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Abstract
We introduce a reconstruction framework that can account for shape related 
prior information in imaging-related inverse problems. It is a variational 
scheme that uses a shape functional, whose definition is based on deformable 
template machinery from computational anatomy. We prove existence and, as 
a proof of concept, we apply the proposed shape-based reconstruction to 2D 
tomography with very sparse and/or highly noisy measurements.

Keywords: tomography, image reconstruction, indirect image matching, 
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1. Introduction

Utilising prior information is critical in addressing inverse problems where data is very noisy 
or the problem is highly ill-posed, the latter often due to inappropriate sampling of data. 
Regularisation is needed to solve such challenging problems and many approaches enforce 
sparsity or regularity within a variational setting [40].

Translating an image into knowledge is, to a large extent, dependent on recognising 
and interpreting shapes of structures within the image. This paper introduces a variational 
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reconstruction scheme that makes use of such prior shape information. The use cases from 
imaging for such an approach are outlined in section 1.1, but our emphasis is mainly theor-
etical and aims to show how shape information can be used in image reconstruction. The 2D 
tomographic examples in section 11 merely serve as a proof of concept, and even though they 
do not replicate all of the complexity in the use cases, they do serve to illustrate the benefits 
and drawbacks of the proposed method. A further discussion on this and other matters related 
to applicability is given in section 12.2.

1.1. Use cases from imaging that serve as motivation

Despite the emphasis on theory, our work is inspired from use cases from imaging that we describe 
here. As already mentioned, section 12.2 discusses extensions needed for a more realistic usage.

In some imaging problems, the main aim is to recover the shape of the sub-structure, whereas 
variations within the structures are of less importance. One example is electron tomography 
(ET) where a transmission electron microscope is used to image the internal 3D structures at 
the nano-scale of a specimen. The resulting tomographic imaging problem is severely ill-posed 
with incomplete and highly noisy data [34], but scientists often have an idea of the rough overall 
shape of the structures they seek to image with ET. A concrete example is given in [12], where ET 
is used to study the 3D shape variability of gold nano-particles, which is closely related to their 
unique optical and catalytical properties. Here, there are reasonable shape templates that can be 
used as prior knowledge in reconstruction. Another use case is in imaging flexible DNA-origami 
nano-structures in their natural environment by means of ET [10]. These deformable structures 
are built up by a folded single long uninterrupted strand. The folding is governed by specific 
shorter ‘stapler’ strands that connect the longer strands at various known places, and the structures 
in the specimen can be seen as the deformation of a known template. In these imaging applica-
tions, it makes sense to account for qualitative prior shape information during the reconstruction. 
Enforcing an exact spatial match between a template and the reconstruction is often asking for too 
much since realistic shape information is almost always approximate, so the natural approach is to 
perform reconstruction assuming the structures are ‘shape wise similar’ to a template.

Another use case is image registration where deformations are used to fit a template image 
against a target image. There is by now a rich literature on variational methods for image 
registration [8, 14, 38, 39, 53] with applications to computational vision and medical imaging 
[27]. Such registration is usually done as a post-processing step, and there are cases where a 
template needs to be registered against a target that is only indirectly observed (indirect image 
matching). An example is in joint reconstruction and registration. Here, a natural approach is 
to consider an intertwined scheme where the template and its registration are updated itera-
tively, as discussed in section 12.2.2. A similar intertwined approach can also be used for joint 
image and motion reconstruction in spatiotemporal imaging, as outlined in section 12.3. In 
both these cases, the intertwined schemes involve indirect registration.

2. Survey of the field

The idea of accounting for shape information in reconstruction is gaining increasing interest 
within the inverse problems community. It is part of an ongoing development where recon-
struction and feature extraction steps are combined to solve ill-posed inverse problems. In this 
context, features are specific structures in images relevant for interpretation, and their extrac-
tion is usually part of the image analysis.
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2.1. Joint segmentation and reconstruction

A step towards combined reconstruction and feature extraction is joint segmentation and recon-
struction. One approach is to consider a level-set based approach where the true (unknown) 
image is assumed to be piecewise constant. In this setting, one may consider joint segmenta-
tion and reconstruction by minimising a Mumford–Shah-like functional over the set of admis-
sible contours and, given a fixed contour, over the space of piecewise constant densities which 
may be discontinuous across the contour within each level set [5]. This approach was applied 
to the 2D inversion of the ray transform in [36] from complete data. A key step lies in the 
calculation of the ‘shape sensitivity’ in order to find a descent direction for the cost functional, 
which in turn leads to an update formula for the contour in the level-set framework. Motivated 
in part by the inverse problem in ET, the approach was later generalised and applied to a very 
noisy limited angle and region of interest tomography data in [22]. See also [21, 44] for fur-
ther developments of the Mumford–Shah approach involving a variety of inverse problems 
in imaging. Another line of development is based on incorporating priors about the desired 
classes of the segmentation through a probabilistic model. Here, a hidden Markov measure 
field model has been used—see [23, 31, 37] for variants of this approach.

A drawback with these variational formulations is that they are computationally demand-
ing. Furthermore, they also lead to non-convex problems, so there is always the issue of  
non-uniqueness. An entirely different approach for joint segmentation and reconstruction, that 
in part circumvents these problems, is provided in [25]. Here, the approximate inverse method 
is extended to the setting where one recovers the features directly. It assumes that the features 
in question can be extracted by applying an operator, which may be a differential operator for 
calculating partial derivatives or the Laplacian, or it may be the solution operator for the heat 
equation for fixed time, or it may be a wavelet transform. The approach is, however, limited to 
features that can be extracted by applying a linear extraction operator on the image.

In general, the papers cited above demonstrate that joint reconstruction and segmenta-
tion typically leads to better results than performing the two steps successively, especially in 
inverse problems where there are high noise levels and/or the data is incomplete.

2.2. Shape-based reconstruction

The next natural step that follows joint segmentation and reconstruction is to consider the 
shape. A priori shape information often includes geometrical information about the structure 
in the image, so the reconstruction scheme has to capture such information.

One approach is based on describing such geometric information by means of invariants 
that carry geometrical information about the structures. Such invariants have been success-
fully used for shape-based classification, see, e.g. [1, 26] and [50, ch 3]. There is in fact an axi-
omatic treatment for constructing invariant image features [24] useful for recognising objects 
from different viewpoints and whose numerical values are equal or only moderately affected 
by basic image transformations. Returning to image reconstruction, [15] shows how such int-
egral invariants can be used in reconstruction. The idea is to encode the prior shape informa-
tion in a variational setting by introducing the 2-norm of the difference between the invariant 
of the structure and the invariant of a prior. The main mathematical result is the proof of the 
existence of minimisers of the corresponding goal functional. The optimisation is performed 
with a gradient descent approach that requires the differentiation of the goal functional,  
and the actual numerical implementation is based on minimising a smooth approximation 
functional, which converges (Γ-convergence) to the original functional.
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Another approach for variational image reconstruction that includes prior shape informa-
tion is given in [16]. Here, one constructs an energy functional based on local segmenta-
tion information obtained by segmentation and comparison with a known spatial model. The 
approach is demonstrated on tomography data from digital phantoms, simulated data, and 
experimental ET data of virus complexes.

An approach very similar to the one considered here is given in [2]. There, the authors pro-
pose a variational scheme for shape-based reconstruction using a deformable template. The 
scheme is applied to emission tomography. Once a template is chosen, the activity map (the 
function describing the isotope intensity that one seeks to recover) is assumed to be a defor-
mation of the template obtained through composition with various planar mappings, together 
with a magnitude adjustment. Hence, just like we will do, they consider linear deformations 
of the form (4). On the other hand, in their approach the linear deformations are given by their 
wavelet coefficients whereas we will consider linear deformations given by vector fields in a 
reproducing kernel Hilbert space (RKHS). Furthermore, [2] contains no analysis of existence 
or uniqueness.

3. Overview of paper and specific contributions

The main contribution is the development of a variational framework for shape-based  
reconstruction (section 6), which can be seen as an indirect image matching problem where a 
template is matched against a target that is known only through indirect observations (data). 
Our approach is heavily inspired by computational anatomy where shape is modelled as a 
diffeomorphic deformation of a template. The necessary parts of this theory are mentioned 
in section 5 along with section 4 that provides terminology and notation related to inverse 
problem theory.

