

XIA: eXpressive Internet Architecture - A Proposal for a Future Internet Architecture

15-441/641: Computer Networking

Lecture 25: What is Next?

Peter Steenkiste

Fall 2013

www.cs.cmu.edu/~prs/15-441-F13

Outline

- Background
- The eXpressive Internet Architecture – a proposal
 - Example and concepts
 - Research thrusts
- XIA building blocks:
 - AIP
 - Tapa

NOTE: this lecture describes a research project
This material will not be on the final exam

2

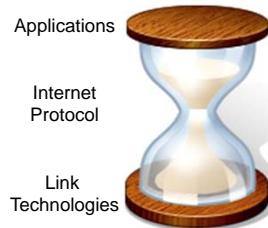
Key Internet Features

What we learned about the current Internet:

- Simple core with smart endpoints
- The IP narrow waist supports evolution
- Packet based communication
- All IP hosts can exchange packets
- Non-essential functions are services
- End-to-end transport protocols
- Security is not part of the architecture

But may be there are better ways ...

3

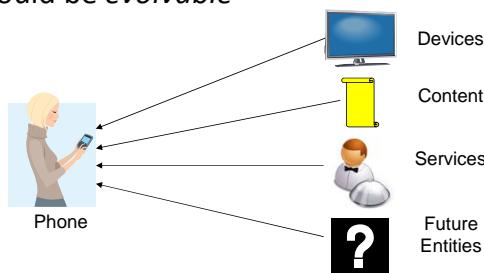

Outline

- Background
- The eXpressive Internet Architecture – a proposal
 - Example and concepts
 - Research thrusts
- XIA building blocks:
 - AIP
 - Tapa

4

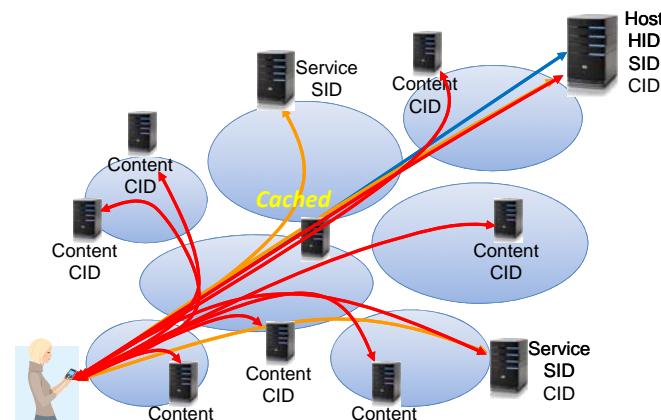
“Narrow Waist” of the Internet Key to its Success

- Has allowed Internet to evolve dramatically
- But now an obstacle to addressing challenges:
 - No built-in security
 - New usage models a challenge – content and services, not hosts
 - Hard to leverage advances in technology in network
 - Limited interactions between network edge and core
 - But where do we get started?

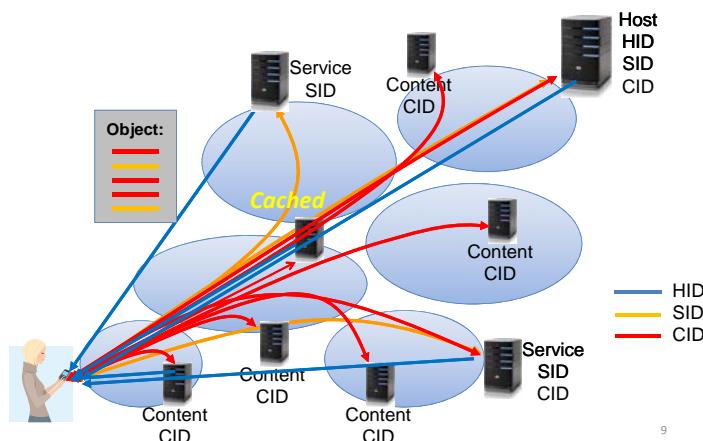

Three Simple Ideas

- Support multiple types of destinations
 - Not only hosts, but also content, services, etc.
 - Not having to force communication at a lower level (e.g., hosts) reduces complexity and overhead
- Intrinsic security guarantees security properties as a direct result of the design of the system
 - Do not rely on external configurations, data bases, ..
- Flexible addressing gives network more options for successfully completing communication operations
 - Include both “intent” and “fallback” address
 - Supports evolvability, network diversity, fault recovery, mobility, ..

