

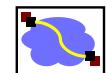
15-441
15-641 Computer Networking

Lecture 8 – IP Addressing & Packets
Peter Steenkiste
Fall 2013
www.cs.cmu.edu/~prs/15-441-F13

IP Address Classes
(Some are Obsolete)

	Network ID	8	16	24	32
Class A	0	Network ID	Host ID		
Class B	10			Host ID	
Class C	110				Host ID
Class D	1110	Multicast Addresses			
Class E	1111	Reserved for experiments			

2



Subnetting

- Add another layer to hierarchy
- Variable length subnet masks
 - Could subnet a class B into several chunks

Network	Host	
Network	Subnet	Host
111111111111111111111111	00000000	Subnet Mask

3

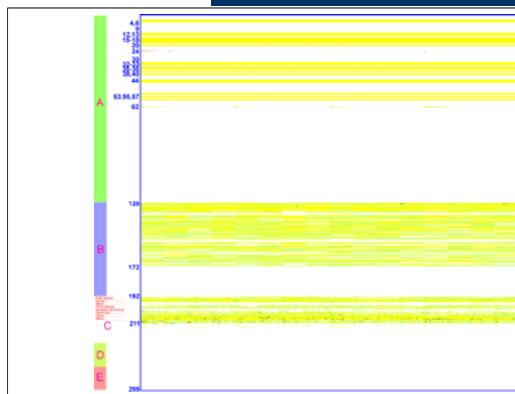
Important Concepts

- Hierarchical addressing critical for scalable system
 - Don't require everyone to know everyone else
 - Reduces number of updates when something changes
 - Interaction with routing tables
- Sub-netting simplifies network management
 - Break up the network into smaller chunks
 - Managed internally in network

4

Outline

- CIDR addressing
- IP protocol
- IPv6
- NATs


5

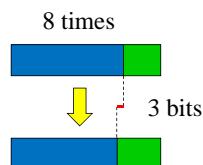
IP Address Problem (1991)

- Address space depletion
 - Suppose you need $2^{16} + 1$ addresses?
 - In danger of running out of classes A and B
 - Class C too small for most domains
 - Very few class A – very careful about using them
 - Class B – greatest problem
- Class B sparsely populated
 - But people refuse to give it back
- Large forwarding tables
 - 2 Million possible class C groups

6

IP Address Utilization ('97)

7


Classless Inter-Domain Routing (CIDR) – RFC1338

- Arbitrary split between network & host part of address → more efficient use of address space
 - Do not use classes to determine network ID
 - Use common part of address as network identifier
 - E.g., addresses 192.4.16 - 192.4.31 have the first 20 bits in common. Thus, we use these 20 bits as the network number → 192.4.16/20
- Merge forwarding entries → smaller tables
 - Use single entry for range in forwarding tables
 - Combined forwarding entries when possible
 - "Adjacent" in address space and same egress

8

CIDR Example

- Network is allocated 8 class C chunks, 200.10.0.0 to 200.10.7.255
 - Move 3 bits of class C address to host address
 - Network address is 21 bits: 201.10.0.0/21
- Replaces 8 class C routing entries with 1 entry
- But how do routers know size of network address?
 - Routing protocols must carry prefix length with address

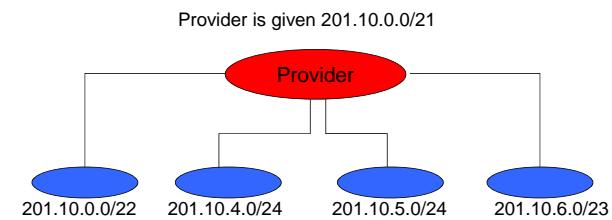
9

IP Addresses: How to Get One?