An important theoretical result is to prove existence, which is done in section 7. As with 
most other variational schemes for image matching, we cannot expect to have uniqueness 
due to the lack of convexity (section 8). This theoretical investigation is followed by explicit 
calculations of the shape derivative for the objective functional, both in the continuum setting 
(section 9) and when the linearised deformations are discretised through finite span approx-
imations (section 10). The latter is of interest in numerical implementation since finite span 
approximations are well suited for discretising such infinite dimensional variational problems 
(remark 4).

Section 11 contains some numerical experiments from tomography that show the impact 
of using prior shape information. The outcome strongly supports the claim that shape-based 
information can improve reconstructions, especially in a noisy highly under-sampled set-
ting. Furthermore, the experiments also suggest that the prior shape information does not 
have to be that accurate, which is important for the use cases mentioned as a motivation in 
section  1.1. None of these claims have, however, been proved formally by mathematical 
theorems.

Finally, section 12 contains a discussion on various extensions, e.g. one may consider other 
deformation models that allow for large deformations, such as those suggested within the 
large deformation diffeomorphic metric mapping (LDDMM) framework. The deformations 
can be large while being smooth and topology preserving, but performing shape-based recon-
struction with these, more elaborate, deformation models are left for the future.
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4. Inverse problems, ill-posedness and variational regularisation

4.1. Image reconstruction

The goal in image reconstruction is to estimate some spatially distributed quantity (image) 
from indirect noisy observations (measured data). Stated mathematically, we seek to recon-
struct an image ftrue X∈  from data g H∈  where

g f e.true( )= +T (1)

Here, X  (reconstruction space) is the vector space of all possible images, so it is a suitable 
Hilbert space of functions defined on a fixed domain nR⊂Ω . Next, H  (data space) is the 
vector space of all possible data, which for digitised data is a subset of mR . Furthermore, 

: X H→T  ( forward operator) models how a given image gives rise to data in the absence 
of noise and measurement errors, and e H∈  (data noise component) is a sample of a H
–valued random element E whose probability distribution is the (data noise model) assumed 
to be known.

4.2. Ill-posedness

A naive approach at reconstructing the true (unknown) image ftrue is to try to solve the equa-
tion  f g( ) =T . Often there are no solutions to this equation since measured data is not in the 
range of T  for a variety of reasons (noise, modelling errors, etc). This is commonly addressed 
by relaxing the notion of a solution by considering

∈

⎛
⎝⎜

⎞
⎠⎟D T f gmin , .

f X
( )

 (2)

The mapping : H H →R× +D  (data discrepancy functional) quantifies the data misfit and 
a natural candidate is to choose it as a suitable affine transformation of the negative log likeli-
hood of data. In such a case, solving (2) amounts to finding maximum likelihood solutions. 
This works well when (2) has a unique solution (uniqueness) that depends continuously on 
data (stability). This is, however, not the case when (1) is ill-posed and regularisation needs 
to be used in order to introduce uniqueness and stability by making use of prior knowledge 
about ftrue.

4.3. Variational regularisation

These regularisation methods have gained much attention lately, and especially so in imaging 
[40]. The idea is to add a penalisation term to the objective functional in (2), resulting in a 
variational problem of the type

f f gmin , for some given 0.f X [ ( ) ( ( ) )]       ⩾µ µ+∈ R D T (3)

The functional : X →R+R  introduces stability, and perhaps uniqueness, by encoding prior 
information about ftrue. It often encodes some a priori known regularity property of ftrue,  
e.g. assuming ,2X L ( )R⊂ Ω , and taking the 2L -norm of the gradient magnitude (Dirichlet 
energy) is known to produce smooth solutions whereas taking the 1L -norm of the gradient 
magnitude (total variation) yields solutions that preserve edges while smooth variations may 
be suppressed [13].
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5. Shape theory based on deformable templates

Shape theory seeks to develop quantitative tools to study shapes and their variability. A key 
objective is to define a shape metric that quantifies the shape similarity between two objects/
structures in the image.

There are a variety of mathematical approaches for modelling shapes, and the approach 
we consider is based on deformable templates. This approach, which can be traced back to 
work pursued in 1917 by D’Arcy Thompson [45], is based on the idea that shapes can be rep-
resented as a deformation of a template. A quantitative analysis of shape variability can then 
be based on quantifying the cost of the deformation. Grenander laid the foundations of pattern 
theory [17] that was necessary for a coherent mathematical and statistical theory for shape and 
shape variability based on the above idea of deformable templates. We here provide a very 
brief introduction to shape theory with emphasis on the linearised deformations’ framework.

The starting point is to define a set of deformable objects representing objects/structures 
whose shape we seek to analyse. There is also an associated set of deformations that can act 
on the deformable objects. In our case, a deformation is given as a diffeomorphic perturbation 
of the identity map (linearised deformation). Under certain conditions, the set of deformations 
becomes a group with a metric that can be used, together with the group action, to quantify the 
shape similarity between two deformable objects.

5.1. Set of deformable objects

We consider grey scale images as deformable objects, so the set X  of deformable objects is 
a vector space of real-valued functions defined on a fixed underlying image domain nR⊂Ω  
(n  =  2 for 2D images or n  =  3 for 3D images), which we assume to be an open and bounded 
set. We furthermore assume that ,2X L ( )R⊂ Ω .

5.2. Set of deformations—linearised deformations

The set of deformations will consist of transformations that map the image domain nR⊂Ω  
into Ω, thereby acting on X  by transforming the underlying coordinate grid. It is natural to 
form new deformations by concatenating existing ones, and the identity mapping is a natural 
‘zero’ deformation. This implies that the set of deformations should form a semigroup under 
the group law given by the composition of functions with identity mapping as its identity 
element.

Linearised deformations are transformations defined as

: Id for some .   φ ν ν= + ∈ν
Ω V (4)

Here, , n
0
1C ( )R⊂ ΩV  is a fixed Hilbert space with norm ∥ ∥⋅ V and its elements are vector fields 

(displacement fields) supported in Ω. The set , n
0
1C ( )RΩ  above is the Banach space of continu-

ously differentiable vector fields with support in Ω (if Ω is unbounded, then the vector field 
along with its derivative is assumed to decay to zero at infinity).

Given a Hilbert space V of vector fields as above, define , n
0
1G C ( )R⊂ ΩV  by

: : : for some and is given by 4 .nG { →                  ( )}Rφ φ φ ν φ= Ω = ∈ν νVV (5)

Then, G V is closed under composition whenever V is closed under composition (remark 1), 
in which case it forms a semigroup. On the other hand, mappings defined as in (4) are not 
necessarily invertible unless ν is sufficiently small and regular [50, proposition 8.6]. It is fur-
thermore difficult to mathematically characterise the Hilbert spaces V that ensure elements in  
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G V are invertible, i.e. G V is not a group. Section 12.1 has a brief discussion on how to generate 
large diffeomorphic deformations. For our purposes, the semigroup structure is sufficient. As 
an example, the way a deformation in G V transforms an element in X  is naturally described 
by a semigroup action, which is a mapping G X X→×V  denoted by f f, .( )φ φ! .

Remark 1. One has to be somewhat careful when concluding that G V is closed under com-
position. Vector fields in V are given here as nR -valued mappings supported on nR⊂Ω  and 
if Ω is unbounded, then the vector field along with its derivative is assumed to decay to zero 
at infinity. Such vector fields trivially extend to all of nR  by setting them to zero outside Ω, so 
whenever convenient, we may consider them as mappings defined on all of nR . This implies 
that V is closed under composition and any deformation in G V extends to all of nR , so G V is 
closed under composition.

5.3. Reproducing kernel Hilbert spaces

The theory of RKHS deals with function spaces. The theory was initialised in the 1940s for 
spaces of scalar-valued functions [3]; it was later extended to spaces of functions with values 
in locally convex topological spaces [43]. It has lately gained significant interest due to appli-
cations in machine learning [11, 32, 42].

The starting point is an abstract Hilbert space V whose elements are functions defined on a 
fixed domain nR⊂Ω  that take values in a real Hilbert space X . Such a space is an RKHS if 
evaluation functionals :x

a →Rδ V

x a: , forx
a

X( ) ( )  δ ν ν ν= ∈ V

are bounded for every x∈Ω and a X∈ . One way to construct an RKHS is to specify a repro-
ducing kernel function, which is an operator : ,L X X→ ( )Ω×ΩK  such that

 (a) x a,( )( )⋅ ∈K V for all x∈Ω and a X∈ .
 (b) The reproducing property holds for K, i.e. if x∈Ω then

x a x a a, , , for any and .X
X

( ) ( )( )        ν ν ν= ⋅ ∈ ∈K V
V (6)

,L X X( ) above is the Banach space of bounded linear operators on X . A central 
result is that a Hilbert space V of X -valued functions is an RKHS if and only if it has a con-
tinuous reproducing kernel : ,L X X→ ( )Ω×ΩK .