6


Multiple Principal Types

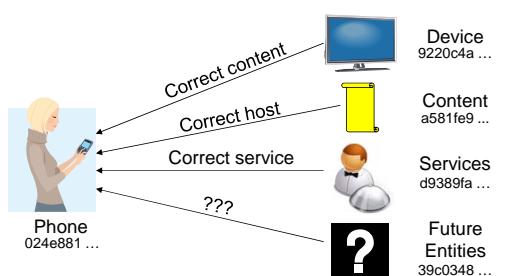
- Identifying the intended communicating entities reduces complexity and overhead
 - Have different forwarding semantics
- Set should be *evolvable*


7

Multiple Principal Types - Example

8

Many Alternatives!

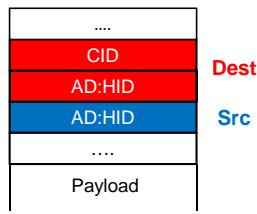

Using Principal Types

- Content and service addresses directly supports cross-application service selection and caching
 - Complex today: overlay indirection infrastructure, deep packet inspection, transparent proxies, etc.
- Routing protocols for hosts, content and services
 - Metrics driving by context, different concerns
 - Public internet: policies, business, ...
 - Intra-networks: usage models, super fast recovery, ...
- Add new (custom) functionality to the network
 - E.g., caching + service -> diverse multicast variants
 - Dealing with disruptions

10

Security as Intrinsic as Possible

- Communication security properties are a direct result of the design of the system
 - Do not rely on correctness of external configurations, actions, data bases


Use of Intrinsic Security

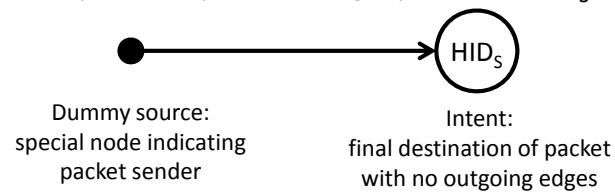
- Name-> address look automatically provides public key associated with the address
 - May not need for separate key management infrastructure
 - Can help, e.g., with network partitioning
- Changing of addresses in session in network layer
 - Sign change with private key associated with old address
- New types of intrinsic security that might
 - Variants for services, contents and hosts; new types
 - Support for existing key management processes
- Simplify comprehensive security mechanisms

12

Supporting Evolvability: Flexible Addressing

- Introduction of a new principal type will be incremental – no “flag day”!
 - Not all routers and ISPs will provide support from day one
- Creates chicken and egg problem - what comes first: network support or use in applications
- Solution: provide an *intent* and *fallback* address
 - Intent address allows in-network optimizations based on user intent
 - Fallback address is guaranteed to be reachable

13


Addressing Requirements

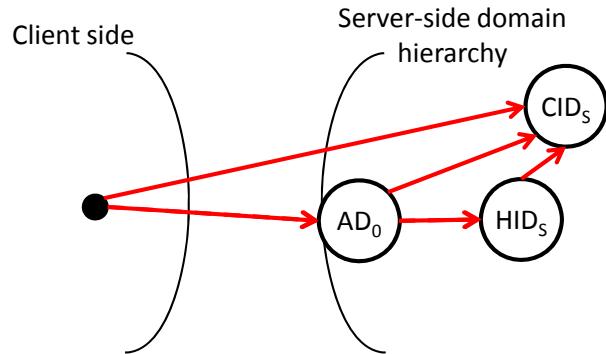
- Fallback: intent that may not be globally understood must include a backwards compatible address
 - Incremental introduction of new XID types
- Scoping: support reachability for non-globally routable XID types or XIDs
 - Needed for scalability
 - Generalize scoping based on network identifiers
 - But we do not want to give up leveraging intent
- Iterative refinement: give each XID in the hierarchy option of using intent

14

Our Solution: DAG-Based Addressing

- Uses direct acyclic graph (DAG)
 - Nodes: typed IDs (XID; expressive identifier)
 - Outgoing edges: possible routing choices
- Simple example: Sending a packet to HID_S

15


Support for Fallbacks with DAG

- A node can have **multiple outgoing edges**

A diagram showing a node with multiple outgoing edges. One edge is labeled "Primary edges" and points to a circle labeled CID_A . Another edge is labeled "Fallback edge (low priority edge)" and points to a circle labeled HID_S . Below the HID_S node is the text "Intermediate node".
- Outgoing edges have **priority** among them
 - Forwarding to HID_S is attempted if forwarding to CID_A is not possible – Realization of fallbacks

16

DAGs Support Scoping and Iterative Refinement

"XIA: Efficient Support for Evolvable Internetworking", NSDI 2012

17

It Is Not Just About Architecture!