Network (network portion):

- Get allocated portion of ISP's address space:

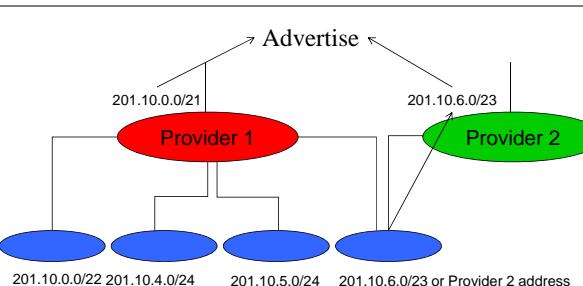
ISP's block	11001000 00010111 00010000 00000000	200.23.16.0/20
Organization 0	11001000 00010111 00010000 00000000	200.23.16.0/23
Organization 1	11001000 00010111 00010010 00000000	200.23.18.0/23
Organization 2	11001000 00010111 00010100 00000000	200.23.20.0/23
...
Organization 7	11001000 00010111 00011110 00000000	200.23.30.0/23


10

IP Addresses: How to Get One?

- How does an ISP get block of addresses?
 - From **Regional Internet Registries** (RIRs)
 - ARIN (North America, Southern Africa), APNIC (Asia-Pacific), RIPE (Europe, Northern Africa), LACNIC (South America)
- How about a single host?
 - Hard-coded by system admin in a file
 - **DHCP: Dynamic Host Configuration Protocol**: dynamically get address: "plug-and-play"
 - Host broadcasts "DHCP discover" msg
 - DHCP server responds with "DHCP offer" msg
 - Host requests IP address: "DHCP request" msg
 - DHCP server sends address: "DHCP ack" msg

11


CIDR Illustration

12

CIDR Implications

- Longest prefix match!!

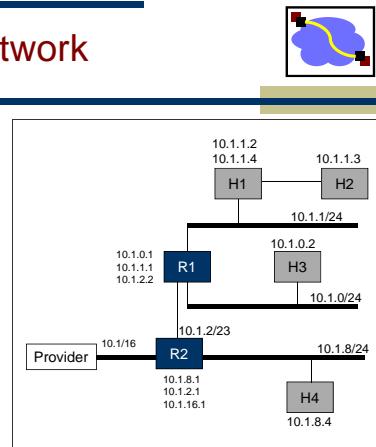
13

Outline

- CIDR addressing
 - Forwarding example
- IP protocol
- IPv6
- NATs

14

Host Routing Table Example

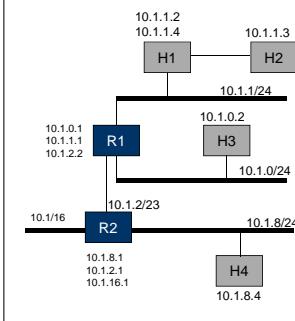

Destination	Gateway	Genmask	Iface
128.2.209.100	0.0.0.0	255.255.255.255	eth0
128.2.0.0	0.0.0.0	255.255.0.0	eth0
127.0.0.0	0.0.0.0	255.0.0.0	lo
0.0.0.0	128.2.254.36	0.0.0.0	eth0

- From "netstat -rn"
- Host 128.2.209.100 when plugged into CS ethernet
- Dest 128.2.209.100 → routing to same machine
- Dest 128.2.0.0 → other hosts on same ethernet
- Dest 127.0.0.0 → special loopback address
- Dest 0.0.0.0 → default route to rest of Internet
 - Main CS router: gigrouter.net.cs.cmu.edu (128.2.254.36)

15

Routing to the Network

- Packet to 10.1.1.3 arrives
- Path is R2 – R1 – H1 – H2

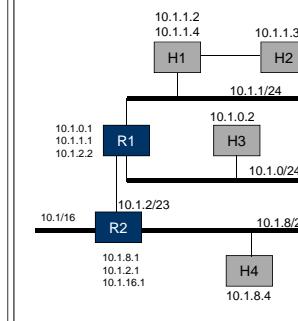

16

Routing Within the Subnet

- Packet to 10.1.1.3
- Matches 10.1.0.0/23

Routing table at R2

Destination	Next Hop	Interface
127.0.0.1	127.0.0.1	lo0
Default or 0/0	provider	10.1.16.1
10.1.8.0/24	10.1.8.1	10.1.8.1
10.1.2.0/23	10.1.2.1	10.1.2.1
10.1.0.0/23	10.1.2.2	10.1.2.1


