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Abstract

We introduce a reconstruction framework that can account for shape related
prior information in imaging-related inverse problems. It is a variational
scheme that uses a shape functional, whose definition is based on deformable
template machinery from computational anatomy. We prove existence and, as
a proof of concept, we apply the proposed shape-based reconstruction to 2D
tomography with very sparse and/or highly noisy measurements.
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1. Introduction

Utilising prior information is critical in addressing inverse problems where data is very noisy
or the problem is highly ill-posed, the latter often due to inappropriate sampling of data.
Regularisation is needed to solve such challenging problems and many approaches enforce
sparsity or regularity within a variational setting [40].

Translating an image into knowledge is, to a large extent, dependent on recognising
and interpreting shapes of structures within the image. This paper introduces a variational
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reconstruction scheme that makes use of such prior shape information. The use cases from
imaging for such an approach are outlined in section 1.1, but our emphasis is mainly theor-
etical and aims to show how shape information can be used in image reconstruction. The 2D
tomographic examples in section 11 merely serve as a proof of concept, and even though they
do not replicate all of the complexity in the use cases, they do serve to illustrate the benefits
and drawbacks of the proposed method. A further discussion on this and other matters related
to applicability is given in section 12.2.

1.1. Use cases from imaging that serve as motivation

Despite the emphasis on theory, our work is inspired from use cases from imaging that we describe
here. As already mentioned, section 12.2 discusses extensions needed for a more realistic usage.

In some imaging problems, the main aim is to recover the shape of the sub-structure, whereas
variations within the structures are of less importance. One example is electron tomography
(ET) where a transmission electron microscope is used to image the internal 3D structures at
the nano-scale of a specimen. The resulting tomographic imaging problem is severely ill-posed
with incomplete and highly noisy data [34], but scientists often have an idea of the rough overall
shape of the structures they seek to image with ET. A concrete example is given in [12], where ET
is used to study the 3D shape variability of gold nano-particles, which is closely related to their
unique optical and catalytical properties. Here, there are reasonable shape templates that can be
used as prior knowledge in reconstruction. Another use case is in imaging flexible DNA-origami
nano-structures in their natural environment by means of ET [10]. These deformable structures
are built up by a folded single long uninterrupted strand. The folding is governed by specific
shorter ‘stapler” strands that connect the longer strands at various known places, and the structures
in the specimen can be seen as the deformation of a known template. In these imaging applica-
tions, it makes sense to account for qualitative prior shape information during the reconstruction.
Enforcing an exact spatial match between a template and the reconstruction is often asking for too
much since realistic shape information is almost always approximate, so the natural approach is to
perform reconstruction assuming the structures are ‘shape wise similar’ to a template.

Another use case is image registration where deformations are used to fit a template image
against a target image. There is by now a rich literature on variational methods for image
registration [8, 14, 38, 39, 53] with applications to computational vision and medical imaging
[27]. Such registration is usually done as a post-processing step, and there are cases where a
template needs to be registered against a target that is only indirectly observed (indirect image
matching). An example is in joint reconstruction and registration. Here, a natural approach is
to consider an intertwined scheme where the template and its registration are updated itera-
tively, as discussed in section 12.2.2. A similar intertwined approach can also be used for joint
image and motion reconstruction in spatiotemporal imaging, as outlined in section 12.3. In
both these cases, the intertwined schemes involve indirect registration.

2. Survey of the field

The idea of accounting for shape information in reconstruction is gaining increasing interest
within the inverse problems community. It is part of an ongoing development where recon-
struction and feature extraction steps are combined to solve ill-posed inverse problems. In this
context, features are specific structures in images relevant for interpretation, and their extrac-
tion is usually part of the image analysis.
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2.1. Joint segmentation and reconstruction

A step towards combined reconstruction and feature extraction is joint segmentation and recon-
struction. One approach is to consider a level-set based approach where the true (unknown)
image is assumed to be piecewise constant. In this setting, one may consider joint segmenta-
tion and reconstruction by minimising a Mumford—Shah-like functional over the set of admis-
sible contours and, given a fixed contour, over the space of piecewise constant densities which
may be discontinuous across the contour within each level set [5]. This approach was applied
to the 2D inversion of the ray transform in [36] from complete data. A key step lies in the
calculation of the ‘shape sensitivity’ in order to find a descent direction for the cost functional,
which in turn leads to an update formula for the contour in the level-set framework. Motivated
in part by the inverse problem in ET, the approach was later generalised and applied to a very
noisy limited angle and region of interest tomography data in [22]. See also [21, 44] for fur-
ther developments of the Mumford—Shah approach involving a variety of inverse problems
in imaging. Another line of development is based on incorporating priors about the desired
classes of the segmentation through a probabilistic model. Here, a hidden Markov measure
field model has been used—see [23, 31, 37] for variants of this approach.

A drawback with these variational formulations is that they are computationally demand-
ing. Furthermore, they also lead to non-convex problems, so there is always the issue of
non-uniqueness. An entirely different approach for joint segmentation and reconstruction, that
in part circumvents these problems, is provided in [25]. Here, the approximate inverse method
is extended to the setting where one recovers the features directly. It assumes that the features
in question can be extracted by applying an operator, which may be a differential operator for
calculating partial derivatives or the Laplacian, or it may be the solution operator for the heat
equation for fixed time, or it may be a wavelet transform. The approach is, however, limited to
features that can be extracted by applying a linear extraction operator on the image.

In general, the papers cited above demonstrate that joint reconstruction and segmenta-
tion typically leads to better results than performing the two steps successively, especially in
inverse problems where there are high noise levels and/or the data is incomplete.

2.2. Shape-based reconstruction

The next natural step that follows joint segmentation and reconstruction is to consider the
shape. A priori shape information often includes geometrical information about the structure
in the image, so the reconstruction scheme has to capture such information.

One approach is based on describing such geometric information by means of invariants
that carry geometrical information about the structures. Such invariants have been success-
fully used for shape-based classification, see, e.g. [1, 26] and [50, ch 3]. There is in fact an axi-
omatic treatment for constructing invariant image features [24] useful for recognising objects
from different viewpoints and whose numerical values are equal or only moderately affected
by basic image transformations. Returning to image reconstruction, [15] shows how such int-
egral invariants can be used in reconstruction. The idea is to encode the prior shape informa-
tion in a variational setting by introducing the 2-norm of the difference between the invariant
of the structure and the invariant of a prior. The main mathematical result is the proof of the
existence of minimisers of the corresponding goal functional. The optimisation is performed
with a gradient descent approach that requires the differentiation of the goal functional,
and the actual numerical implementation is based on minimising a smooth approximation
functional, which converges (I'-convergence) to the original functional.
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Another approach for variational image reconstruction that includes prior shape informa-
tion is given in [16]. Here, one constructs an energy functional based on local segmenta-
tion information obtained by segmentation and comparison with a known spatial model. The
approach is demonstrated on tomography data from digital phantoms, simulated data, and
experimental ET data of virus complexes.

An approach very similar to the one considered here is given in [2]. There, the authors pro-
pose a variational scheme for shape-based reconstruction using a deformable template. The
scheme is applied to emission tomography. Once a template is chosen, the activity map (the
function describing the isotope intensity that one seeks to recover) is assumed to be a defor-
mation of the template obtained through composition with various planar mappings, together
with a magnitude adjustment. Hence, just like we will do, they consider linear deformations
of the form (4). On the other hand, in their approach the linear deformations are given by their
wavelet coefficients whereas we will consider linear deformations given by vector fields in a
reproducing kernel Hilbert space (RKHS). Furthermore, [2] contains no analysis of existence
or uniqueness.

3. Overview of paper and specific contributions

The main contribution is the development of a variational framework for shape-based
reconstruction (section 6), which can be seen as an indirect image matching problem where a
template is matched against a target that is known only through indirect observations (data).
Our approach is heavily inspired by computational anatomy where shape is modelled as a
diffeomorphic deformation of a template. The necessary parts of this theory are mentioned
in section 5 along with section 4 that provides terminology and notation related to inverse
problem theory.