We consider vector fields in nR , so nX R=  and V contains nR -valued functions. It is an 
RKHS if it has a continuous positive definite reproducing kernel : ,n nL→ ( )R RΩ×ΩK , 
which in turn can be represented by a continuous positive definite function : n nK →MΩ×Ω +

× . 
Here, n m,M  denotes the vector space of all n m( )×  matrices and n m,M+  denotes those matrices 
that are positive definite. Furthermore, if , n2L ( )R⊂ ΩV  then one can relate the inner product 
on V to the 2L -inner product by a straightforward calculation:

x x x, , , d ., n2L⟨ ⟩ ( )( ( )) ( )R ∫η ν ν η= ⋅Ω
Ω
K

V
 (7)

Note also that ∥ ∥⋅ V is different from , n2L∥ ∥ ( )R⋅ Ω .

5.4. The deformation operator and shape similarity

Elements in G V represent deformations that act on deformable objects, which in our case are 
grey scale images on Ω represented by square integrable functions f : →RΩ . One way to let 
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a deformation, i.e. element Gφ∈ V, act on a grey scale image f is by a semigroup action, say 
f f. :φ φ= ! .
Next, each element in G V has a corresponding element in V, i.e. φ φ= ν for some 

ν∈ V. Hence, elements in V act on deformable objects by means of the deformation operator 
:f X→W V  given as

f f: . forf( )  ν φ φ ν= = ∈ν ν!W V (8)

where Gφ ∈ν V is given by (4). The deformation operator models how a grey scale image 
is deformed by φν. The shape similarity between f and its deformed version f( )νW  can now 
be quantified by 2∥ ∥ν V. Note that it is zero only if the deformation is the identity mapping  
(no deformation).

6. Shape-based reconstruction

Consider the inverse problem in (1) where elements in X  represent grey scale images defined 
over some fixed image domain nR⊂Ω , i.e. ,2X L ( )R⊂ Ω . Next, assume that the true image 
ftrue is approximately a deformation of a known shape template I X∈ . As we shall see next, 
the shape functional in section 5.4 allows us to use such prior shape information in the recon-
struction of ftrue in (1).

Assume now that the true (unknown) image ftrue can be written as an admissible deforma-
tion of the shape template I, i.e.

f on for some .Itrue ( )        ν ν= Ω ∈W V (9)

To reconstruct ftrue in (1), while accounting for prior shape information given by (9), we form-
ulate the following variational problem:

ginf , .I I
2[ ∥ ∥ ( ( )) ( ( ( )) )]λ ν µ ν ν+ +ν∈ R W D T WV V (10)

Here, the mapping : H H →R× +D  is the data discrepancy functional introduced in (2), 
: X →R+R  is the regularity functional that encodes regularity properties of ftrue that are 

known beforehand, and as already mentioned, 2∥ ∥ν V quantifies the shape similarity between the 
template I and its deformed variant I( )νW . Finally, 0⩾λ  regulates the influence of the prior 
shape information and 0⩾µ  regulates the influence of the a priori regularity properties that 
ftrue might possess.

7. Existence of solutions

A basic property that a reconstruction scheme must fulfil is that it always has solutions (the 
existence of solutions), since otherwise it is of limited usefulness for reconstruction. In our 
case, this translates into proving the existence of solutions for (10).

Theorem 1. Let V be a Hilbert space and assume f f g,( ( ) )! D T  and f f( )! R  are both 
lower semi-continuous on X . Then, (10) has a solution in V.

Proof. Let : →R+E V  denote the goal functional in (10), i.e. for given , 0⩾λ µ  and I X∈ , 
it is defined as

g: , with .I I
2( ) ∥ ∥ ( ( )) ( ( ( )) )  ν λ ν µ ν ν ν= + + ∈E R W D T W VV (11)
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If we can prove that E is lower semi-continuous on V, then (10) has solutions.
Let n n{ } ⊂ν V be a minimising sequence for (10) so n∥ ∥ν V are bounded. Since V is a Hilbert 

space, it is in particular a complete metric space with respect to the distance function induced 
by the inner product. Hence, there is a subsequence, still denoted by n n{ }ν , that converges 
weakly to some ν ∈∗ V (see [50, theorem A.16]). By [50, proposition A.15] we then have

lim inf .n n∥ ∥ ⩽ → ∥ ∥ν ν∗
∞V V (12)

Next, by (4) we get

( ) ( ) ( ) ( )  φ φ ν ν− = − ∈Ων ν ∗∗
x x x x xfor .n

n

Since x( )ν ν!  is a continuous linear form on V, we conclude that

φ φ− =ν ν
∈Ω

∗
x xlim sup 0.x

n( ) ( )

Thus, φν is continuous in the weak topology of V. Furthermore, for every shape template 
I X∈ , using the result in the proof of [48, theorem 2.5] gives us

ν ν− =∈Ω
∗W Wx xlim sup 0.x I n I( )( ) ( )( )

Therefore, IW  is also continuous in the weak topology of V. Now, by assumption both 
f f g,( ( ) )! D T  and f f( )! R  are lower semi-continuous on X . Hence,

lim inf ,I n I n( ( )) ⩽ → ( ( ))ν ν∗
∞R W R W (13)

g g, lim inf ,I n I n( ( ( )) ) ⩽ → ( ( ( )) )ν ν∗
∞D T W D T W (14)

(12) together with (13)–(14) implies that ν∗ is a solution for the variational problem (10) in V. 
This concludes the proof. □

8. Uniqueness

Another desirable property of a reconstruction scheme is uniqueness, i.e. the scheme renders 
a unique solution for given data. Unfortunately, there are no guarantees that (10) has a unique 
solution, even when both

f f f f gand ,→ ( ) → ( ( ) )R D T (15)

are strictly convex. This is because the deformation operator :f X→W V  in (8) is non-convex.
As with all reconstruction methods that involve solving non-convex optimisation problems, 

there is always the issue of getting stuck in local extrema. Numerical experiments suggest 
that this risk is higher if the template needs to undergo a significant translation. Hence, the 
template should be centred over the object before reconstruction, e.g. by ensuring its centre 
of gravity coincides reasonably well with the centre of gravity of the (unknown) object we 
seek to recover. Another observation is that templates with the wrong topology tend to result 
in reconstructions getting stuck in local minima. In test suite 4, the poor results in figures 7(e), 
(g) and 8(d) are probably due to iterates getting stuck in local minima. In theory, it should be 
possible to compensate for erroneous template topology by invoking stronger deformations, 
as is the case with the corners in the template in figure 1(f) that are hardly visible in the recon-
structions in figures 1(g) and (h).
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One option to address the issue of non-convexity is to further restrict the set V of veloc-
ity fields, but it is highly non-trivial to work out conditions on V that would guarantee strict 
convexity, and thereby uniqueness for (10). There are, however, specific parameterisations for 
generating deformations that can be worth considering—see discussion in section 12.1.

Remark 2. A complete mathematical analysis of a reconstruction scheme would also in-
clude an analysis of stability, i.e. whether the scheme is stable w.r.t. perturbations in data. An 
even more ambitious endeavour is to establish convergence properties, i.e. to what extent the 
output from the scheme converges to a (least-squares/maximum likelihood) solution of (2) 
when the data error tends to zero in some norm while reconstruction parameters are chosen 
accordingly. Such issues are not considered in this paper.

9. Derivative calculations

Performing reconstruction following the scheme outlined in section 6 requires solving the 
optimisation problem in (10). Most computationally feasible approaches make use of first 
order derivative information, so one central topic is to compute the gradient of the goal func-
tional given in (11).

The gradient is calculated w.r.t. the Hilbert structure of V, which is the natural inner-prod-
uct space for this minimisation. In computing the V-gradient of the mappings

gand , ,I I( ( )) ( ( ( )) )ν ν ν ν! !R W D T W (16)

we assume the mappings in (15) are both Gâteaux differentiable and I is differentiable.

9.1. The deformation operator

We here provide an explicit expression for the Gâteaux derivative of the deformation operator 
defined in (8).