- End-to-end transport over heterogeneous networks
 - TCP works well over wired segments
 - How to better support wireless mobile users, insertion of services, vehicular, DTNs, ...
- Trustworthy network operations
 - Improve “security” broadly defined by leveraging the intrinsic security properties of XIA
 - Focus on systematic approaches to trust management and availability

18

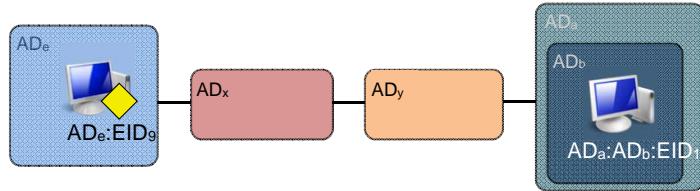
Outline

- Background
- The eXpressive Internet Architecture – a proposal
 - Example and concepts
 - Research thrusts
- XIA building blocks:
 - AIP
 - Tapa

19

A Couple of XIA Building Blocks

- The Accountable Internet Protocol
 - Accountable Internet Protocol (AIP). David Andersen, et al, ACM SIGCOMM 2008
 - Example of intrinsic security for host-based communication
- The Transport Access Point Architecture
 - Segment based Internetworking to Accommodate Diversity at the Edge, Fahad Dogar, Peter Steenkiste, CMU CSD technical report, CMU-CS-10-104, February 2010
 - Transport services for mobile and wireless users
 - Not part of the architecture, but can leverage many of its features


20

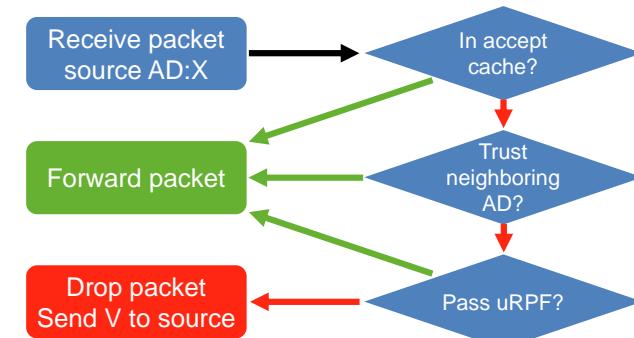
AIP Motivation

- Many security challenges are a result of not being able to unambiguously determine who is responsible for a specific action
 - Source spoofing, denial-of-service attacks, untraceable spam, ..
- Add accountability to the Internet architecture
- Key idea is to use self-certifying addresses for both hosts and domains
- Avoid dependence on external configurations
 - E.g. global trust authority

21

Addressing and Routing

- Addresses are hierarchical, similar to today's Internet
 - But each level has a flat address, i.e. no CIDR
- Until packet reaches destination AD, intermediate routers use only destination AD to forward packet
 - Effectively uses a pointer in a stack of domain identifiers
- Upon reaching destination AD, forward based on EID


22

Self-Certifying Identifiers

- Identifier of object is public key of object
 - Convenient to use hash of object (e.g. fixed size)
 - Need way of securely mapping user readable name into the identifier
- AD is hash of public key of domain
- EID is hash of public key of host
- Provides a means of verifying the correctness of the "source" identifiers in a packet
 - Effectively by sending a challenge to the source that it must sign with its private key

23

Example: AD verification

24

Verification Packet

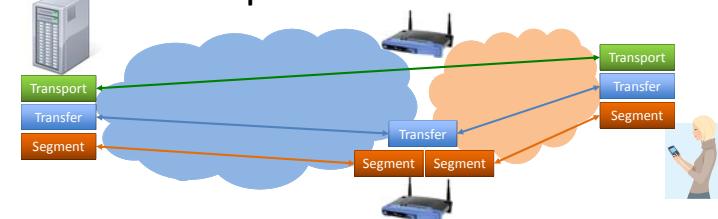
- Router sends a packet V to Source containing:
 - Source and destination identifier
 - Hash of the packet P
 - Interface of the router
 - A secret signed by R
- Source signs V with its private key and send it back to R
 - But only if it recognizes the hash
- R verifies that it was signed correctly using the public key from the source field
 - If they match, R add S to its cache