17

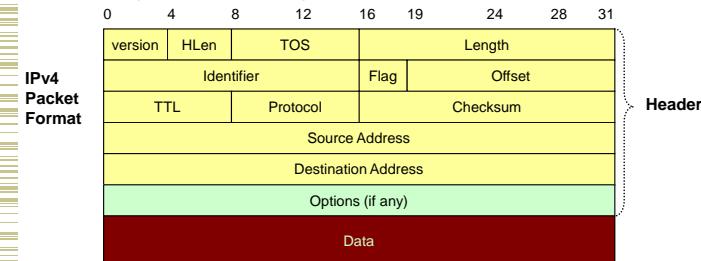
Routing Within the Subnet

- Packet to 10.1.1.3
- Matches 10.1.1.1/31
- Longest prefix match

Routing table at R1

Destination	Next Hop	Interface
127.0.0.1	127.0.0.1	lo0
Default or 0/0	10.1.2.1	10.1.2.2
10.1.0.0/24	10.1.0.1	10.1.0.1
10.1.1.0/24	10.1.1.1	10.1.1.1
10.1.2.0/23	10.1.2.2	10.1.2.2
10.1.1.2/31	10.1.1.2	10.1.1.1

18


Outline

- CIDR addressing
- IP protocol
- IPv6
- NATs

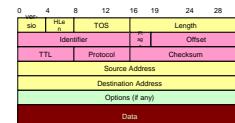
20

IP Service Model

- Low-level communication model provided by Internet
- Datagram
 - Each packet self-contained
 - All information needed to get to destination
 - No advance setup or connection maintenance
 - Analogous to letter or telegram

21

IPv4 Header Fields

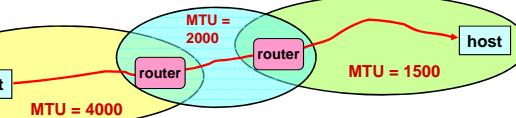


- Length: Packet Length
 - Bytes (including header)
- Header format can change with versions
 - First byte identifies version
- Length field limits packets to 65,535 bytes
 - In practice, break into much smaller packets for network performance considerations

22

IPv4 Header Fields

- Identifier, flags, fragment offset → used for fragmentation
- Time to live
 - Must be decremented at each router
 - Packets with TTL=0 are thrown away
 - Ensure packets exit the network
- Protocol
 - Demultiplexing to higher layer protocols
 - TCP = 6, ICMP = 1, UDP = 17...
- Header checksum
 - Ensures some degree of header integrity
 - Relatively weak – 16 bit
- Source and destination IP addresses
- Options
 - E.g. Source routing, record route, etc.
 - Performance issues
 - Poorly supported


23

IP Delivery Model

- Best effort service**
 - Network will do its best to get packet to destination
- Does NOT guarantee:
 - Any maximum latency or even ultimate success
 - Sender will be informed if packet doesn't make it
 - Packets will arrive in same order sent
 - Just one copy of packet will arrive
- Implications
 - Scales very well
 - Higher level protocols must make up for shortcomings
 - Reliably delivering ordered sequence of bytes → TCP
 - Some services not feasible
 - Latency or bandwidth guarantees

24

IP Fragmentation

- Every network has own Maximum Transmission Unit (MTU)
 - Largest IP datagram it can carry within its own packet frame
 - E.g., Ethernet is 1500 bytes
 - Don't know MTUs of all intermediate networks in advance
- IP Solution
 - When hit network with small MTU, router fragments packet
 - Destination host reassembles the packet – why?