An important theoretical result is to prove existence, which is done in section 7. As with
most other variational schemes for image matching, we cannot expect to have uniqueness
due to the lack of convexity (section 8). This theoretical investigation is followed by explicit
calculations of the shape derivative for the objective functional, both in the continuum setting
(section 9) and when the linearised deformations are discretised through finite span approx-
imations (section 10). The latter is of interest in numerical implementation since finite span
approximations are well suited for discretising such infinite dimensional variational problems
(remark 4).

Section 11 contains some numerical experiments from tomography that show the impact
of using prior shape information. The outcome strongly supports the claim that shape-based
information can improve reconstructions, especially in a noisy highly under-sampled set-
ting. Furthermore, the experiments also suggest that the prior shape information does not
have to be that accurate, which is important for the use cases mentioned as a motivation in
section 1.1. None of these claims have, however, been proved formally by mathematical
theorems.

Finally, section 12 contains a discussion on various extensions, e.g. one may consider other
deformation models that allow for large deformations, such as those suggested within the
large deformation diffeomorphic metric mapping (LDDMM) framework. The deformations
can be large while being smooth and topology preserving, but performing shape-based recon-
struction with these, more elaborate, deformation models are left for the future.
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4. Inverse problems, ill-posedness and variational regularisation

4.1 Image reconstruction

The goal in image reconstruction is to estimate some spatially distributed quantity (image)
from indirect noisy observations (measured data). Stated mathematically, we seek to recon-
struct an image f,. € 2~ from data g € # where

& =T fne) +e. o)

Here, 2 (reconstruction space) is the vector space of all possible images, so it is a suitable
Hilbert space of functions defined on a fixed domain 2 C R". Next, »#” (data space) is the
vector space of all possible data, which for digitised data is a subset of R™. Furthermore,
T: 2" - A (forward operator) models how a given image gives rise to data in the absence
of noise and measurement errors, and e € % (data noise component) is a sample of a #
—valued random element E whose probability distribution is the (data noise model) assumed
to be known.

4.2. lll-posedness

A naive approach at reconstructing the true (unknown) image f. is to try to solve the equa-
tion 7(f) = g. Often there are no solutions to this equation since measured data is not in the
range of 7 for a variety of reasons (noise, modelling errors, etc). This is commonly addressed
by relaxing the notion of a solution by considering

min D(’T(f), g).
fez

2
The mapping D : & x # — R (data discrepancy functional) quantifies the data misfit and
a natural candidate is to choose it as a suitable affine transformation of the negative log likeli-
hood of data. In such a case, solving (2) amounts to finding maximum likelihood solutions.
This works well when (2) has a unique solution (unigueness) that depends continuously on
data (stability). This is, however, not the case when (1) is ill-posed and regularisation needs
to be used in order to introduce uniqueness and stability by making use of prior knowledge
about f ..

4.3. Variational regularisation

These regularisation methods have gained much attention lately, and especially so in imaging
[40]. The idea is to add a penalisation term to the objective functional in (2), resulting in a
variational problem of the type

minse 7/ [WR(f) + D(I(f),g)] for some given p > 0. 3)

The functional R : 2" — R introduces stability, and perhaps uniqueness, by encoding prior
information about f,.. It often encodes some a priori known regularity property of f,..
e.g. assuming 2" C .~ (£, R), and taking the _~” >-norm of the gradient magnitude (Dirichlet
energy) is known to produce smooth solutions whereas taking the " !-norm of the gradient
magnitude (total variation) yields solutions that preserve edges while smooth variations may
be suppressed [13].
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5. Shape theory based on deformable templates

Shape theory seeks to develop quantitative tools to study shapes and their variability. A key
objective is to define a shape metric that quantifies the shape similarity between two objects/
structures in the image.

There are a variety of mathematical approaches for modelling shapes, and the approach
we consider is based on deformable templates. This approach, which can be traced back to
work pursued in 1917 by D’ Arcy Thompson [45], is based on the idea that shapes can be rep-
resented as a deformation of a template. A quantitative analysis of shape variability can then
be based on quantifying the cost of the deformation. Grenander laid the foundations of pattern
theory [17] that was necessary for a coherent mathematical and statistical theory for shape and
shape variability based on the above idea of deformable templates. We here provide a very
brief introduction to shape theory with emphasis on the linearised deformations’ framework.

The starting point is to define a set of deformable objects representing objects/structures
whose shape we seek to analyse. There is also an associated set of deformations that can act
on the deformable objects. In our case, a deformation is given as a diffeomorphic perturbation
of the identity map (linearised deformation). Under certain conditions, the set of deformations
becomes a group with a metric that can be used, together with the group action, to quantify the
shape similarity between two deformable objects.

5.1 Set of deformable objects

We consider grey scale images as deformable objects, so the set &£ of deformable objects is
a vector space of real-valued functions defined on a fixed underlying image domain 2 C R"
(n =2 for 2D images or n = 3 for 3D images), which we assume to be an open and bounded
set. We furthermore assume that 2" C " 2(£), R).

5.2. Set of deformations—linearised deformations

The set of deformations will consist of transformations that map the image domain Q2 C R”
into €2, thereby acting on .2 by transforming the underlying coordinate grid. It is natural to
form new deformations by concatenating existing ones, and the identity mapping is a natural
‘zero’ deformation. This implies that the set of deformations should form a semigroup under
the group law given by the composition of functions with identity mapping as its identity
element.

Linearised deformations are transformations defined as

¢":=1dg+ v forsomeve V. (4)

Here,VC & %)(Q, R™)is a fixed Hilbert space with norm|| - || and its elements are vector fields
(displacement fields) supported in €. The set £ %)(Q, R™) above is the Banach space of continu-
ously differentiable vector fields with support in €2 (if §2 is unbounded, then the vector field
along with its derivative is assumed to decay to zero at infinity).

Given a Hilbert space V of vector fields as above, define £, C £~ })(Q, R™) by

Fi={¢p: Q->R": ¢ = ¢” for some v € Vand ¢ is given by (4)}. 5)

Then, £, is closed under composition whenever V is closed under composition (remark 1),
in which case it forms a semigroup. On the other hand, mappings defined as in (4) are not
necessarily invertible unless v is sufficiently small and regular [50, proposition 8.6]. It is fur-
thermore difficult to mathematically characterise the Hilbert spaces ) that ensure elements in

6
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&y are invertible, i.e. £}, is not a group. Section 12.1 has a brief discussion on how to generate
large diffeomorphic deformations. For our purposes, the semigroup structure is sufficient. As
an example, the way a deformation in ), transforms an element in 2~ is naturally described
by a semigroup action, which is a mapping ) x 2 — 2~ denoted by (¢,f) — o¢.f.

Remark 1.  One has to be somewhat careful when concluding that £, is closed under com-
position. Vector fields in ) are given here as R"-valued mappings supported on {2 C R" and
if  is unbounded, then the vector field along with its derivative is assumed to decay to zero
at infinity. Such vector fields trivially extend to all of R” by setting them to zero outside €2, so
whenever convenient, we may consider them as mappings defined on all of R”. This implies
that V is closed under composition and any deformation in £, extends to all of R, so £}, is
closed under composition.

5.3. Reproducing kernel Hilbert spaces

The theory of RKHS deals with function spaces. The theory was initialised in the 1940s for
spaces of scalar-valued functions [3]; it was later extended to spaces of functions with values
in locally convex topological spaces [43]. It has lately gained significant interest due to appli-
cations in machine learning [11, 32, 42].

The starting point is an abstract Hilbert space V whose elements are functions defined on a
fixed domain © C R” that take values in a real Hilbert space 2”. Such a space is an RKHS if
evaluation functionals 6% : V- R

Suv) = (V(x),a>% forveV

are bounded for every x € Qand a € 2”. One way to construct an RKHS is to specify a repro-
ducing kernel function, which is an operator K : Q x Q —»_~(Z", Z") such that

(a) K(-,x)(@)eVforallxeQandaec 2 .
(b) The reproducing property holds for IC, i.e. if x € Q) then

<1/(x),a>ﬂ, = (v, K( -,x)(a)>v forany v€ Vanda€ 2. (6)

(2", 27) above is the Banach space of bounded linear operators on Z”. A central
result is that a Hilbert space V of 2”-valued functions is an RKHS if and only if it has a con-
tinuous reproducing kernel £ : Q x Q - (27, Z7).