Proposition 1. Assume I X∈  is differentiable. Then, the deformation operator 
:I X→W V  in (8) is Gâteaux differentiable at ν∈ V and its Gâteaux derivative is

x I x x x, for and .I n( )( )( ) ( ( )) ( )      Rν η φ η η∂ = ∇ ∈Ω ∈νW V (17)

Proof. The Gâteaux derivative is the linear mapping :I X( ) →ν∂W V  defined as

:
d

d
for .I I

0
( )( ) ( )  ν η ν η η∂ = + ∈

=ε
εW W V

ε

Hence, :I( )( ) →Rν η∂ ΩW  where

x x I x x:
d

d
d

d
for .I I

0 0
( )( )( ) ( )( ) ( )( )  ν η ν η φ∂ = + = ∈Ων η

=

+

=
!

ε
ε

ε
W W

ε

ε

ε

Now, I ,2X L ( )R⊂∈ Ω  is differentiable so the chain rule gives us

x I x x x,
d

d
for .I

0 n
( )( )( ) ( ( )) ( ) ( )  

R
ν η φ φ∂ = ∇ ∈Ων ν η+

=ε
W ε

ε
 (18)
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The second term in the scalar product on the right hand side of (18) is the derivative of a de-
formation with respect to variations in the associated vector field.

Next, by (4) we have Idφ ν η= + +ν η+
Ω εε , so

x x x x x
d

d
d

d
.

0 0
( ) ( ) ( ( ) ( )) ( )φ ν η η= + + =ν η+

= =ε ε
εε

ε ε

Now, (17) follows from inserting the above into (18). □
Remark 3. Unless derivatives are to be interpreted in the distribution sense, the template 
I X∈  in (17) has to be differentiable.

9.2. General matching functionals

Both of the functionals in (16) are of the form :I →R+J V  with

: for ,I I( ) ( )  ν ν ν= ∈!J L W V (19)

where : X →RL  is a fixed functional on X  that is sufficiently regular, e.g. we require it to 
be Gâteaux differentiable.

Theorem 2. Assume : X →RL  is Gâteaux differentiable on X  and define :I →RJ V  as 
in (19) where I ,2L ( )R∈ Ω  is differentiable. Then, the Gâtueaux derivative of IJ  is given as

I x x, for , .I I n( )( ) ( ( ))( ( ( )) ( ) )  Rν η ν φ η ν η∂ = ∂ ∇ ∈νJ L W V (20)

Furthermore, let ,2X L ( )R⊂ Ω  and V is an RKHS with a reproducing kernel represented by 
the symmetric and positive definite function : n nK →MΩ×Ω +

× . Then

x y x y I y y x, d for .I I K( )( ) ( ( ))( ) ( ) ( ( ))   ∫ν ν φ∇ = ∇ ⋅ ∇ ∈Ων

Ω
J L W (21)

Proof. The proof of (20) follows directly from the chain rule and proposition 1. More  
precisely, by the chain rule we have

for , .I I I( )( ) ( ( ))( ( )( ))  ν η ν ν η ν η∂ = ∂ ∂ ∈J L W W V (22)

Combining this with (17) gives us (20).

To prove (21) we need to use the assumption ,2X L ( )R⊂ Ω . Then, the Riesz represen-
tation theorem allows us to define the gradient of L as the mapping : X X→∇L  given 
implicitly by the relation

f h f h h, for .
,2

X
L

( )( ) ( )  
( )R

∂ = ∇ ∈
Ω

L L (23)

Combining (22) with (23) gives

, for , .I I I ,2L
( )( ) ( ( )) ( )( )  

( )R
ν η ν ν η ν η∂ = ∇ ∂ ∈

Ω
J L W W V (24)

Next, the expression in (17) can be inserted into (24):
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I

I

I

, ,

, ,

, .

I I

I

I

,

,

,

n

n

n

2

2

2

L

L

L

( )( ) ( ( ))( ) ( ( )) ( )

( ( ))( ) ( ( )) ( )

    ( ) ( ( ))( ) ( ( ))

( )

( )

( )

R R

R R

R

ν η ν φ η

ν φ η

η ν φ

∂ = ∇ ⋅ ∇ ⋅ ⋅

= ∇ ⋅ ∇ ⋅ ⋅

= ⋅ ∇ ⋅ ∇ ⋅

ν

ν

ν

Ω

Ω

Ω

J L W

L W

L W

The last equality makes use of the fact that the inner product in , n2L ( )RΩ  (square integrable 
nR -valued functions) is expressible as the inner product in nR  followed by the inner product in 

,2L ( )RΩ  (square integrable real-valued functions). Note also that

x x I x x xandI( ( ))( ) ( ( )) ( )ν φ η∇ ∇ ν! !L W

are both mappings from Ω into nR , so the , n2L ( )RΩ  inner product is well defined. Finally, 
we use the assumption that V is an RKHS with reproducing kernel : ,n nL→ ( )R RΩ×ΩK , 
so by (7) we have

x x x, , dI( )( ) ( ) ( )( ˜( )) ∫ν η η ν∂ = ⋅ ⋅
Ω

J K
V

where : n˜ →Rν Ω  is defined as

x x I x x: for .I˜( ) ( ( ))( ) ( ( ))  ν ν φ= ∇ ∇ ∈ΩνL W

We can now read off the expression for the V-gradient of IJ  and inserting the matrix valued 
function : n nK →MΩ×Ω +

×  representing the reproducing kernel gives us

x x y y y y x y I y y, d , d .I I K( )( ) ( )( ˜( ))  ( ( ))( ) ( ) ( ( )) ∫ ∫ν ν ν φ∇ = = ∇ ⋅ ∇ ν

Ω Ω
J K L W

The last equality is (21), so this concludes the proof of theorem 2. □
In tomography, data is typically represented by Y ,2H L ( )R=  where Y  is a manifold of 

lines given by the data acquisition geometry. If measured data has additive Gaussian noise, 
then a natural matching functional is

I g: .I
Y ,

2

2L
( ) ( )

( )R
ν φ= −ν!J T (25)

Corollary 1. Let the assumptions in theorem 2 hold. Furthermore, assume that :I →RJ V  
is given as in (25) with : X H→T  Gâteaux differentiable. Then

g I2 ,I I I , n2L
( )( ) ( ( )) ( ( ) )( ) ( ( )) ( )

( )R
ν η ν ν φ η∂ = ∂ − ⋅ ∇ ⋅ ⋅ν∗

Ω
J T W T W (26)

for ,ν η∈ V. Furthermore, if ,2X L ( )R⊂ Ω  and V is an RKHS with a reproducing kernel 
represented by the symmetric and positive definite function : n nK →MΩ×Ω +

× , then for x∈Ω 
we have

x g y x y I y y2 , d .I I I K( )( ) ( ( )) ( ( ) )( ) ( ) ( ( )) ∫ν ν ν φ∇ = ∂ − ⋅ ∇ ν

Ω

∗J T W T W (27)
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9.3. Gradient of goal functional

Many optimisation schemes rely on computing the gradient of (11). If we assume V is an 
RKHS, then a general expression for its gradient : →∇E V V can be obtained by combining 
(21) with the V-gradient of 2∥ ∥ν ν! V, which is simply 2ν.

Corollary 1 can be used to get an explicit expression for the gradient of the objective func-
tional in the case when the matching functional is given by (25) and 0µ = :

x x g y x y I y y2 2 , d .I I K( )( ) ( ) ( ( )) ( ( ) )( ) ( ) ( ( )) ∫ν ν ν ν φ∇ = + ∂ − ⋅ ∇ ν

Ω

∗E T W T W

 (28)

10. Finite dimensional setting

V is in general an infinite dimensional Hilbert space of vector fields, so the variational problem 
in (10) is an optimisation over an infinite dimensional Hilbert space. In a computational set-
ting we can only minimise functionals over finite dimensional vector spaces. One approach 
is to formulate the optimisation scheme for finding a local minima in the infinite dimensional 
setting. The explicit expressions for the gradient of the goal functional (section 9) can be used 
for this. One can then discretise this optimisation scheme. Another approach is to look for 
‘natural’ finite dimensional formulations. In particular, elements in V can only be evaluated at 
a finite number of points, so we need to consider suitable finite dimensional sub-spaces of V. It 
now turns out that there are such natural finite dimensional formulations when V is an RKHS.

10.1.Finite span approximations of vector fields

If V is an RKHS, then there is a natural way to construct admissible finite dimensional  
sub-spaces of vector fields by considering finite span approximations. Let : n nK →MΩ×Ω +

×  
denote the symmetric and positive definite function that represents the reproducing kernel of V. 
Next, define the (geometric) control points as the fixed set of points x x: , , N

n
1{ } R⊂ ⊂Σ = … Ω . 