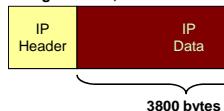
25

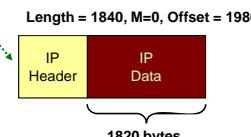
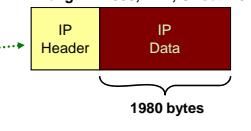
Fragmentation Related Fields

- Length
 - Length of IP fragment
- Identification
 - To match up with other fragments
- Flags
 - Don't fragment flag
 - More fragments flag
- Fragment offset
 - Where this fragment lies in entire IP datagram
 - Measured in 8 octet units (13 bit field)

26

IP Fragmentation Example #1


Length = 3820, M=0



27

IP Fragmentation Example #2

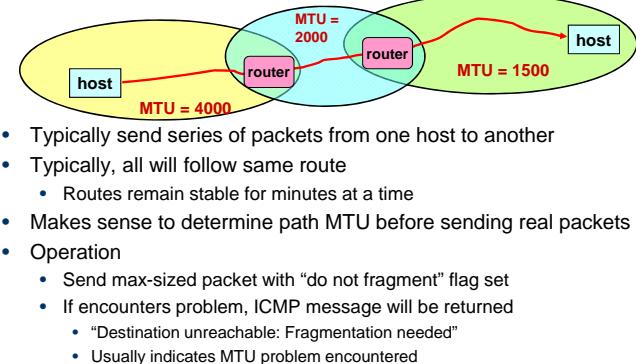
Length = 3820, M=0

Length = 2000, M=1, Offset = 0

28

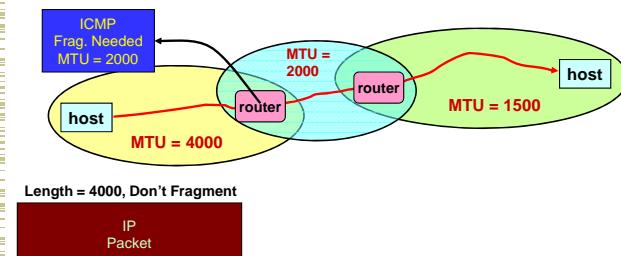
Fragmentation is Harmful

- Uses resources poorly
 - Forwarding costs per packet
 - Best if we can send large chunks of data
 - Worst case: packet just bigger than MTU
- Poor end-to-end performance
 - Loss of a fragment
- Path MTU discovery protocol → determines minimum MTU along route
 - Uses ICMP error messages
- Common theme in system design
 - Assure correctness by implementing complete protocol
 - Optimize common cases to avoid full complexity

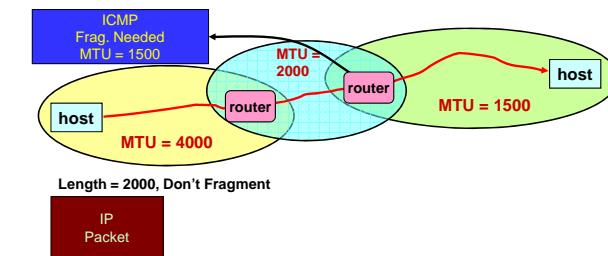

29

Internet Control Message Protocol (ICMP)