We consider vector fields in R”?, so 2" = R" and V contains R"-valued functions. It is an
RKHS if it has a continuous positive definite reproducing kernel K : Q x Q -»_~(R", R"),
which in turn can be represented by a continuous positive definite function K: € x € — M} *".
Here, M™™ denotes the vector space of all (n x m) matrices and M;™ denotes those matrices
that are positive definite. Furthermore, if V C "2 (£2, R") then one can relate the inner product
on V to the _#" %-inner product by a straightforward calculation:

(n, V)JZ(Q,]R”) = <V,L/;2/C(-,x)(77(x)) dx>v- (7)

Note also that|| - ||y is different from || - || _-2(q gn)-

5.4. The deformation operator and shape similarity

Elements in =, represent deformations that act on deformable objects, which in our case are
grey scale images on {2 represented by square integrable functions f: 2 — R. One way to let

7
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a deformation, i.e. element ¢ € £, act on a grey scale image fis by a semigroup action, say
of:=fo¢.
Next, each element in £}, has a corresponding element in V, ie. ¢ = ¢” for some
v € V. Hence, elements in V act on deformable objects by means of the deformation operator
Wy V— 2" given as
Wiv) := ¢"f=fog¢” forveV 8)
where ¢” € ) is given by (4). The deformation operator models how a grey scale image
is deformed by ¢”. The shape similarity between f and its deformed version Wy(v') can now

be quantified by ||1/||12,. Note that it is zero only if the deformation is the identity mapping
(no deformation).

6. Shape-based reconstruction

Consider the inverse problem in (1) where elements in 2" represent grey scale images defined
over some fixed image domain Q2 C R", i.e. 2" C.~ 2(0), R). Next, assume that the true image
Sire 1S approximately a deformation of a known shape template I € 2”. As we shall see next,
the shape functional in section 5.4 allows us to use such prior shape information in the recon-
struction of f . in (1).

Assume now that the true (unknown) image f;,. can be written as an admissible deforma-
tion of the shape template /, i.e.

fie = Wi(v) on Q for some v € V. ©

To reconstruct f,.,,. in (1), while accounting for prior shape information given by (9), we form-
ulate the following variational problem:

infycy IR +HROV@)) + DTNV, 8] (10)
Here, the mapping D : .#° x -# — R is the data discrepancy functional introduced in (2),
R : Z"— Ry is the regularity functional that encodes regularity properties of f,. that are
known beforehand, and as already mentioned, || lelf, quantifies the shape similarity between the
template / and its deformed variant W;(v). Finally, A > 0 regulates the influence of the prior
shape information and p > 0 regulates the influence of the a priori regularity properties that
Jirue Might possess.

7. Existence of solutions

A basic property that a reconstruction scheme must fulfil is that it always has solutions (the
existence of solutions), since otherwise it is of limited usefulness for reconstruction. In our
case, this translates into proving the existence of solutions for (10).

Theorem 1. Let V be a Hilbert space and assume f+— D(I(f), g) and f— R(f) are both
lower semi-continuous on 2". Then, (10) has a solution in V.

Proof. Let&:V— R, denote the goal functional in (10), i.e. for given \, y=0and I € 2",
it is defined as

W) = AIII/II%;Jr,uR(W[(V)) + D(TWi(v)),g) withve V. 11)
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If we can prove that £ is lower semi-continuous on V, then (10) has solutions.

Let {#;,}, C V be a minimising sequence for (10) so ||2;||y are bounded. Since V is a Hilbert
space, it is in particular a complete metric space with respect to the distance function induced
by the inner product. Hence, there is a subsequence, still denoted by {;,},, that converges
weakly to some v* € V (see [50, theorem A.16]). By [50, proposition A.15] we then have

Il < lim inf, - o2l - (12)
Next, by (4) we get

") = ¢ )l = llwnx) — v* )| forxe Q.
Since v — v(x) is a continuous linear form on V, we conclude that

P"(x) — " ()| = 0.

lim suprQ‘

Thus, ¢” is continuous in the weak topology of V. Furthermore, for every shape template
1€ 27, using the result in the proof of [48, theorem 2.5] gives us

lim sup, .o | Wi(wn)(x) = Wi")@)|| = 0.

Therefore, WV is also continuous in the weak topology of V. Now, by assumption both
fr— D(I(f), g) and f— R(f) are lower semi-continuous on .2". Hence,

RWi(v*)) <lim inf, - oc RONV(1)), (13)
DITOWV(V), 8) <lim infy— o DITOV(1)), &) (14)

(12) together with (13)—(14) implies that ~* is a solution for the variational problem (10) in V.
This concludes the proof. O

8. Uniqueness

Another desirable property of a reconstruction scheme is uniqueness, i.e. the scheme renders
a unique solution for given data. Unfortunately, there are no guarantees that (10) has a unique
solution, even when both

f=R() and f—>D(Lf).8) (15)

are strictly convex. This is because the deformation operator Wy : V — £ in (8) is non-convex.

As with all reconstruction methods that involve solving non-convex optimisation problems,
there is always the issue of getting stuck in local extrema. Numerical experiments suggest
that this risk is higher if the template needs to undergo a significant translation. Hence, the
template should be centred over the object before reconstruction, e.g. by ensuring its centre
of gravity coincides reasonably well with the centre of gravity of the (unknown) object we
seek to recover. Another observation is that templates with the wrong topology tend to result
in reconstructions getting stuck in local minima. In test suite 4, the poor results in figures 7(e),
(g) and 8(d) are probably due to iterates getting stuck in local minima. In theory, it should be
possible to compensate for erroneous template topology by invoking stronger deformations,
as is the case with the corners in the template in figure 1(f) that are hardly visible in the recon-
structions in figures 1(g) and (h).
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One option to address the issue of non-convexity is to further restrict the set V' of veloc-
ity fields, but it is highly non-trivial to work out conditions on V that would guarantee strict
convexity, and thereby uniqueness for (10). There are, however, specific parameterisations for
generating deformations that can be worth considering—see discussion in section 12.1.

Remark 2. A complete mathematical analysis of a reconstruction scheme would also in-
clude an analysis of stability, i.e. whether the scheme is stable w.r.t. perturbations in data. An
even more ambitious endeavour is to establish convergence properties, i.e. to what extent the
output from the scheme converges to a (least-squares/maximum likelihood) solution of (2)
when the data error tends to zero in some norm while reconstruction parameters are chosen
accordingly. Such issues are not considered in this paper.

9. Derivative calculations

Performing reconstruction following the scheme outlined in section 6 requires solving the
optimisation problem in (10). Most computationally feasible approaches make use of first
order derivative information, so one central topic is to compute the gradient of the goal func-
tional given in (11).

The gradient is calculated w.r.t. the Hilbert structure of V, which is the natural inner-prod-
uct space for this minimisation. In computing the V-gradient of the mappings

vi— RW(v)) and v DIW,(v)),9), (16)

we assume the mappings in (15) are both Gateaux differentiable and / is differentiable.

9.1. The deformation operator

We here provide an explicit expression for the Gateaux derivative of the deformation operator
defined in (8).

Proposition 1. Assume 1€ 2" is differentiable. Then, the deformation operator
W, : V= 2" in(8) is Gdteaux differentiable at v € V and its Gdteaux derivative is

WW))x) = (VI(@" (), 7(x)),, forxeQ andne V. (17)
Proof. The Gateaux derivative is the linear mapping OW(v) : V— 2~ defined as

DWW () = diWI(u vl fornev
€

e=0

Hence, OW,(v)(n) : @ = R where

IN)()) = %w,o/ + o) forxe Q.

,i o pvten
—d€(1 PN (x)

e=0 e=0
Now, I € 2°C (£, R) is differentiable so the chain rule gives us

IVI)(x) = <VI(¢”(x)), %w””’)

(x)> forxe Q. (18)
e=0 R"
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The second term in the scalar product on the right hand side of (18) is the derivative of a de-
formation with respect to variations in the associated vector field.