Given such a set, define the corresponding finite dimensional vector space as

x x x: : , for some .
j

N

j j j
n

1

K( ) ( )       R
⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭∑ν ν α α= ∈ = ⋅ ∈Σ

=
V V (29)

Elements in ΣV  are called finite span approximations of elements in V and ⊂ΣV V is a finite 
dimensional RKHS with an inner product given by

x x, ,
j k

N

j j k k
, 1

K⟨ ⟩ ( )∑ν η α β= ⋅ ⋅
=

ΣV
⊤

 (30)

for ,ν η∈ ΣV  given as

x x, and , .
j

N

j j
j

N

j j
1 1

K K( ) ( )∑ ∑ν α η β= ⋅ ⋅ = ⋅ ⋅
= =

 (31)

Remark 4. Finite span approximations of the type in (29) are especially suitable for problems 
involving optimisation over V. More precisely, representer theorems (like [50, theorem 9.7],  
see also [41, 52]) show that
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∑ν λ ν ν ν= + ∈ Σ =
ν

∗

∈ =

∗
Σ =

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
⎤
⎦
⎥⎥ V

V
V L x x: arg min with : .

j

N

j j j
N2

1
1  ∥ ∥ ( ) ⟹ { }

 

(32)

Here, L : n →R R is a given function (usually called loss-function) and : ,2∥ ∥ν ν ν=V V
 is the 

RKHS norm.

10.1.1.Notation. Before proceeding, we introduce some convenient vector/matrix notations. 
The ‘vec’-operator vec : n m nm→M R×  stacks all the columns of a matrix, i.e.

a a a aAvec : n m n m1,1 ,1 1, ,( )[ ] = … … …
⊤

whenever A is an n m( )×  matrix

a a a
a a a

a a a

A : .

m

m

n n n m

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
=

…
…

…
! ! " !

Next, for each ν∈ ΣV  there are unique , , N
n

1 Rα α… ∈  such that

x x x x, for .
j

N

j j
1

K( ) ( )  ∑ν α= ⋅ ∈ Ω
=

 (33)

Hence, each ν∈ ΣV  corresponds to a unique Nn vector that we denote by αν, i.e.

: vec where , , fulfil 33 .N N
n1 1( )    ( )R⎡

⎣⎢
⎤
⎦⎥α α α α α= … ∈ν ! (34)

Finally, introducing the Nn Nn( )×  kernel Gram matrix x xK : ,j k j k N, 1, ,K[ ( )]= = …  allows us to 
express (30) as K, .⟨ ⟩ α βν η = ⋅ ⋅ν ηΣV

⊤

10.2.Finite dimensional formulation

Consider the problem of minimising the functional : →RE V  in (11). If data g H∈  is digi-
tised, then this functional is similar to the ‘loss functional’ in (32) (at least when 0µ = ) and 
a minimiser of (10) should be contained in ⊂ΣV V. Hence, for finite data we can replace the 
(infinite dimensional) minimisation in (10) with the following finite dimensional variational 
problem:

arg min .( )ν
ν∈ Σ

E
V

 (35)

Let us now consider (35) more closely. As already stated, to each ν∈ ΣV  there are 
, , N

n
1 Rα α… ∈  such that (31) holds. Hence, the values of ν at the control points in ⊂Σ Ω are 

expressible through the following matrix equality:

x x K .N1( )( ) ( ) αν ν… = ⋅ ν

⊤
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In particular, the RKHS norm of a displacement field ν∈ ΣV  can be written as

∑ ∑ α αν ν α α= = ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ν ν
= =

Σ

Σ

V V

V

⊤x x K, , , .
j

N

j j
j

N

j j
2 2

1 1

K K∥ ∥ ∥ ∥ ( ) ( ) (36)

This motivates the introduction of the function

K: given as : for .Nn NnS S→   ( )  R R Rα α α α= ⋅ ⋅ ∈+
⊤ (37)

Then, S above corresponds to the 2∥ ∥ν ν! V term in (11) as shown in (36). Next, define 
:I

NnW X→R  as

I x: , for vec , , .I
j

N

j j N
Nn

1
1W K( ) ( )   [( )] R

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑α αα α α= ⋅ + ⋅ ⋅ = … ∈

=
 (38)

Then, IW  corresponds to the deformation operator IW  in (8), i.e. I IW ( ) ( )α ν=ν W  whenever 
NnRα ∈ν  and ν∈ ΣV  are related by (34). Finally, we define the functions , :I

NnR J →R R+ as

g
:
: ,

for .I

I I

NnR W
J W

( ) ( ( ))
( ) ( ( ( )) )   Rα α
α α

α=
=

∈
R
D T (39)

As was to be expected, R corresponds to R in (16) and IJ  corresponds to IJ  in (19). Hence, 
solving (35) is equivalent to solving

min for fixed 0.INn S R J[ ( ) ( ) ( )]    R α α αλ µ λ+ + >α∈ (40)

If α∗ denotes a solution to (40), then we can construct ν ∈∗ ΣV  from α∗ by using the relations 
in (31) and (34):

x: ,
j

N

j j
1

K( )∑ν α= ⋅ ⋅∗

=

∗

in which the n-vector j
nRα ∈∗  contains elements j to j  +  n  −  1 of α∗. The corresponding recon-

struction f ∗ that approximates ftrue X∈  in (1) is then given by

f x I x x x: for all .IW( ) ( ) ( ( ))    ν ν= = + ∈Ω∗ ∗ ∗

Computing the reconstruction f ∗ is associated with a variety of choices. First is the choice of 
the functionals : H H →R× +D  and : X →R+R . Next is the choice of the (regularisa-
tion) parameter 0⩾µ . The choice of D is ideally dictated by the statistical model for the noise 
in data, and the choice of 0⩾µ  is governed by the ‘magnitude’ of this noise. As an example, 
the 2-norm is a natural choice for D for additive Gaussian noise and one may use the Morozov 
discrepancy principle to select µ if there are reasonably accurate estimates of the noise level 
in data. The choice of R depends on the a priori regularity properties that one seeks to enforce 
during reconstruction. These choices are identical to those that need to be made in traditional 
variational regularisation. Our scheme does, however, differ in that there is also a component 
that controls the a priori shape information, which is given by a template I X∈ , kernel 

: n nK →MΩ×Ω +
× , the control points ⊂Σ Ω, and the (shape) regularisation parameter 0⩾λ .

10.3.Solving the finite dimensional minimisation problem

We solve (40) using a gradient descent method, e.g. gradient descent. Such methods involve 
computing the gradients of S( )α α! , R( )α α! , and IJ ( )α α! . Computing the gradients 
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of these functions amounts to calculating their partial derivative with respect to every element 
j k,α  ( j N1, ,= …  and k n1, ,= … ) in the Nn vector α.

We will here present an example of such calculations in a special case, and for simplicity, 
we omit the regularisation functional : X →R+R , i.e. we omit R( )α α! . Furthermore, we 
focus on the special case when mH R= , i.e. there are m data points and : mX →RT . The 
data discrepancy : H H →R× +D  is the corresponding finite dimensional version of the 
squared 2-norm:

u g u g u g u g, : for , .
m

2

2

1

2 H( ) ( )  ∑= − = − ∈
ι

ι ι
=

D (41)

10.3.1.The gradient of !α α( )S . We know from (36) that

K: whenever .2S( ) ∥ ∥  α α α α αν= ⋅ ⋅ = = ν
⊤

V

Hence, for j N1, ,= …  and k n1, ,= …  we get

K K2 for .
j k j k

Nn

, ,

S S( ) [ ] ⟹ ( )   Rα α α α α α
α α
∂
∂

= ∂
∂

⋅ ⋅ ∇ = ⋅ ∈⊤

10.3.2.The gradient of !α αI( )J . When : H H →R× +D  is given by (41), then 
:I

NnJ →R R+ defined in (39) becomes

∑α α α α= = − = −
ι

ι ι
=

D T Tg g g: ,I I I

m

2
2

1

2J W W T( ) ( ( ( )) ) ∥ ( ( )) ∥ ( ( ) ) (42)

where : Nn mT →R R  is defined as

T W K( ) ( ( )) ( )  ∑α α αα= = ⋅ + ⋅ ⋅ ∈
=

⎛
⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
⎞
⎠
⎟⎟T T RI x: , for .I

j

N

j j
Nn

1
 (43)

If : mX →RT  is linear, then a straightforward computation gives

g2I

m

1

J T T( ) [( ( ) ) ( ) ]∑α α α∇ = − ∇
ι

ι ι ι
=

where : X →RιT  is the the ι:th coordinate of the forward operator T , so

I x

x x I x

,

, , , .

l

N

l l

N
l

N

l l

1

1
1

T K

K K K( )
( ) ( )

( ) ( ) ( )

⎡
⎣⎢

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟
⎞
⎠⎟
⎤
⎦⎥

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟
⎞
⎠⎟

∑

∑

α α

α

∇ = ∇ ⋅ + ⋅ ⋅

= ⋅ … ⋅ ⋅ ∇ ⋅ + ⋅ ⋅

ι ι

ι

=

=

T

T
⊤

11. Results for 2D tomography

To illustrate the impact of shaped-based reconstruction, we consider 2D parallel beam tomog-
raphy with very sparse and highly noisy data. All the data is simulated and the phantoms are 
highly simplistic, but we believe it serves the purpose of illustrating the impact of using prior 
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shape information. An implementation applicable to the use cases mentioned in section 1.1 
would need to address several other issues, some of which are discussed in section 12.2.