25

AIP Discussion

- AIP adds complexity to routers ...
 - Crypto support, caches, larger forwarding tables, ..
- ... but accountability helps address number of security challenges
 - Reduces complexity and cost in rest of networks
- Research question
 - Fast look up in large tables of flat identifiers
 - Managing keys (revocation, minting, ...)
 - Evolving of the crypto

26


Wireless and Mobile Challenges

- Network and device heterogeneity
 - “Wired” protocols stack may not work
- Diverse network services
 - Content retrieval, mobility services
- Relaxed synchronization end-points
 - Intermittent connectivity common case
- Topology control
 - Handoff, multi-path

Decouple Heterogeneous Network Segments
Leverage in-network functionality

27

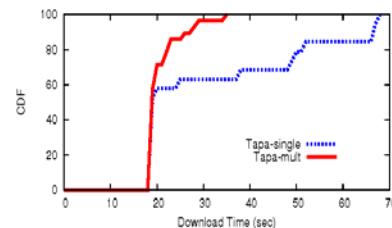
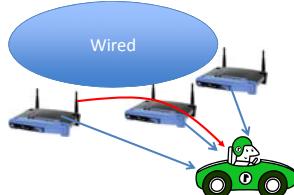
Transport Access Points

- Tapa supports visible middleboxes (TAPs) that break up e-e connections in segments
- Each segment uses custom solutions for congestion, error, and flow control
- Transfer, transport layers glue segments into e-e path
 - Operate on self-certifying chunks of data (ADUs)

28

Unbundling the Transport Layer

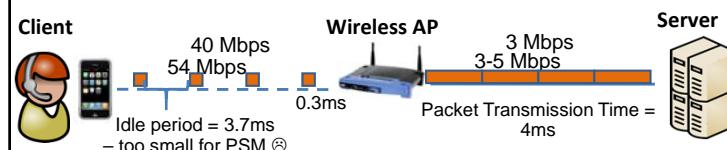
- Tapa unbundles the “thick” Internet transport layer
 - Motivated by the “dumb middle” idea
- Segments support best effort delivery of “chunks”
 - Must support congestion, flow, and some error control in way that is appropriate for that segment
 - Chunks are a few KB and self-certifying
- Transfer layer supports best effort end-to-end delivery of chunks by stitching segments together
 - Naturally supports insertion of network services
- Thin end-to-end transport supports e-e semantics
 - Also flow, error, congestion control across segment path