Next, by (4) we have ¢+ = Idg + v + e, so

L @=Larvwtaw)| =nw.
de =0 de e=0

Now, (17) follows from inserting the above into (18). O

Remark 3. Unless derivatives are to be interpreted in the distribution sense, the template
I€ 2" in (17) has to be differentiable.

9.2. General matching functionals
Both of the functionals in (16) are of the form 7; : V— R, with
Jiw) :=LoW(v) forveV, (19)

where £ : 2" — Ris a fixed functional on 2~ that is sufficiently regular, e.g. we require it to
be Gateaux differentiable.

Theorem 2. Assume L : 2”— R is Gdteaux differentiable on 2~ and define J; : V — R as
in (19) where I € _2"*(Q, R) is differentiable. Then, the Gdtueaux derivative of J is given as

DTiw)10) = ALV V@ (), 7)) forv,ne V. (20)

Furthermore, let 2°C " *(Q, R) and V is an RKHS with a reproducing kernel represented by
the symmetric and positive definite function K: Q x Q — M'*". Then

VJ/(V)(X):LVHWI(V))()’)K(XJ)-V1(¢”(y)) dy forxe. (1)

Proof. The proof of (20) follows directly from the chain rule and proposition 1. More
precisely, by the chain rule we have

0Tw)(m) = OLV,(WNOW(w)(m))  forv,ne V. (22)

Combining this with (17) gives us (20).

To prove (21) we need to use the assumption 2" C " 2(€), R). Then, the Riesz represen-
tation theorem allows us to define the gradient of £ as the mapping VL : 27— 2~ given
implicitly by the relation

2Q,R)
Combining (22) with (23) gives

DT W)) = (VL)) OW@)()) for v, € V. 24)

L HQR)

Next, the expression in (17) can be inserted into (24):



Inverse Problems 33 (2017) 035004 O Oktem et al

OTiw)) = (VLOVEN VIS D)) i
= (VLN (VIGCD0)) ) aign)
= (1) VLOV@)COVIG(-)))

LAQRY

The last equality makes use of the fact that the inner product in "2 (£2, R") (square integrable
R"-valued functions) is expressible as the inner product in R” followed by the inner product in
~"2(9, R) (square integrable real-valued functions). Note also that

x = VLWV @)®)VI(¢"(x)) and  x — n(x)
are both mappings from  into R”, so the _~"2(£2, R") inner product is well defined. Finally,

we use the assumption that V' is an RKHS with reproducing kernel K : Q x Q —»_"(R",R"),
so by (7) we have

DT = <n( O [ kG dx>v

where 7 : 2 - R" is defined as
v(x) := VLV @)x)VI(¢¥(x)) forxe.

We can now read off the expression for the V-gradient of J; and inserting the matrix valued
function K: 2 x 2 — M'*" representing the reproducing kernel gives us

VI(v)(x) = fQ K@, y)(@(y) dy = L VLV @)(KE, y) - VI(@"(y)) dy.

The last equality is (21), so this concludes the proof of theorem 2. |

In tomography, data is typically represented by o#” = _~"2(¥,R) where Y is a manifold of
lines given by the data acquisition geometry. If measured data has additive Gaussian noise,
then a natural matching functional is

Jiw) i=|| T o ¢") — g (25)

2
2V R)

Corollary 1. Let the assumptions in theorem 2 hold. Furthermore, assume that J; : V — R
is given as in (25) with T: 2~ — # Gdteaux differentiable. Then

0Ti)(0) = 2{ TV TONw) = YCOVIG (D0()) s (26)

for v,n €Y. Furthermore, if 2°C -"*(Q,R) and V is an RKHS with a reproducing kernel
represented by the symmetric and positive definite function K: Q x Q — M'[*", then for x € Q
we have

VI(v)x) =2 fﬂ TN, TWV(v) — )(K(x,y) - VI(@"(y) dy.  (27)
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9.3. Gradient of goal functional

Many optimisation schemes rely on computing the gradient of (11). If we assume V is an
RKHS, then a general expression for its gradient V& : VV— V can be obtained by combining
(21) with the V-gradient of v >—>||1/||%,, which is simply 2v.

Corollary 1 can be used to get an explicit expression for the gradient of the objective func-
tional in the case when the matching functional is given by (25) and p = O:

VEW)(x) = 2v(x) +2 fﬂ TV, W) TV (v) — &)(K(x,y) - VI(¢"(y)) dy.
(28)

10. Finite dimensional setting

Vis in general an infinite dimensional Hilbert space of vector fields, so the variational problem
in (10) is an optimisation over an infinite dimensional Hilbert space. In a computational set-
ting we can only minimise functionals over finite dimensional vector spaces. One approach
is to formulate the optimisation scheme for finding a local minima in the infinite dimensional
setting. The explicit expressions for the gradient of the goal functional (section 9) can be used
for this. One can then discretise this optimisation scheme. Another approach is to look for
‘natural’ finite dimensional formulations. In particular, elements in V can only be evaluated at
a finite number of points, so we need to consider suitable finite dimensional sub-spaces of V. It
now turns out that there are such natural finite dimensional formulations when V is an RKHS.

10.1.Finite span approximations of vector fields

If V is an RKHS, then there is a natural way to construct admissible finite dimensional
sub-spaces of vector fields by considering finite span approximations. Let K: Q x  — M7*"
denote the symmetric and positive definite function that represents the reproducing kernel of V.
Next, define the (geometric) control points as the fixed set of points ¥ := {x, ...,xy} C Q C R
Given such a set, define the corresponding finite dimensional vector space as

N
Vy = {1/ eV:vx) =Y K(x,x) - o; for some o € ]R”}. (29)

j=1

Elements in Vy, are called finite span approximations of elements in V and Vx. C V is a finite
dimensional RKHS with an inner product given by

N
Wy = > aj K, x0) - B (30

k=1
forv,n € Vy given as

N N
v=>K(.x) o and n=>K(-x)- 0. 3D

Jj=1 j=1

Remark4. Finite span approximations of the type in (29) are especially suitable for problems
involving optimisation over V. More precisely, representer theorems (like [50, theorem 9.7],
see also [41, 52]) show that
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N
V¥ = arg min|:)\||1/||%,+ ZL[V(xj)]] = v'eVy with ¥ := {xj}jy:]. (32)

veV j=1

Here, L : R" — R is a given function (usually called loss-function) and ||11||)2;:: <u, 1/>V is the
RKHS norm.

10.1.1.Notation. Before proceeding, we introduce some convenient vector/matrix notations.
The ‘vec’-operator vec : M"*" — R stacks all the columns of a matrix, i.e.

.
VCC[A] = (al,l e Qpl o - Al ... a,,,m)
whenever A is an (n X m) matrix
al,l a1,2 alym
A= .612,1 .612,2 .aZ,m
anp,1 Ap2 ... a,hm
Next, for each v € Vy, there are unique oy, ..., oy € R" such that
N
v(x) = ZK(x, x)-o; forxeQ. (33)

J=1

Hence, each v € V5, corresponds to a unique Nn vector that we denote by av,, i.e.
o, = vec[(al OéN)] where «, ..., ay € R*ulfil (33). 34)

Finally, introducing the (Nn x Nn) kernel Gram matrix K := [K(xj, x¢)]jx=1,...,v allows us to

express (30) as (v, n)y, = a K- By

,,,,,

10.2.Finite dimensional formulation

Consider the problem of minimising the functional £: V— R in (11). If data g € # is digi-
tised, then this functional is similar to the ‘loss functional’ in (32) (at least when p = 0) and
a minimiser of (10) should be contained in Vy, C V. Hence, for finite data we can replace the
(infinite dimensional) minimisation in (10) with the following finite dimensional variational
problem:

arg min&(v).
veVy

(35)

Let us now consider (35) more closely. As already stated, to each v € Vy there are
ay, ..., ay € R such that (31) holds. Hence, the values of v at the control points in > C €2 are
expressible through the following matrix equality:

(V(xl) V(xN))T =K. o,



Inverse Problems 33 (2017) 035004 O Oktem et al

In particular, the RKHS norm of a displacement field v € Vs, can be written as

N N
Il = Vi, = <ZK<-,x,->-q,»,zK<~,xj>'a,«> =a, K- a,. (36)
j=1 Jj=1

Vs

This motivates the introduction of the function
S:R R, givenas S(a):=a' -K-a foracRM, (37)

Then, S above corresponds to the v n—>||1/||)2; term in (11) as shown in (36). Next, define
W, : RV 5 27 as

N

Wi = I[ 4 YKL x) - aj] for a = vec[(cv, ..., ay)] € RV (38)
j=1

Then, W, corresponds to the deformation operator W, in (8), i.e. Wi(a,) = Wi(v) whenever

o, € R¥ and v € Vy, are related by (34). Finally, we define the functions R, J; : R¥ — R, as

R(a) := R(Wi())

f RN,
Ji(@) := D(TWi(v)), g) orae (39)

As was to be expected, R corresponds to R in (16) and J; corresponds to J; in (19). Hence,
solving (35) is equivalent to solving

min, gy AS(c) + pR(e) + Ji(a)]  for fixed A > 0. (40)

If o denotes a solution to (40), then we can construct v* € Vy, from o by using the relations
in (31) and (34):

N
vei= Y "K(-,x)) - ]
j=1

in which the n-vector a’; € R contains elements j to j + n — 1 of o". The corresponding recon-
struction f* that approximates f;.,. € 2~ in (1) is then given by

@) =W = I(x + v*(x)) forallxe.

Computing the reconstruction f* is associated with a variety of choices. First is the choice of
the functionals D : #°x # — R, and R : 2 — R.. Next is the choice of the (regularisa-
tion) parameter g > 0. The choice of D is ideally dictated by the statistical model for the noise
in data, and the choice of 1 > 0 is governed by the ‘magnitude’ of this noise. As an example,
the 2-norm is a natural choice for D for additive Gaussian noise and one may use the Morozov
discrepancy principle to select p if there are reasonably accurate estimates of the noise level
in data. The choice of R depends on the a priori regularity properties that one seeks to enforce
during reconstruction. These choices are identical to those that need to be made in traditional
variational regularisation. Our scheme does, however, differ in that there is also a component
that controls the a priori shape information, which is given by a template / € 2", kernel
K: Q x Q> M'}*", the control points 3 C €2, and the (shape) regularisation parameter A > 0.

10.3.Solving the finite dimensional minimisation problem

We solve (40) using a gradient descent method, e.g. gradient descent. Such methods involve
computing the gradients of a — S(&), @ — R(ax), and a — J;(a). Computing the gradients

15
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of these functions amounts to calculating their partial derivative with respect to every element
ajr(j=1,...,Nand k = 1,...,n) in the Nn vector c.

We will here present an example of such calculations in a special case, and for simplicity,
we omit the regularisation functional R : 2~ — R, i.e. we omit & — R(a). Furthermore, we
focus on the special case when -#°= R™, i.e. there are m data points and 7: 2" — R". The
data discrepancy D : & x -# — R, is the corresponding finite dimensional version of the
squared 2-norm:

2

Du,g) :==||u—g

Su,—g)* foru,ge A . 41
=1

2

10.3.1.The gradient of a — S(a). We know from (36) that
S(a):=a" K-« :||1/||]2) whenever a = a,.
Hence, for j=1,...,Nandk =1, ...,n we get

0S (@) = 0

8aj,k 3041',/(

[a" - K-a] = VSa)=2K -« for o € RV,

10.3.2.The gradient of a+ J(a). When D: #'x# —R, is given by (41), then
Jy : RM 5 R, defined in (39) becomes

Ji(@) := DT (Wi(@)), &) =T Wi(e)) — glb= D> _(T(c), — g)* 42)

=1
where T: RV — R is defined as

N
T(a) =7 W) =T (I[ + Y K(x) - aj]] for o € RV, (43)
Jj=1

If T: 2" — R"is linear, then a straightforward computation gives

V(@) =23 [(T(ew), — g)VT(e)]

=1

where 7, : 2" — R is the the ¢:th coordinate of the forward operator 7, so

V@, = V[T{I(. F3KC)- )]]

=1

T N
= T{(K(-,xl) K(',xN)) -VI(- + > K-, x) - al)].

=1

11. Results for 2D tomography

To illustrate the impact of shaped-based reconstruction, we consider 2D parallel beam tomog-
raphy with very sparse and highly noisy data. All the data is simulated and the phantoms are
highly simplistic, but we believe it serves the purpose of illustrating the impact of using prior
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shape information. An implementation applicable to the use cases mentioned in section 1.1
would need to address several other issues, some of which are discussed in section 12.2.

11.1. The inverse problem

The goal is to reconstruct a real-valued function in 2" = " 3 (€, R) on a domain Q C R? from
its transmission projection images. Hence, data in (1) is represented by a real-valued function
in .# =_"2(Y,R) where Y denotes a 2D manifold of parallel lines in R? and the forward
operator 7 is the 2D ray/Radon transform—see [33] for details.

11.2. The reconstruction scheme

The reconstruction is based on solving (10) where the shape template / is a given 2D image
and the data discrepancy D is the the squared 2-norm in o#”. We do not include any additional
regularisation, so i = 0 and (10) reduces to

min[Auyui + H7(Io ¢v] —g
vey

In the above, the shape template 7 € 2~ and regularisation parameter A > 0 are fixed.
The space V of vector fields is chosen as an RKHS where its reproducing kernel is given by

2

./Z(Y,]R):l. (44)

a symmetric and positive definite Gaussian function K: Q2 x Q — Mixz that, for fixed o > 0,
is defined as

1
K(x,y) := exp(—Fllx — y||2)((1) (1)) for x,y € R, (45)

11.3. Finite dimensional formulation

To replace the infinite dimensional minimisation in (44) with a finite dimensional counterpart,
we consider finite span approximations of the type in (29)

1ok 2
min [A[aT ‘K- a] +> Z(T(a),-,j - g,-j] ] (46)
ackr™ i=1j=1 ’
In the above, T: R?N — R™ is the fully discretised 2D Radon transform so m denotes the total
number of lines. In parallel beam geometry, m = lk where k is the number of directions and /
is the number of lines per direction.

The variational problem (46) is solved using a gradient descent scheme where the gradient
of the objective is computed from the expressions in section 10.3. The kernel is given in (45)
with 02 = 1 for all cases. Other reconstruction parameters, like the value of A and the number
of iterations, vary.

11.4. The data acquisition and reconstruction protocols

Data is generated by evaluating the 2D parallel beam ray transform from a number of direc-
tions surrounding a digital phantom and then adding additive Gaussian noise. The noise level
is quantified in terms of the signal-to-noise ratio (SNR) expressed using the logarithmic deci-
bel (dB) scale:
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ideal 2
Z;l:l|gj - Mideal'

Z;'n: 1 ‘ ¢ — tu‘noise|2

SNR(g) = 101og,, (47)

Here, g = g% 4 ¢ in (1) where g'%* € R” is the noise-free component of data g and e is
the noise component. Furthermore, ;4. is the arithmetic average of g% and ;.. is the
arithmetic average of e. Since we work with simulated data, there is access to the noise-free
component of data.

Shape-based reconstructions are obtained by solving (46) using a gradient descent method.
Unless otherwise stated, the RKHS kernel is the one in (45) with 0> = 1. Other reconstruction
parameters, like the value of A and the number of iterations, vary. Some test suites involve
comparisons against other reconstruction methods, like filtered back projection (FBP), clas-
sical Tikhonov, and TV reconstruction. These are computed using routines from the Operator
Discretization Library, which is available from http://github.com/odlgroup/odl

11.5. The tests

The tests seek to illustrate some basic properties of shape-based reconstruction and as such,
they do not constitute a proper validation/comparison study. Despite their simplicity, these
tests do provide quite interesting information that is sufficient as a proof-of-concept in a study
whose main purpose is to develop a theoretical framework. More extensive tests are called
for when the proposed approach for shape-based reconstruction is applied to specific imaging
problems, such as in some of the use cases mentioned in section 1.1.