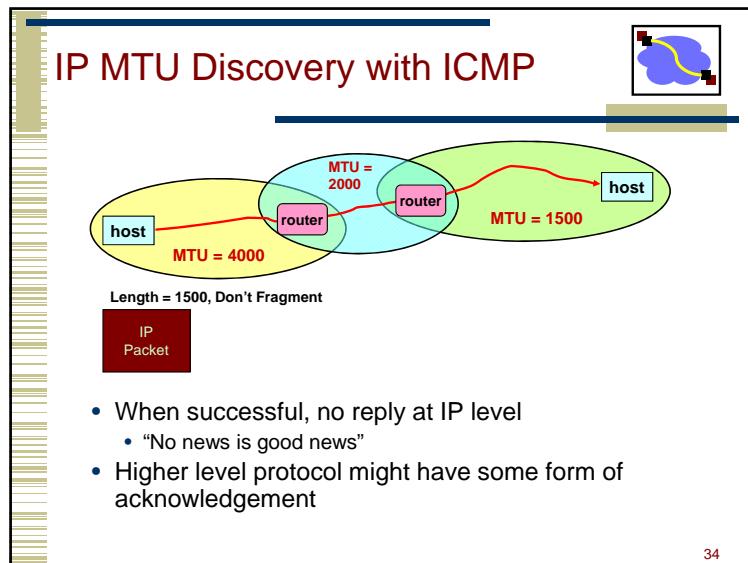
- Short messages used to send error & other control information
- Examples
 - Ping request / response
 - Can use to check whether remote host reachable
 - Destination unreachable
 - Indicates how packet got & why couldn't go further
 - Flow control
 - Slow down packet delivery rate
 - Redirect
 - Suggest alternate routing path for future messages
 - Router solicitation / advertisement
 - Helps newly connected host discover local router
 - Timeout
 - Packet exceeded maximum hop limit


30

IP MTU Discovery with ICMP


31

IP MTU Discovery with ICMP

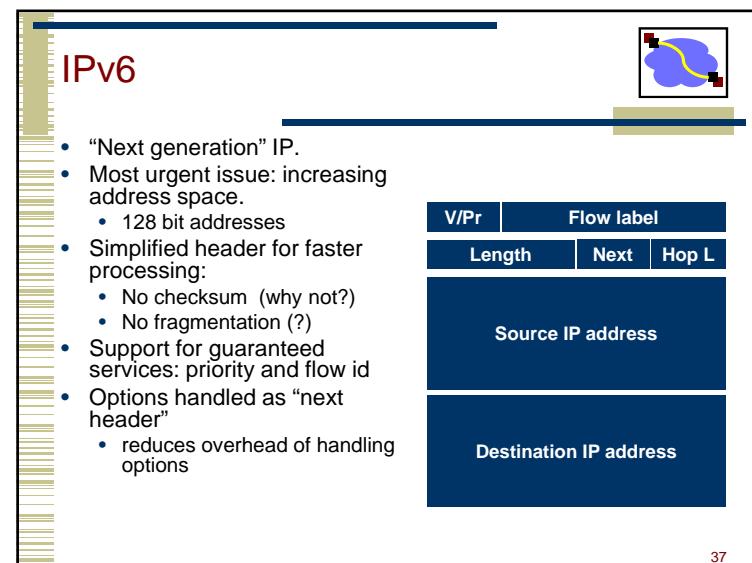


32

IP MTU Discovery with ICMP

33

Important Concepts


- Base-level protocol (IP) provides minimal service level
 - Allows highly decentralized implementation
 - Each step involves determining next hop
 - Most of the work at the endpoints
- ICMP provides low-level error reporting
- IP forwarding → global addressing, alternatives, lookup tables
- IP addressing → hierarchical, CIDR
- IP service → best effort, simplicity of routers
- IP packets → header fields, fragmentation, ICMP

35

Outline

- CIDR addressing
- IP protocol
- IPv6
- NATs

36

IPv6 Addressing

- Do we need more addresses? Probably, long term
 - Big panic in 90s: "We're running out of addresses!"
 - Big worry: Devices. Small devices. Cell phones, toasters, everything.
- 128 bit addresses provide space for structure (good!)
 - Hierarchical addressing is much easier
 - Assign an entire 48-bit sized chunk per LAN – use Ethernet addresses
 - Different chunks for geographical addressing, the IPv4 address space,
 - Perhaps help clean up the routing tables - just use one huge chunk per ISP and one huge chunk per customer.