11.1. The inverse problem

The goal is to reconstruct a real-valued function in ,c
2X L ( )R= Ω  on a domain 2R⊂Ω  from 

its transmission projection images. Hence, data in (1) is represented by a real-valued function 
in Y ,2H L ( )R=  where Y  denotes a 2D manifold of parallel lines in 2R  and the forward 
operator T  is the 2D ray/Radon transform—see [33] for details.

11.2. The reconstruction scheme

The reconstruction is based on solving (10) where the shape template I is a given 2D image 
and the data discrepancy D is the the squared 2-norm in H . We do not include any additional 
regularisation, so 0µ =  and (10) reduces to

L
∥ ∥

( )
λ ν φ+ −

ν
ν

∈
⎜ ⎟⎡

⎣⎢
⎛
⎝

⎞
⎠

⎤
⎦⎥T

V
V !

R
I gmin .

Y

2

,

2

2
 (44)

In the above, the shape template I X∈  and regularisation parameter 0λ>  are fixed.
The space V of vector fields is chosen as an RKHS where its reproducing kernel is given by 

a symmetric and positive definite Gaussian function : 2 2K →MΩ×Ω +
×  that, for fixed 0σ> , 

is defined as

x y x y x y, : exp
1

2
1 0
0 1

for , .
2 2

2K( ) ∥ ∥   R⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠
⎛
⎝

⎞
⎠σ

= − − ∈ (45)

11.3. Finite dimensional formulation

To replace the infinite dimensional minimisation in (44) with a finite dimensional counterpart, 
we consider finite span approximations of the type in (29)

T( )∑∑α α αλ ⋅ ⋅ + −
α∈ = =

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥

⊤

R
gKmin .

i

l

j

k

i j i j
1 1

, ,

2

N2
 (46)

In the above, : N m2T →R R  is the fully discretised 2D Radon transform so m denotes the total 
number of lines. In parallel beam geometry, m  =  lk where k is the number of directions and l 
is the number of lines per direction.

The variational problem (46) is solved using a gradient descent scheme where the gradient 
of the objective is computed from the expressions in section 10.3. The kernel is given in (45) 
with 12σ =  for all cases. Other reconstruction parameters, like the value of λ and the number 
of iterations, vary.

11.4. The data acquisition and reconstruction protocols

Data is generated by evaluating the 2D parallel beam ray transform from a number of direc-
tions surrounding a digital phantom and then adding additive Gaussian noise. The noise level 
is quantified in terms of the signal-to-noise ratio (SNR) expressed using the logarithmic deci-
bel (dB) scale:
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g
g

e
SNR 10 log .

j
m

j

j
m

j
10

1
ideal

ideal
2

1 noise
2

( )
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

µ

µ
=

∑ | − |

∑ | − |
=

=
 (47)

Here, g g eideal= +  in (1) where g mideal R∈  is the noise-free component of data g and e is 
the noise component. Furthermore, idealµ  is the arithmetic average of gideal and noiseµ  is the 
arithmetic average of e. Since we work with simulated data, there is access to the noise-free 
component of data.

Shape-based reconstructions are obtained by solving (46) using a gradient descent method. 
Unless otherwise stated, the RKHS kernel is the one in (45) with 12σ = . Other reconstruction 
parameters, like the value of λ and the number of iterations, vary. Some test suites involve 
comparisons against other reconstruction methods, like filtered back projection (FBP), clas-
sical Tikhonov, and TV reconstruction. These are computed using routines from the Operator 
Discretization Library, which is available from http://github.com/odlgroup/odl

11.5. The tests

The tests seek to illustrate some basic properties of shape-based reconstruction and as such, 
they do not constitute a proper validation/comparison study. Despite their simplicity, these 
tests do provide quite interesting information that is sufficient as a proof-of-concept in a study 
whose main purpose is to develop a theoretical framework. More extensive tests are called 
for when the proposed approach for shape-based reconstruction is applied to specific imaging 
problems, such as in some of the use cases mentioned in section 1.1.

Test suite 1 investigates how the smoothness of the shape template influences the recon-
struction. Test suite 2 considers the sensitivity of the reconstruction scheme against the choice 
of the regularisation parameter, whereas test suite 3 assesses the robustness against noise in 
data. Test suite 4 considers the impact of using an erroneous shape template. Finally, test suite 
5 investigates performance in a multi-object setting.

11.5.1. Test suite 1: regularity of template. The aim is to investigate how regularity properties 
of the shape template influence the final reconstruction, so the test suite involves two phan-
toms and two shape templates with different regularity properties. The phantom in figure 1(a) 
has distinct (sharp) edges, the other in figure 1(b) lacks singularities. Moderately noisy (SNR 
13.7 dB) data is generated from these two phantoms (not shown) and reconstructions are 
based on two shape templates, one in figure 1(c) with sharp edges, the other in figure 1(f ) that 
also has corners.

The results are summarised in figure  1 and the shape-based reconstructions are nearly 
indistinguishable. The edge regularity is directly reflected in the reconstruction, whereas 
traces from corners in the template are harder to identify. This is to be expected since recon-
structions are obtained by smoothly deforming the shape template, so template smoothness 
properties (like edges and/or corners) get transferred to the reconstruction.

It is worth commenting on how such a preservation of regularity can be utilised to obtain 
reconstructions that are suited to specific imaging tasks. An obvious example is when the 
reconstructed image is to be automatically segmented. In such a case, one may consider using 
a sharp template. Another more subtle example when one has a priori knowledge about the 
edge characteristics comes from ET. When imaging a cryo-fixated aqueous specimen, we 
expect to have isolated molecular assemblies embedded in ice. Here the shape template typi-
cally corresponds to the 3D electrostatic map of a molecular assembly with a shape similar to 
the structures being studied. The smoothness of this 3D electrostatic map is given by how the 
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electrostatic potential behaves at the interface between the molecular assembly and the aque-
ous buffer. The blurriness of the edge is thus a consequence of the decay of the electrostatic 
potential as one moves from the molecule into the buffer. This can be computed in advance, 
as shown in [34, 49], and it provides an idea of how blurry the edges are in the true unknown 
structure ftrue.

11.5.2. Test suite 2: sensitivity w.r.t. regularisation parameter. The parameter λ in (46) is the 
regularisation parameter that dictates the influence of the shape information. Its choice should 
be dictated by the noise characteristics in data (noise level, statistical properties of noise, etc) 
and here we empirically investigate the sensitivity of the reconstruction w.r.t. the choice of λ 
at a fixed noise level.

Figure 2(b) shows the phantom and figure 2(a) is the moderately noisy (SNR 13.7dB) data. 
Shape reconstructions use the template in figure 2(c) and the result for varying values of λ are 
shown in figures 2(d)–(j). It is clear from this test that reconstructions in figures 2(d) and (e) 
are clearly over-regularised, i.e. the shape template has too much influence on the outcome. 
Once λ is small enough to allow data to have an impact, it does not seem to influence the out-
come that much. In fact, setting 0λ =  gives essentially the same result, which would imply 
that the whole problem does not need to be regularised! This is of course not the case. There is 
another regularisation parameter, the RKHS kernel parameter σ in (45). When λ is too small, 
what remains is the effect of the choice σ.

11.5.3. Test suite 3: influence of noise. The tests here focus on robustness against noise in 
data, so there are four different data sets with noise levels ranging from very high (SNR  −  1.8 
dB) to low (SNR 25.35 dB). All four data sets, shown in figures 3(a), 4(a), 5(a) and 6(a), are 
generated using the same phantom in figure 3(b).

All shape-based reconstructions use the shape template in figure 3(g) and we see a rather 
remarkable robustness against noise. In fact, only shape-based reconstruction provides a result 
that bears any similarity to the original phantom.

