etc.

Note: While robustness is important, do not spend so much time worrying about corner cases that you do not

complete the main functionality!

• Style [10 points]: Well-structured, well documented, clean code, with well defined interfaces between compo-

nents. Appropriate use of comments, clearly identified variables, constants, function names, etc.

In addition to these points, we have assigned 10 points for the checkpoint.

Checkpoint Deadline Description

Checkpoint 1 [10 points] October 24 You must be able to generate WHOHAS queries and correctly respond

(if needed) with an IHAVE for a simple configuration of two hosts.

You can assume that there is no loss in the network.

Final [130 points] November 10 You must turn in your project by this date to avoid any penalty. See

the late penalty on the course webpage.

9 Hand-In

As in projects 1, code submission for checkpoint and the final deadline will be done through Autolab (autolab.cs.cmu.edu).

Every checkpoint will be a git tag in the code repo. To create a tag, run

git tag -a checkpoint-<num> -m <message> [<commit hash>]

with appropriate checkpoint number and custom message filled in. (Put whatever you like for the message — git won’t

let you omit it.) The optional commit hash can be used to specify a particular commit for the tag; it you omit it, the

current commit is used.

For the checkpoint, you will be expected to have a working Makefile, and whatever source needed to compile a

working binary. Checkpoints that do not compile will NOT be graded. To submit your code, make a tarball file

of yourrepo after you tag it. Then login to autolab website, choose 15-441: Computer Networs (F15)

-> project2cp<N>, and then upload your tarball. The submitted tarball should contain a directory named

15-441-project-2, which has the following files that implement all required functionality:

• Makefile – Make sure all the variables and paths are set correctly such that your program compiles in the hand-in

directory. Makefile should build the executable “peer” that runs on the andrew machines.

• All of your source code files. (files ending in .c, .h, etc. only, no .o files and no executables)

• readme.txt: File containing a thorough description of your design and implementation. If you use any additional

packet headers, please document them here. Additionally include a sample output of your problem2-peer.txt

• tests.txt: File containing documentation of your test caes and any known issues you have.

• vulnerabilities.txt: File containing documentation of at least one vulnerability/limitation you identify at each

stage.

14

10 How to succeed in this project?

This is a big project. At the end of the project you will have your own congestion control mechanism and a sweet

peer to peer file sharing protocol. But, this is not simple. Here are some tips that will help your group succeed in this

assignment:

• Commit Often: Maybe once per work session (likely MUCH more). Too many commits never hurt anyone. In

case you find a critical bug, your commit history can help you narrow down your search to just a few changes.

• Use ‘git status’ a lot: Modified files need to be added again before committing. git status is your friend.

• Modularize: Split the problem into different modules. Tackle one problem at a time and build on functionality

only once it is completely and solidly tested. This reduces the number of places you have to search to find the

source of a bug. Define the interfaces between modules. This also helps you and your partner make progress in

parallel. If you modularize well, you will naturally tend to create multiple .c files; each of which implements a

particular module.

• Write your own tests: Many people hesitated to write their own tests in P1. What if we wanted to choose your

implementation of congestion control to use in our campus-wide network? Do you think it would be possible

to do so without having tested it thoroughlly? Besides, writing creative tests is fun! So, we really insist you to

write your own harsh scripts that test your implementation to the fullest.

Code often has mistakes that are easy to spot when you are working on small units. Write small “main” function

to test drive a very specific part of the code and see if that works properly. For small stuff, you can conditionally

compile these tests in the same file in which you have defined them:

#if TESTING

int main() {

test_foo();

}

#endif

and compile the code in a makefile that includes:

TESTDEFS="-DTESTING=1"

foo_test.o: foo.c Makefile

$(CC) $(TESTDEFS) -c foo.c -o $@

foo_test: foo_test.o

$(CC) foo_test.o -o $@

Or you can write separate “test foo.c” files that use the functions in the foo file. The advantage to this is that it

also enforces better modularization—your hash table goes in hashtable.c, your hashtable tests in test hashtable.c,

and so on.

• Comment your code: Writing documentation is not a waste of time. It makes the code more readable when you

have come back to it later, and is a good way to communicate your thoughts to your partner (but don’t comment

the obvious - simple code speaks for itself)

• Know about TCP: Knowing TCP’s congestion control mechanism will help you develop that part of the project.

• Use Valgrind: Memory management in C is one of the major hardships of the language. But you’re not alone.

There are good tools to help you here - it’s worth your time to learn how to use them.

15

• Check Piazza and FAQ religiously, even before you run into a problem: Seeing questions and issues raised

by other groups can help you anticipate and avoid having the same problem before you waste your own time on

it.

• Get help from course staff: Come to office hours, ask for clarifications on the Piazza. The earlier you ask for

help, the more time we will have to help you. If you anticipate a major problem (partner, code, etc...) contact us

well in advance of the next checkpoint.

• Start early! We cannot stress how important it is to start early in a project. It will give you more time to think

about the problems, discuss with your peers, and ask questions on Piazza. You will be busy with lots of other

work around the end of the semester, so do what you can to lighten to the load now!

11 Checklist before submitting

• Include readme, tests, vulnerabilities: Document your design decisions, explain why you think your code

works, talk about limitations! Name them correctly (readme.txt, not README). These are easy points.

• Put the required files in the root of your repo: When we do a git clone, we should see the required files

(readme.txt, Makefile, etc.) at the top level, not buried one layer deeper in “project1 cp1 starter” or “check-

point1.” We should be able to run make and then launch your executable in the root of your repo. (If you want

to organize your source code in directories, that’s fine.)

• Don’t commit executables or large log files: this just wastes space. Commit each file individual (don’t do

git commit -a).

• Tag your commit correctly: e.g., checkpoint-1, not checkpoint 1 or checkpoint1

• Name your executables correctly: lisod for P1 and not echo server. For P2, peer.

• Make sure your code compiles on andrew: Warnings during make on Andrew will break compilation. Make

sure you fix those (Some people prefer to use ‘-Wall -Werror’ flags in the compilation process). Try copying

your working tree to a new directory and checking out your tagged commit. Can you compile it?

• Make sure your code runs on andrew: We will be testing on the Andrew Unix clusters. You should too. If it

doesn’t work, it doesn’t work.

• Submit on time We will not make exceptions to the late policy for project 2 and 3.

GOOD LUCK (and get started) !!!

16

	Overview
	Help Sessions, Checkpoints and Deadlines

	Where to get help
	Project Outline
	Project specification
	Background
	Programming Guidelines
	Provided Files
	Terminology
	How the file transfer works
	Packet Formats
	File Formats

	Example
	Project Tasks
	Task 1 - 100% Reliability & Sliding Window
	Task 2 - Congestion control
	Graphing Window Size

	Spiffy: Simulating Networks with Loss & Congestion
	hupsim.pl
	Spiffy Example
	To make:
	Usage:
	Example run:

	Grading
	Hand-In
	How to succeed in this project?
	Checklist before submitting