29

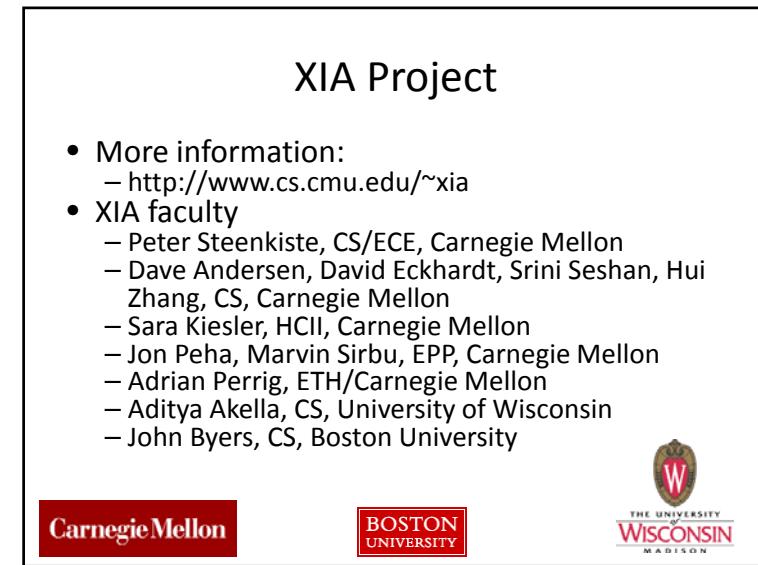
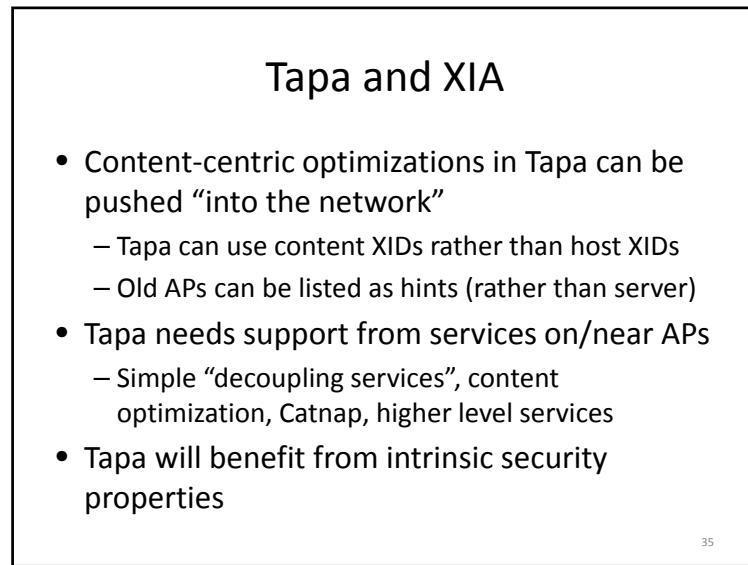
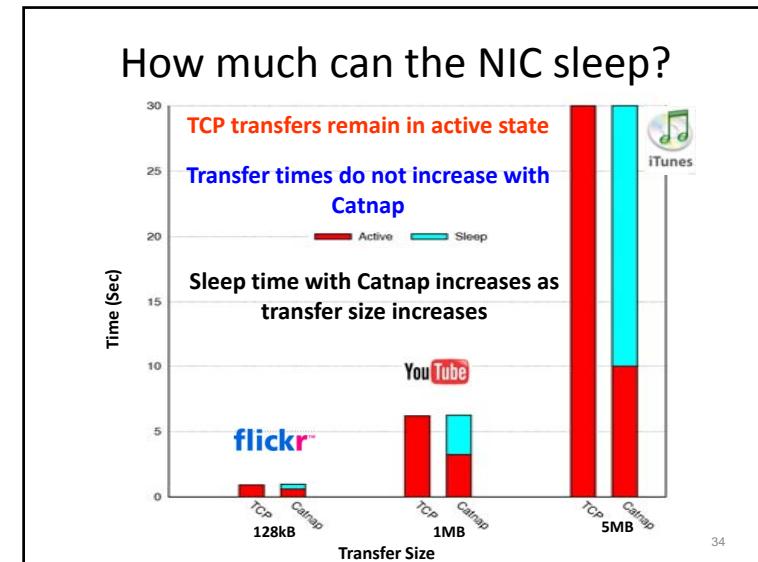
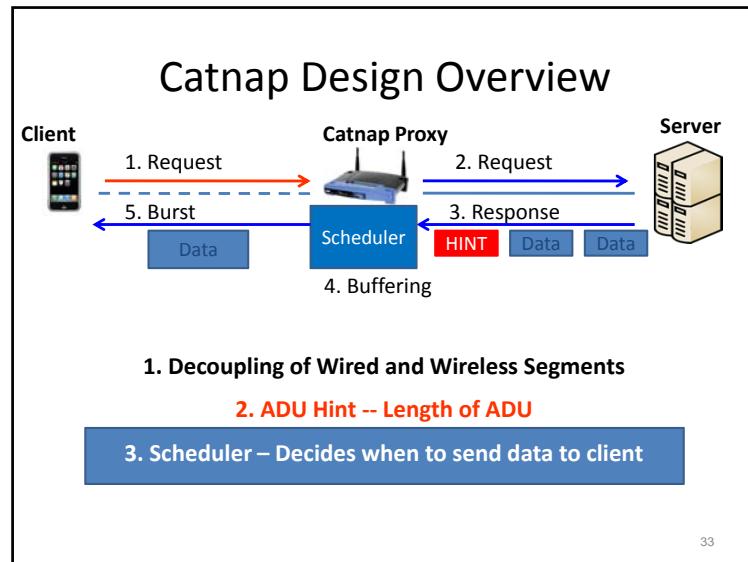
Tapa Prototype

- Leverages Data-Oriented Transport (DOT)
 - Uses self-certifying chunks of data
 - Supports application-independent caching
- Uses diverse protocols for wireless segment
 - TCP is convenient solution for wired backbone
- Intelligent end-end transport intelligence is implemented on mobile host and TAP
 - Vehicular communication
 - Catnap battery savings

30


Vehicular Example

- Vehicle-infrastructure suffers from frequent interruptions, short periods of connectivity
- Vehicle optimizes transfers by explicitly managing server-TAP and TAP-vehicle transfers
 - Leverages self-certifying content identifiers





31

BW Discrepancy in typical end-to-end transfers

Catnap leverages this opportunity to provide up to 2-5x energy savings during data transfers

32