Test suite 1 investigates how the smoothness of the shape template influences the recon-
struction. Test suite 2 considers the sensitivity of the reconstruction scheme against the choice
of the regularisation parameter, whereas test suite 3 assesses the robustness against noise in
data. Test suite 4 considers the impact of using an erroneous shape template. Finally, test suite
5 investigates performance in a multi-object setting.

11.5.1. Test suite 1: regularity of template. The aim is to investigate how regularity properties
of the shape template influence the final reconstruction, so the test suite involves two phan-
toms and two shape templates with different regularity properties. The phantom in figure 1(a)
has distinct (sharp) edges, the other in figure 1(b) lacks singularities. Moderately noisy (SNR
13.7 dB) data is generated from these two phantoms (not shown) and reconstructions are
based on two shape templates, one in figure 1(c) with sharp edges, the other in figure 1(f) that
also has corners.

The results are summarised in figure 1 and the shape-based reconstructions are nearly
indistinguishable. The edge regularity is directly reflected in the reconstruction, whereas
traces from corners in the template are harder to identify. This is to be expected since recon-
structions are obtained by smoothly deforming the shape template, so template smoothness
properties (like edges and/or corners) get transferred to the reconstruction.

It is worth commenting on how such a preservation of regularity can be utilised to obtain
reconstructions that are suited to specific imaging tasks. An obvious example is when the
reconstructed image is to be automatically segmented. In such a case, one may consider using
a sharp template. Another more subtle example when one has a priori knowledge about the
edge characteristics comes from ET. When imaging a cryo-fixated aqueous specimen, we
expect to have isolated molecular assemblies embedded in ice. Here the shape template typi-
cally corresponds to the 3D electrostatic map of a molecular assembly with a shape similar to
the structures being studied. The smoothness of this 3D electrostatic map is given by how the
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electrostatic potential behaves at the interface between the molecular assembly and the aque-
ous buffer. The blurriness of the edge is thus a consequence of the decay of the electrostatic
potential as one moves from the molecule into the buffer. This can be computed in advance,
as shown in [34, 49], and it provides an idea of how blurry the edges are in the true unknown
structure fi..

11.5.2. Test suite 2: sensitivity w.r.t. regularisation parameter. The parameter \ in (46) is the
regularisation parameter that dictates the influence of the shape information. Its choice should
be dictated by the noise characteristics in data (noise level, statistical properties of noise, etc)
and here we empirically investigate the sensitivity of the reconstruction w.r.t. the choice of A
at a fixed noise level.

Figure 2(b) shows the phantom and figure 2(a) is the moderately noisy (SNR 13.7dB) data.
Shape reconstructions use the template in figure 2(c) and the result for varying values of \ are
shown in figures 2(d)—(j). It is clear from this test that reconstructions in figures 2(d) and (e)
are clearly over-regularised, i.e. the shape template has too much influence on the outcome.
Once A is small enough to allow data to have an impact, it does not seem to influence the out-
come that much. In fact, setting A = 0 gives essentially the same result, which would imply
that the whole problem does not need to be regularised! This is of course not the case. There is
another regularisation parameter, the RKHS kernel parameter o in (45). When A is too small,
what remains is the effect of the choice o.

11.5.3. Test suite 3: influence of noise. The tests here focus on robustness against noise in
data, so there are four different data sets with noise levels ranging from very high (SNR — 1.8
dB) to low (SNR 25.35 dB). All four data sets, shown in figures 3(a), 4(a), 5(a) and 6(a), are
generated using the same phantom in figure 3(b).

All shape-based reconstructions use the shape template in figure 3(g) and we see a rather
remarkable robustness against noise. In fact, only shape-based reconstruction provides a result
that bears any similarity to the original phantom.

11.5.4. Test suite 4: the topology of the template. Here we seek to investigate the influence of
the topology of the template. We have already seen in test suite 1 that smoothness properties
of the template are essentially transferred to the reconstruction. The test suite involves two
phantoms with different topologies (genus 0 and 1), shown in figures 7(a) and (b). Likewise,
there are two shape templates, shown in figures 7(c) and (f) with genus O and 1. A similar test
is conducted in figure 8 with a somewhat more complex phantom.

The results show that the topology of the template is transferred to the reconstruction.
Again, this is to be expected since reconstructions are obtained by smoothly deforming the
shape template, so the topology of the template is transferred to the reconstruction.

11.5.5. Test suite 5: multi-object reconstruction. The previous tests always used a phantom
consisting of a single object. Here we consider the well-known Shepp-Logan phantom shown
in figure 9(b), which consists of ten ellipsoids with grey-values in [0,1]. Data shown in fig-
ure 9(a) is parallel beam tomographic data along five directions that are not uniformly dis-
tributed over [0°, 180°], so besides being under-sampled, data is also limited angle. The noise
level is SNR 4.34 dB.

The shape-based reconstruction makes use of two templates shown in figures 9(c) and (d).
Both have the same topology as the phantom, which is a prerequisite for our approach, as
shown in test suite 4. The results, presented in figure 9, show that shape-based reconstruction
performs fairly well.
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(a) (b)
(c) (d) (e)
(1) (2) (h)

Figure 1. Regularity of template (test suite 1). Shape-based reconstructions of two
101 x 101 pixel phantoms from moderately noisy (SNR 13.8 dB) parallel beam 2D
tomographic data. Data has three directions 0°,45° and 90°, each with 151 data points.
Each phantom is reconstructed using two templates with slightly varying regularity.
It is clear that regularity properties of the template have a strong influence on the
reconstruction. (a) Phantom with sharp edges. (b) Phantom (smooth). (c) Template with
sharp edges but no corners. (d) Reconstruction of phantom in (a) using the template
in (c) (400 iterations, A = 107). (e) Reconstruction of phantom in (b) using the
template in (c) (400 iterations, A = 1079). (f) Template with sharp edges and corners.
(g) Reconstruction of phantom in (a) using the template in (f) (1000 iterations,
A =107%. (h) Reconstruction of phantom in (a) using the template in (f) (1000
iterations, A = 1073).
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Figure 2. Sensitivity w.r.t. regularisation parameter (test suite 2). Figures (d)—(j) show
shape-based reconstructions obtained from data in (a) after 400 iterations using a shape
template in (c) and different values for \. (a) Data: Parallel beam 2D tomographic data
with moderate noise level (SNR 13.7 dB) generated from the phantom in (b) using
three directions 0°,45° and 90° with 151 data points for each direction. The jagged blue
curve is the data used as the input for reconstruction, the red curve is the corresponding
noise-free data. (b) The phantom (101 x 101 pixel). (c) Shape template. (d) A = 1.0.
@A=10"LOA=102(@DA=103 (M A=10*OHA=10 (G A=10"".
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Theta =0 Theta =45 Theta = 90

() (f) (8)

Figure 3. Robustness against noise (test suite 3)—very high noise. Data, shown in (a),
has very high noise (SNR -1.8dB). The phantom is shown in (b) and reconstructions,
obtained using different methods, are shown in (c)—(f). Only shape-based reconstruction
provides a result (f) that bears any similarities to the original phantom (b). (a) Data:
parallel beam 2D tomographic data with a very high noise level (SNR -1.8 dB)
generated from the phantom in (b) using three directions 0°,45° and 90° with 151
data points for each direction. The jagged blue curve is the data used as the input for
reconstructions shown below, the red curve is the corresponding noise-free data. (b) The
phantom, a 101 x 101 pixel image. (c) FBP reconstruction (frequency scaling = 0.04).
(d) Classical Tikhonov reconstruction (4000 iterations, ;. = 240). (e) TV reconstruction
(4000 iterations, p = 60). (f) Shape-based reconstruction using the template in (g)
(400 iterations, A = 1075). (g) The shape template.