11.5.4. Test suite 4: the topology of the template. Here we seek to investigate the influence of 
the topology of the template. We have already seen in test suite 1 that smoothness properties 
of the template are essentially transferred to the reconstruction. The test suite involves two 
phantoms with different topologies (genus 0 and 1), shown in figures 7(a) and (b). Likewise, 
there are two shape templates, shown in figures 7(c) and (f) with genus 0 and 1. A similar test 
is conducted in figure 8 with a somewhat more complex phantom.

The results show that the topology of the template is transferred to the reconstruction. 
Again, this is to be expected since reconstructions are obtained by smoothly deforming the 
shape template, so the topology of the template is transferred to the reconstruction.

11.5.5. Test suite 5: multi-object reconstruction. The previous tests always used a phantom 
consisting of a single object. Here we consider the well-known Shepp–Logan phantom shown 
in figure 9(b), which consists of ten ellipsoids with grey-values in [0,1]. Data shown in fig-
ure 9(a) is parallel beam tomographic data along five directions that are not uniformly dis-
tributed over 0 , 180[ ]! ! , so besides being under-sampled, data is also limited angle. The noise 
level is SNR 4.34 dB.

The shape-based reconstruction makes use of two templates shown in figures 9(c) and (d). 
Both have the same topology as the phantom, which is a prerequisite for our approach, as 
shown in test suite 4. The results, presented in figure 9, show that shape-based reconstruction 
performs fairly well.
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(a)

(c) (d) (e)

(f) (g) (h)

(b)

Figure 1. Regularity of template (test suite 1). Shape-based reconstructions of two 
×101 101 pixel phantoms from moderately noisy (SNR 13.8 dB) parallel beam 2D 

tomographic data. Data has three directions ! !0 , 45  and !90 , each with 151 data points. 
Each phantom is reconstructed using two templates with slightly varying regularity. 
It is clear that regularity properties of the template have a strong influence on the 
reconstruction. (a) Phantom with sharp edges. (b) Phantom (smooth). (c) Template with 
sharp edges but no corners. (d) Reconstruction of phantom in (a) using the template 
in (c) (400 iterations, λ = −10 5). (e) Reconstruction of phantom in (b) using the 
template in (c) (400 iterations, λ = −10 5). (f) Template with sharp edges and corners.  
(g) Reconstruction of phantom in (a) using the template in (f) (1000 iterations, 
λ = −10 3). (h) Reconstruction of phantom in (a) using the template in (f) (1000 
iterations, λ = −10 3).
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Figure 2. Sensitivity w.r.t. regularisation parameter (test suite 2). Figures (d)–(j) show 
shape-based reconstructions obtained from data in (a) after 400 iterations using a shape 
template in (c) and different values for λ. (a) Data: Parallel beam 2D tomographic data 
with moderate noise level (SNR 13.7 dB) generated from the phantom in (b) using 
three directions ! !0 , 45  and !90  with 151 data points for each direction. The jagged blue 
curve is the data used as the input for reconstruction, the red curve is the corresponding 
noise-free data. (b) The phantom ( ×101 101 pixel). (c) Shape template. (d) λ = 1.0.  
(e) λ = −10 1. (f) λ = −10 2. (g) λ = −10 3. (h) λ = −10 4. (i) λ = −10 5. (j) λ = −10 7.
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12. Discussion

The first part of the discussion considers alternative deformations that one may consider for 
shape-based reconstruction. Some of these could be of interest in addressing issues related to 
non-uniqueness (section 8). The second part in section 12.2 deals with extensions motivated 
by the use cases mentioned in section 1.1. Finally, in section 12.3, we consider using shape-
based reconstruction as a component in spatiotemporal imaging which was also mentioned as 
an important application area in section 1.1
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Figure 3. Robustness against noise (test suite 3)—very high noise. Data, shown in (a), 
has very high noise (SNR -1.8dB). The phantom is shown in (b) and reconstructions, 
obtained using different methods, are shown in (c)–(f). Only shape-based reconstruction 
provides a result (f) that bears any similarities to the original phantom (b). (a) Data: 
parallel beam 2D tomographic data with a very high noise level (SNR -1.8 dB) 
generated from the phantom in (b) using three directions ! !0 , 45  and !90  with 151 
data points for each direction. The jagged blue curve is the data used as the input for 
reconstructions shown below, the red curve is the corresponding noise-free data. (b) The 
phantom, a ×101 101 pixel image. (c) FBP reconstruction (frequency scaling  =  0.04). 
(d) Classical Tikhonov reconstruction (4000 iterations, µ = 240). (e) TV reconstruction 
(4000 iterations, µ = 60). (f) Shape-based reconstruction using the template in (g)  
(400 iterations, λ = −10 5). (g) The shape template.
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12.1. Alternative deformation models

As mentioned in section 5.2, linearised deformations are not necessarily invertible so G V is 
only a semigroup, not a group. There can be cases when the invertibility of deformations is 
important, such as when one seeks diffeomorphic deformations. This requires the consider-
ation of alternative schemes for generating deformation.
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Figure 4. Robustness against noise (test suite 3)—high noise. Data, shown in (a), has 
high noise (SNR 5.39 dB). The phantom is shown in (b) and reconstructions, obtained 
using different methods, are shown in (c)–(f). Only shape-based reconstruction provides 
a result (f) that bears any similarities to the original phantom (b). (a) Data: parallel beam 
2D tomographic data with high noise level (SNR 5.39 dB) generated from the phantom 
in (b) using three directions ! !0 , 45  and !90  with 151 data points for each direction. The 
jagged blue curve is the data used as the input for reconstructions shown below, the red 
curve is the corresponding noise-free data. (b) The phantom, a ×101 101 pixel image.  
(c) FBP reconstruction (frequency scaling  =  0.06). (d) Classical Tikhonov reconstruction 
(4000 iterations, µ = 150). (e) TV reconstruction (4000 iterations, µ = 30). (f) Shape-
based reconstruction using the template in (g) (400 iterations, λ = −10 5). (e)The shape 
template.
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One such alternative is provided by the LDDMM framework [9, 19, 29, 30, 46, 47, 50] 
where deformations are generated by a flow equation, which is given as an ordinary differ-
ential equation  with a velocity field contained in V at each time point. Hence, linearised 
deformations can be seen as a single time step within the LDDMM framework. The velocity 
fields need to be 1C  in order to give G V a topological group structure. With further regularity  
(V is admissible), G V becomes a subgroup of the group of diffeomorphisms [50]. See also  
[7, 28] for an overview of various other groups of diffeomorphisms whose elements may serve 
as deformation models. Next, all of the analysis done here, including results in section 7, 
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Figure 5. Robustness against noise (test suite 3)—moderate noise. Data, shown in 
(a), has a moderate noise level (SNR 13.49dB). The phantom is shown in (b) and 
reconstructions, obtained using different methods, are shown in (c)–(f). Only shape-
based reconstruction provides a result (f) that bears any similarities to the original 
phantom (b). (a) Data: parallel beam 2D tomographic data with a moderate noise level 
(SNR 13.49 dB) generated from the phantom in (b) using three directions ! !0 , 45  and 
!90  with 151 data points for each direction. The jagged blue curve is the data used as 

the input for reconstructions shown below, the red curve is the corresponding noise-free 
data. (b) The phantom, a ×101 101 pixel image. (c) FBP reconstruction (frequency 
scaling  =  0.08). (d) Classical Tikhonov reconstruction (4000 iterations, µ = 100).  
(e) TV reconstruction (4000 iterations, µ = 1). (f) Shape-based reconstruction using the 
template in (g) (400 iterations, λ = −10 5). (g) The shape template.
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generalise to the LDDMM setting. The expressions for the gradients in section 9 become sig-
nificantly more involved and implementation is more complex. For these reasons, the theor-
etical and computational work using the LDDMM framework is part of a forthcoming paper.