38

IPv6 Autoconfiguration

- Serverless ("Stateless"). No manual config at all.
 - Only configures addressing items, NOT other host things
 - If you want that, use DHCP.
- Link-local address
 - 1111 1110 10 :: 64 bit interface ID (usually from Ethernet addr)
 - (fe80::/64 prefix)
 - Uniqueness test ("anyone using this address?")
 - Router contact (solicit, or wait for announcement)
 - Contains globally unique prefix
 - Usually: Concatenate this prefix with local ID → globally unique IPv6 ID
- DHCP took some of the wind out of this, but nice for "zero-conf" (many OSes now do this for both v4 and v6)

39

Fast Path versus Slow Path

- Common case: Switched in silicon ("fast path")
 - Almost everything
- Weird cases: Handled to CPU ("slow path", or "process switched")
 - Fragmentation
 - TTL expiration (traceroute)
 - IP option handling
- Slow path is evil in today's environment
 - "Christmas Tree" attack sets weird IP options, bits, and overloads router.
 - Developers can't (really) use things on the slow path for data flow
 - Slows down their traffic
 - If it became popular, they'd be in the soup!

40

IPv6 Header Cleanup

- Different options handling
- IPv4 options: Variable length header field. 32 different options.
 - Rarely used
 - No development / many hosts/routers do not support
 - Worse than useless: Packets w/options often get dropped!
 - Processed in "slow path".
- IPv6 options: "Next header" pointer
 - Combines "protocol" and "options" handling
 - Next header: "TCP", "UDP", etc.
 - Extensions header: Chained together
 - Makes it easy to implement host-based options
 - One value "hop-by-hop" examined by intermediate routers
 - Things like "source route" implemented only at intermediate hops

41

IPv6 Header Cleanup

- No checksum
- Why checksum just the IP header?
 - Efficiency: If packet corrupted at hop 1, don't waste b/w transmitting on hops 2..N.
 - Useful when corruption frequent, b/w expensive
 - Today: Corruption rare, b/w cheap

42

IPv6 Fragmentation Cleanup

- IPv4:

Large MTU → Router must fragment → Small MTU
- IPv6:
 - Discard packets, send ICMP "Packet Too Big"
 - Similar to IPv4 "Don't Fragment" bit handling
 - Sender must support Path MTU discovery
 - Receive "Packet too Big" messages and send smaller packets
 - Increased minimum packet size
 - Link must support 1280 bytes;
 - 1500 bytes if link supports variable sizes
- Reduced packet processing and network complexity.
- Increased MTU a boon to application writers
- Hosts can still fragment - using fragmentation header. Routers don't deal with it any more.

43

Migration from IPv4 to IPv6

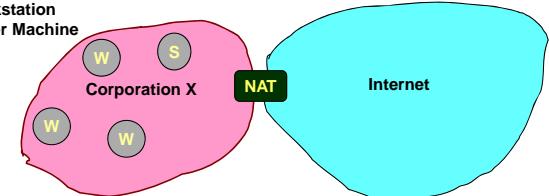
- Interoperability with IP v4 is necessary for gradual deployment.
- Alternative mechanisms:
 - Dual stack operation: IP v6 nodes support both address types
 - Translation:
 - Use form of NAT to connect to the outside world
 - NAT must not only translate addresses but also translate between IPv4 and IPv6 protocols
 - **Tunneling:** tunnel IP v6 packets through IP v4 clouds

44

Outline

- CIDR addressing
- IP protocol
- IPv6
- NATs

45

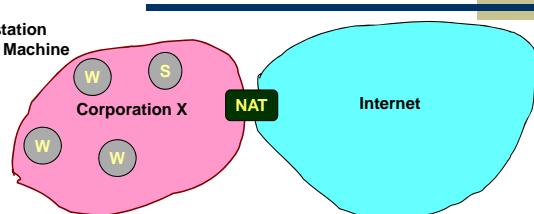

Altering the Addressing Model

- Original IP Model: Every host has unique IP address
- Implications
 - Any host can communicate with any other host
 - Any host can act as a server
 - Just need to know host ID and port number
- No secrecy or authentication – complicates security
 - Packet traffic observable by routers and by LAN-connected hosts
 - Possible to forge packets
 - Use invalid source address
 - Easy to address hosts