12. Discussion

The first part of the discussion considers alternative deformations that one may consider for
shape-based reconstruction. Some of these could be of interest in addressing issues related to
non-uniqueness (section 8). The second part in section 12.2 deals with extensions motivated
by the use cases mentioned in section 1.1. Finally, in section 12.3, we consider using shape-
based reconstruction as a component in spatiotemporal imaging which was also mentioned as
an important application area in section 1.1
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Figure 4. Robustness against noise (test suite 3)—high noise. Data, shown in (a), has
high noise (SNR 5.39 dB). The phantom is shown in (b) and reconstructions, obtained
using different methods, are shown in (c)—(f). Only shape-based reconstruction provides
aresult (f) that bears any similarities to the original phantom (b). (a) Data: parallel beam
2D tomographic data with high noise level (SNR 5.39 dB) generated from the phantom
in (b) using three directions 0°,45° and 90° with 151 data points for each direction. The
jagged blue curve is the data used as the input for reconstructions shown below, the red
curve is the corresponding noise-free data. (b) The phantom, a 101 x 101 pixel image.
(c) FBPreconstruction (frequency scaling = 0.06). (d) Classical Tikhonov reconstruction
(4000 iterations, ;o = 150). (e) TV reconstruction (4000 iterations, & = 30). (f) Shape-
based reconstruction using the template in (g) (400 iterations, A = 1075). (e)The shape
template.

12.1. Alternative deformation models

As mentioned in section 5.2, linearised deformations are not necessarily invertible so <, is
only a semigroup, not a group. There can be cases when the invertibility of deformations is
important, such as when one seeks diffeomorphic deformations. This requires the consider-
ation of alternative schemes for generating deformation.
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Figure 5. Robustness against noise (test suite 3)—moderate noise. Data, shown in
(a), has a moderate noise level (SNR 13.49dB). The phantom is shown in (b) and
reconstructions, obtained using different methods, are shown in (c)—(f). Only shape-
based reconstruction provides a result (f) that bears any similarities to the original
phantom (b). (a) Data: parallel beam 2D tomographic data with a moderate noise level
(SNR 13.49 dB) generated from the phantom in (b) using three directions 0°,45° and
90° with 151 data points for each direction. The jagged blue curve is the data used as
the input for reconstructions shown below, the red curve is the corresponding noise-free
data. (b) The phantom, a 101 x 101 pixel image. (c) FBP reconstruction (frequency
scaling = 0.08). (d) Classical Tikhonov reconstruction (4000 iterations, p = 100).
(e) TV reconstruction (4000 iterations, u = 1). (f) Shape-based reconstruction using the
template in (g) (400 iterations, A = 1073). (g) The shape template.

One such alternative is provided by the LDDMM framework [9, 19, 29, 30, 46, 47, 50]
where deformations are generated by a flow equation, which is given as an ordinary differ-
ential equation with a velocity field contained in V at each time point. Hence, linearised
deformations can be seen as a single time step within the LDDMM framework. The velocity
fields need to be £ in order to give £, a topological group structure. With further regularity
(V is admissible), £}, becomes a subgroup of the group of diffeomorphisms [50]. See also
[7, 28] for an overview of various other groups of diffeomorphisms whose elements may serve
as deformation models. Next, all of the analysis done here, including results in section 7,
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Figure 6. Robustness against noise (test suite 3)—low noise. Data, shown in (a), has
low noise (SNR 25.35 dB). The phantom is shown in (b) and reconstructions, obtained
using different methods, are shown in (c)—(f). Only shape-based reconstruction provides
a result (f) that bears any similarities to the original phantom (b). (a) Data: parallel
beam 2D tomographic data with a low noise level (SNR 25.35 dB) generated from
the phantom in (b) using three directions 0°,45° and 90° with 151 data points for each
direction. The jagged blue curve is the data used as the input for reconstructions shown
below, the red curve is the corresponding noise-free data. (b) The phantom, a101 x 101
pixel image. (c) FBP reconstruction (frequency scaling = 0.1). (d) Classical Tikhonov
reconstruction (4000 iterations, p = 80). (e) TV reconstruction (4000 iterations,
u=0.1). (f) Shape-based reconstruction using the template in (g) (400 iterations,
A = 1079). (g) The shape template.

generalise to the LDDMM setting. The expressions for the gradients in section 9 become sig-
nificantly more involved and implementation is more complex. For these reasons, the theor-
etical and computational work using the LDDMM framework is part of a forthcoming paper.

An issue associated with the LDDMM framework is its non-parametric nature, i.e. it is dif-
ficult to decompose the velocity field generating the diffeomorphism into interpretable comp-
onents. Furthermore, it is not possible to impose a certain a priori knowledge regarding which
type of deformations to exclude. In many imaging applications, there is prior information
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(a) (b)
(c) (d) (e)

(f) (8) (h)

Figure 7. Topology of phantom (test suite 4). Shape-based reconstructions of two
101 x 101 pixel phantoms from moderately noisy (SNR 15.22 dB) parallel beam 2D
tomographic data. The data has four directions 0°, 45°, 90° and 135° with 151 data points
for each direction. Each phantom is reconstructed using two templates with varying
topology. It is clear that the reconstruction inherits the same topology as the template.
(a) Phantom with genus 0. (b) Phantom with genus 1. (c) Template with genus O.
(d) Reconstruction of phantom in (a) using the template in (c) (400 iterations, A = 1079).
(e) Reconstruction of phantom in (b) using the template in (c) (400 iterations, A = 107°).
(f) Template with genus 1. (g) Reconstruction of phantom in (a) using the template in
(f) (600 iterations, A = 10~3). (h) Reconstruction of phantom in (b) using the template
in (f) (1000 iterations, A = 1077).

regarding which deformations are unfeasible. For this reason, a number of alternative frame-
works have been developed where deformations are structured beforehand through parametri-
sation. One such is the poly-affine framework [4], another is the growth by random iterated
diffeomorphisms model [18, 35], and yet another is the Diffeons framework [51]. It may also
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Figure 8. Test suite 4—topology of phantom. The phantom, shown in (b), is a101 x 101
pixel image that is a ‘U’-shaped object with genus 0. The parallel beam data is shown
in (a), shape-based reconstructions are shown in (c) and (d) obtained using a template
with genus 0 and 1, respectively. It is clear that the reconstruction inherits the topology
of the template. (a) Data: parallel beam 2D tomographic data with a moderate noise
level (SNR 12.95 dB) generated from the phantom in (b) using four directions 0°, 45°,
90° and 135° with 151 data points for each direction. The jagged blue curve is the data
used as the input for reconstruction, the red curve is the corresponding noise-free data.
(b) A phantom with genus 0. (c) Shape-based reconstruction using the template in
(e) (600 iterations, A = 107>). (d) Shape-based reconstruction using the template in ()
(600 iterations, A = 1075). (e) Template with genus 0. (f) Template with genus 1.

be of interest to consider such parametrised frameworks for indirect image matching (shape-
based reconstruction).
12.2. Extensions motivated by use cases

The current approach for shape-based reconstruction limits its usage to imaging problems
where the goal is to recover the shape of a single object given a template with the correct
topology. Intensity variations are of little or no importance. As the tests in section 11 clearly
show, under these circumstances, shape-based reconstruction performs fairly well, especially
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()

Figure 9. Multi-object reconstruction (test suite 5). The phantom shown in (b) is the
well-known Shepp-Logan phantom. Both shape-based reconstructions are obtained
from 2000 iterations using kernel parameter ¢ = 4.0 and A = 10~7. They are shown
in (f) and (g), respectively. Note that both templates have a topology that matches the
phantom, which is important, as shown in test suite 4 (figures 7 and 8). As a comparison,
we show the corresponding TV reconstruction in (e). (a) Data: parallel beam 2D
tomographic data with a high noise level (SNR 4.34 dB) generated from the phantom
in (b) using five directions 30°, 60°,90°, 120° and 150° with 182 data points for each
direction. The images above show data for the directions 30°, 90° and 150°, respectively.
The jagged blue curve is the data used as the input for reconstruction, the red curve
is the corresponding noise-free data. (b) The 128 x 128 pixel Shepp—Logan phantom.
(c) Template 1. (d) Template 2. (e) TV-based reconstruction (1000 iterations, p = 0.6).
(f) Shape-based reconstruction using the template in (c). (g) Shape-based reconstruction
using the template in (d).

for problems where data is very sparsely, or unevenly, sampled and/or highly noisy. Such
imaging problems can also be addressed using discrete tomography techniques, but an advan-
tage of using shape-based reconstruction is that there is no need to a priori set the number of
grey-scale levels, which is usually the case for discrete tomography [6].
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The above is, however, a rather limited category of inverse problems, and the use cases
mentioned in section 1.1 do not fall under this category. Hence, there is a clear need to extend
the current approach for shape-based reconstruction in order to broaden its applicability. One
extension aims to handle multiple isolated objects embedded in some background medium
(section 12.2.1), another is to allow for changes in intensity (section 12.2.2).