46

Private Network Accessing Public Internet

W: Workstation
S: Server Machine

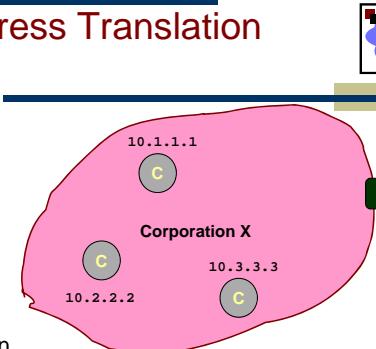


- Don't have enough IP addresses for every host in organization
- Security
 - Don't want every machine in organization known to outside world
 - Want to control or monitor traffic in / out of organization

47

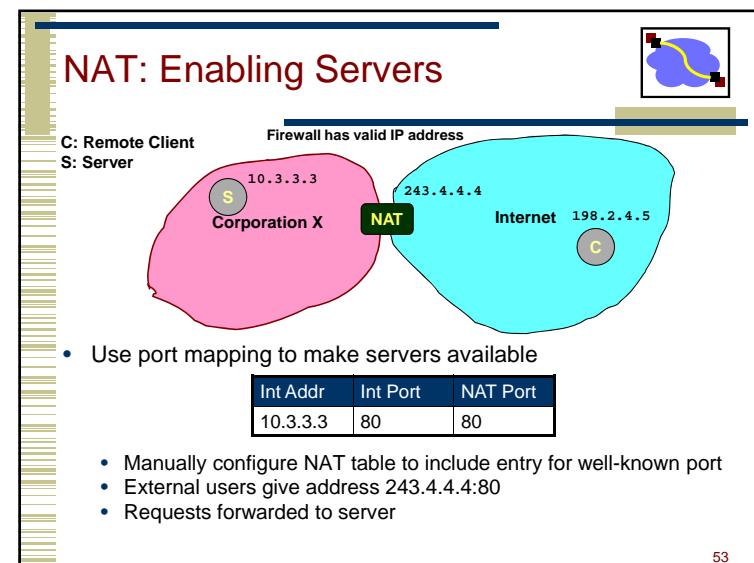
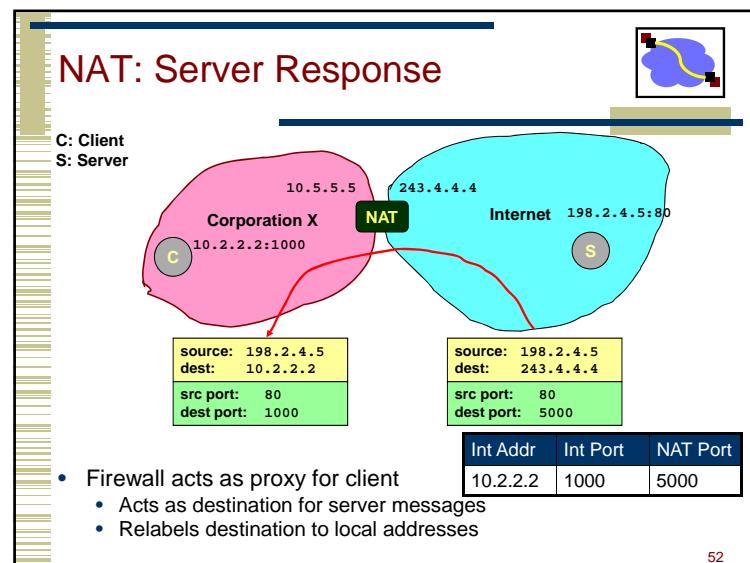
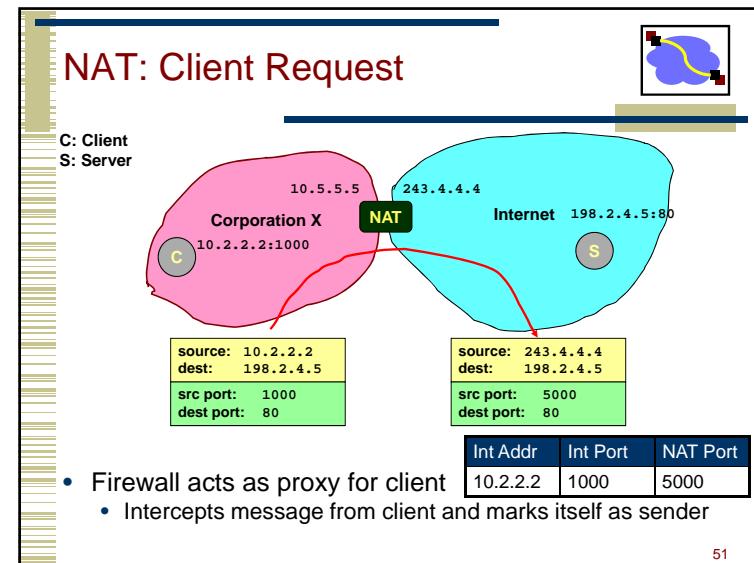
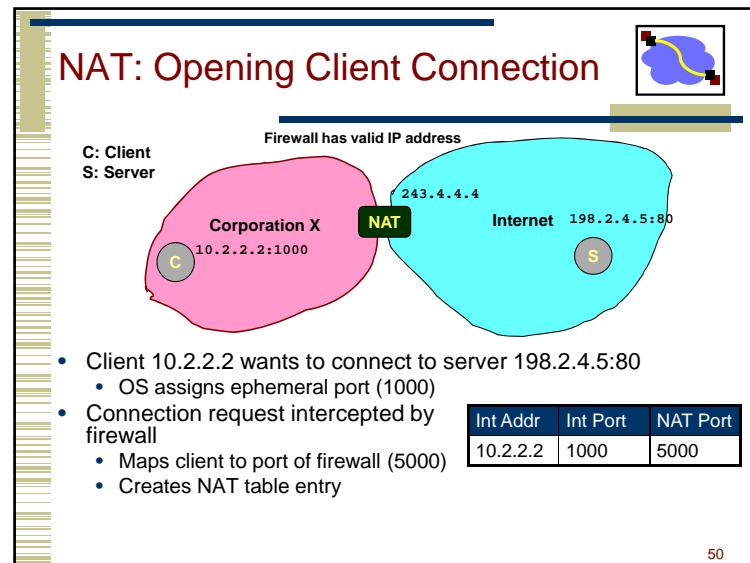
Reducing IP Addresses

W: Workstation
S: Server Machine


- Most machines within organization are used by individuals
 - For most applications, act as clients
- Small number of machines act as servers for entire organization
 - E.g., mail server, web, ..
 - All traffic to outside passes through firewall

(Most) machines within organization don't need actual IP addresses!

48





Network Address Translation (NAT)

C: Client

- Within Organization
 - Assign every host an unregistered IP address
 - IP addresses 10/8 & 192.168/16 unassigned
 - Route within organization by IP protocol, can do subnetting, ...
- Firewall
 - Does not let any packets from internal node escape
 - Outside world does not need to know about internal addresses

49

NAT Considerations

- NAT has to be consistent during a session.
 - Set up mapping at the beginning of a session and maintain it during the session
 - Recall 2nd level goal 1 of Internet: Continue despite loss of networks or gateways
 - What happens if your NAT reboots?
 - Recycle the mapping that the end of the session
 - May be hard to detect
- NAT only works for certain applications.
 - Some applications (e.g. ftp) pass IP information in payload
 - Need application level gateways to do a matching translation
 - Breaks a lot of applications.
 - Example: Let's look at FTP
- NAT is loved and hated
 - Breaks many apps (FTP)
 - Inhibits deployment of new applications like p2p (but so do firewalls!)
 - + Little NAT boxes make home networking simple.
 - + Saves addresses. Makes allocation simple.

54