12.2.1. Multiple objects. Many of the use cases mentioned in section 1.1, especially those
related to ET, deal with imaging multiple isolated objects, each with its own shape, that are
embedded in a fairly uniform background medium. Applying the current implementation for
shape-based reconstruction, as in test suite 5, requires finding a single deformation that jointly
fits a single known template to all these objects. This is clearly unfeasible unless there is a
template with the correct topology, i.e. one containing the correct number of objects, each
with their correct topology. There are very few use cases where these conditions are fulfilled,
so clearly one needs to extend the current approach for shape-based reconstruction.

One approach to handle multiple objects is to apply shape deformations locally. More pre-
cisely, consider (1) and assume a user can a priori single out sub-domains €y, ..., Qy C € that
contain a single isolated object and assign templates I, ..., Iy € 2~ to each of these. Hence,
the a priori information in (9) is now replaced by

Jirue 0= Wi(v) +fy for some v €V supported in ;.
)

In the above, f, € 2" is the background medium and W;, is given by the semigroup action in
(8). Many of the ET related use cases in section 1.1 allow for such a priori information to be
obtained along with an estimate of fj, typically from an initial reconstruction. The shape-based
reconstruction scheme extending (10) is then

N
inf v |:A Z”V/”éﬁLMR[Wm(VI’ [RRT} Z/N) Jrf(‘)J + D[Wot(yh ey UN) Jrf(‘)’ g):|' (48)

j=1

Note that data g € 2#” in (1) has to be matched against the entire multi-object structure.
Furthermore, Wit : VX ... x V= 2" is the joint deformation given by sub-domains
Q, ..., Qv C Q and corresponding templates 1, ..., Iy € &~ through

N
Wovt, -, Un) = ZWI,(V/')~
i=1

The existence of solutions for (48) follows from the same arguments used to prove theorem
1, and issues related to non-uniqueness mentioned in section 8 also naturally persist for this
case. The implementation is, however, much more difficult. A specific challenge is to numer-
ically handle boundary information to ensure W;(v;) is supported in §2;. This is probably the
main challenge in multiple object shape-based reconstruction.

12.2.2. Modifying intensity values. The deformation operator in (8) that governs how the
template is modified is given by a semigroup action that does not change any intensity values,
it merely moves intensity by a vector field. Hence, a shape-based reconstruction will have
the same texture as its template, regardless of the data. This is not feasible for many imaging
problems, like most arising in medical imaging. There are three natural ways to address this
shortcoming. One may include the template as an unknown, or use a semigroup action that
modifies intensities, or let the semigroup £, act on both the coordinate and the intensity.
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Including the template as an unknown leads to the following extension of (10):

inf,cy, e 2 MV +RA) + DTWW)), 9)].

An alternative, more feasible, formulation is to decouple the template and shape variables by
considering the following intertwined recursive scheme:

vy = arg inf AR+ DTV, (1)), )]
VE'V ( 49)
I, == arg inf [R(D) + DIV w)), 8)]-
lez”
In the above, the step that updates the template is a ‘usual’ reconstruction. The difficult step is
to one that updates the deformation, which in turn is precisely the shape-based reconstruction
problem solved in this paper.
Regarding alternate semigroup actions, one natural alternative is to consider a mass-pre-
serving action. This implies that the deformation operator in (8) is given by

Wiw)(x) :=|Jac(¢")x)| (fo ¢")(x) forveVandxeQ. (50)

All of the analysis done here, including results in sections 7 and 9, can also be carried out for
this new group action.

Finally, one may also mimic the way metamorphosis extends LDDMM by allowing
deformations ¢” € £}, to act simultaneously on both the shape and image intensity—see
[50, Chapter 13] for further details on metamorphosis.

12.3. Connection to spatiotemporal imaging

In spatiotemporal imaging, the image we seek to reconstruct will have a temporal and a spa-
tial component, i.e. elements in the reconstruction space 2" are functions f: [tp, ] X Q@ — R
where x — f(t,x) €2 >([to, 1], R) and 1 — f(t, x) € 2, where .Z; is some suitable Hilbert
space of functions defined on 2. Hence, f(z, -) is the image at time ¢ € [fo, ;] and f(-,x) is
the time evolution of an image point x € 2. Now, it often makes sense to explicitly separate
the spatial and temporal components of f. Such a separation can be achieved by introducing a
time evolution operator

W:Vx 25— 2. 51

Here, V is a fixed parameter set for the time evolution and Z; is the reconstruction space for
the spatial component. Spatiotemporal signals are now assumed to be of the form

f(t,x) =W, I)t,x) forxeQandre [fy,5] forgivenveVandle 2.

Here, I is the template, which is the time independent spatial component of the spatiotemporal
signal. The evolution parameter v € V governs the time evolution of the template /. In this set-
ting, the spatiotemporal inverse problem is to estimate both the true template I* € 2 and the
true evolution parameter v* € V from data g(z, -) € 2% where

8, ) = TOMW", I')(t, -)) + e(t,-)  for 1€ [10,1]. (52)

Note that Z; is the reconstruction space for the spatial component of the spatiotemporal
signals, -# is the data space, which is common for all data across time, 7: Zy — - is the
Fréchet differentiable (spatial) forward operator, and WV in (51) is the time evolution operator
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modelling the evolution, governed by the evolution parameter in V), across time. Finally,
e(t,) € & are samples of independent (as ¢ varies) -# —valued random process {E, },.

Now, if V is a normed space, then one scheme for solving the spatiotemporal inverse prob-
lem in (52) is to consider

inf ,,[/\IIVIhZ;Jr f ' {uR(W(V,I)(t, ~)) +D(7{W(V,I)(t, -)),g(t, )]} dt] (53)
veVIie 2, fo

for fixed A, = 0 and given operators R : 2y — R, and D : & x # — R The rationale for
the above scheme is based on the following assumptions:

(i) Regularity properties of image intensities can be encoded by the functional R. These are
assumed to be the same for all evolved templates W(v, I)(t, - ) € 2 with t € [tg, ].

(ii) The stochastic process {E;}, modelling noise in data has elements that are inde-
pendent and equally distributed so we may use the same data discrepancy functional

D:FH'xH#->R,.

Solving (53) is quite challenging. Similar to (49), it may be simpler to consider the follow-
ing intertwined recursive scheme where the evolution model is updated separately from the
template:

V= arg inf[A||u||%+ f " DAOMu, 1" e, g, ) dr]

vey

1€ 24 K

I" = arg inf[ f ROV, 1), )+ DTV, D ), 8t )} dz]. (54)

The above is computationally more feasible, but it is unclear how these intertwined iterates
relate to a solution of (53). Furthermore, it is highly non-trivial to understand whether (53), or
(54), constitutes a regularisation of the inverse problem in (52). As shown in [20], one may use
the LDDMM framework (section 12.1) to define evolution operators with diffeomorphisms
parametrised by admissible Hilbert spaces of vector fields V C & lO(Q, R™).

Finally, the notion of ‘time’ above does not have to correspond to physical time. It could be
a mere parametrisation of the evolution. The shape-based reconstruction we considered in (3)
is now a special case with only one dataset at say #; = 1 (stationary data) and known template
I* € Z¢. In such a case, the time evolution operator Y/ models the (shape) deformation of the
template and the goal is to estimate the evolution parameter v € ' from indirect noisy data.
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