An issue associated with the LDDMM framework is its non-parametric nature, i.e. it is dif-
ficult to decompose the velocity field generating the diffeomorphism into interpretable comp-
onents. Furthermore, it is not possible to impose a certain a priori knowledge regarding which 
type of deformations to exclude. In many imaging applications, there is prior information 
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Figure 6. Robustness against noise (test suite 3)—low noise. Data, shown in (a), has 
low noise (SNR 25.35 dB). The phantom is shown in (b) and reconstructions, obtained 
using different methods, are shown in (c)–(f). Only shape-based reconstruction provides 
a result (f) that bears any similarities to the original phantom (b). (a) Data: parallel 
beam 2D tomographic data with a low noise level (SNR 25.35 dB) generated from 
the phantom in (b) using three directions ! !0 , 45  and !90  with 151 data points for each 
direction. The jagged blue curve is the data used as the input for reconstructions shown 
below, the red curve is the corresponding noise-free data. (b) The phantom, a ×101 101 
pixel image. (c) FBP reconstruction (frequency scaling  =  0.1). (d) Classical Tikhonov 
reconstruction (4000 iterations, µ = 80). (e) TV reconstruction (4000 iterations, 
µ = 0.1). (f) Shape-based reconstruction using the template in (g) (400 iterations, 
λ = −10 5). (g) The shape template.
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regarding which deformations are unfeasible. For this reason, a number of alternative frame-
works have been developed where deformations are structured beforehand through parametri-
sation. One such is the poly-affine framework [4], another is the growth by random iterated 
diffeomorphisms model [18, 35], and yet another is the Diffeons framework [51]. It may also 

(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 7. Topology of phantom (test suite 4). Shape-based reconstructions of two 
×101 101 pixel phantoms from moderately noisy (SNR 15.22 dB) parallel beam 2D 

tomographic data. The data has four directions ! !0 , 45 , !90  and !135  with 151 data points 
for each direction. Each phantom is reconstructed using two templates with varying 
topology. It is clear that the reconstruction inherits the same topology as the template. 
(a) Phantom with genus 0. (b) Phantom with genus 1. (c) Template with genus 0.  
(d) Reconstruction of phantom in (a) using the template in (c) (400 iterations, λ = −10 5). 
(e) Reconstruction of phantom in (b) using the template in (c) (400 iterations, λ = −10 5). 
(f) Template with genus 1. (g) Reconstruction of phantom in (a) using the template in 
(f) (600 iterations, λ = −10 5). (h) Reconstruction of phantom in (b) using the template 
in (f) (1000 iterations, λ = −10 7).
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be of interest to consider such parametrised frameworks for indirect image matching (shape-
based reconstruction).

12.2. Extensions motivated by use cases

The current approach for shape-based reconstruction limits its usage to imaging problems 
where the goal is to recover the shape of a single object given a template with the correct 
topology. Intensity variations are of little or no importance. As the tests in section 11 clearly 
show, under these circumstances, shape-based reconstruction performs fairly well, especially 
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Figure 8. Test suite 4—topology of phantom. The phantom, shown in (b), is a ×101 101 
pixel image that is a ‘U’-shaped object with genus 0. The parallel beam data is shown 
in (a), shape-based reconstructions are shown in (c) and (d) obtained using a template 
with genus 0 and 1, respectively. It is clear that the reconstruction inherits the topology 
of the template. (a) Data: parallel beam 2D tomographic data with a moderate noise 
level (SNR 12.95 dB) generated from the phantom in (b) using four directions ! !0 , 45 , 
!90  and !135  with 151 data points for each direction. The jagged blue curve is the data 

used as the input for reconstruction, the red curve is the corresponding noise-free data. 
(b) A phantom with genus 0. (c) Shape-based reconstruction using the template in  
(e) (600 iterations, λ = −10 5). (d) Shape-based reconstruction using the template in (f) 
(600 iterations, λ = −10 5). (e) Template with genus 0. (f) Template with genus 1.
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for problems where data is very sparsely, or unevenly, sampled and/or highly noisy. Such 
imaging problems can also be addressed using discrete tomography techniques, but an advan-
tage of using shape-based reconstruction is that there is no need to a priori set the number of 
grey-scale levels, which is usually the case for discrete tomography [6].

(a)

(b) (c) (d)

(e) (f) (g)

Figure 9. Multi-object reconstruction (test suite 5). The phantom shown in (b) is the 
well-known Shepp–Logan phantom. Both shape-based reconstructions are obtained 
from 2000 iterations using kernel parameter σ = 4.0 and λ = −10 7. They are shown 
in (f) and (g), respectively. Note that both templates have a topology that matches the 
phantom, which is important, as shown in test suite 4 (figures 7 and 8). As a comparison, 
we show the corresponding TV reconstruction in (e). (a) Data: parallel beam 2D 
tomographic data with a high noise level (SNR 4.34 dB) generated from the phantom 
in (b) using five directions ! ! ! !30 , 60 , 90 , 120  and !150  with 182 data points for each 
direction. The images above show data for the directions ! !30 , 90  and !150 , respectively. 
The jagged blue curve is the data used as the input for reconstruction, the red curve 
is the corresponding noise-free data. (b) The ×128 128 pixel Shepp–Logan phantom.  
(c) Template 1. (d) Template 2. (e) TV-based reconstruction (1000 iterations, µ = 0.6). 
(f) Shape-based reconstruction using the template in (c). (g) Shape-based reconstruction 
using the template in (d).
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The above is, however, a rather limited category of inverse problems, and the use cases 
mentioned in section 1.1 do not fall under this category. Hence, there is a clear need to extend 
the current approach for shape-based reconstruction in order to broaden its applicability. One 
extension aims to handle multiple isolated objects embedded in some background medium 
(section 12.2.1), another is to allow for changes in intensity (section 12.2.2).

12.2.1. Multiple objects. Many of the use cases mentioned in section 1.1, especially those 
related to ET, deal with imaging multiple isolated objects, each with its own shape, that are 
embedded in a fairly uniform background medium. Applying the current implementation for 
shape-based reconstruction, as in test suite 5, requires finding a single deformation that jointly 
fits a single known template to all these objects. This is clearly unfeasible unless there is a 
template with the correct topology, i.e. one containing the correct number of objects, each 
with their correct topology. There are very few use cases where these conditions are fulfilled, 
so clearly one needs to extend the current approach for shape-based reconstruction.

One approach to handle multiple objects is to apply shape deformations locally. More pre-
cisely, consider (1) and assume a user can a priori single out sub-domains , , N1 ⊂Ω … Ω Ω that 
contain a single isolated object and assign templates I I, , N1 X… ∈  to each of these. Hence, 
the a priori information in (9) is now replaced by

f f for some supported in .I jtrue 0
j

j( )          ν ν= + ∈ Ω
Ω
W V

In the above, f0 X∈  is the background medium and IjW  is given by the semigroup action in 
(8). Many of the ET related use cases in section 1.1 allow for such a priori information to be 
obtained along with an estimate of f0, typically from an initial reconstruction. The shape-based 
reconstruction scheme extending (10) is then

∑λ ν µ ν ν ν ν+ … + + … +
ν ν… ∈ =

⎡
⎣
⎢⎢

⎛
⎝
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⎞
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⎟⎟
⎤
⎦
⎥⎥R W D W
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V f f ginf , , , , , .

j

N

j N N
, , 1

2
tot 1 0 tot 1 0

N1

∥ ∥ ( ) ( )

 

(48)

Note that data g H∈  in (1) has to be matched against the entire multi-object structure. 
Furthermore, :tot X→×…×W V V  is the joint deformation given by sub-domains 

, , N1 ⊂Ω … Ω Ω and corresponding templates I I, , N1 X… ∈  through

, , : .N
i

N

I jtot 1
1

j( ) ( )∑ν ν ν… =
=

W W

The existence of solutions for (48) follows from the same arguments used to prove theorem 
1, and issues related to non-uniqueness mentioned in section 8 also naturally persist for this 
case. The implementation is, however, much more difficult. A specific challenge is to numer-
ically handle boundary information to ensure I jj( )νW  is supported in jΩ . This is probably the 
main challenge in multiple object shape-based reconstruction.

12.2.2. Modifying intensity values. The deformation operator in (8) that governs how the 
template is modified is given by a semigroup action that does not change any intensity values, 
it merely moves intensity by a vector field. Hence, a shape-based reconstruction will have 
the same texture as its template, regardless of the data. This is not feasible for many imaging 
problems, like most arising in medical imaging. There are three natural ways to address this 
shortcoming. One may include the template as an unknown, or use a semigroup action that 
modifies intensities, or let the semigroup G V act on both the coordinate and the intensity.
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Including the template as an unknown leads to the following extension of (10):

I ginf , .I I,
2

X [ ∥ ∥ ( ) ( ( ( )) )]λ ν µ ν+ +ν∈ ∈ R D T WV V

An alternative, more feasible, formulation is to decouple the template and shape variables by 
considering the following intertwined recursive scheme:

g

I I g

: arg inf ,

: arg inf , .

n I
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I n

2
n 1

X

  [ ∥ ∥ ( ( ( )) )]

  [ ( ) ( ( ( )) )]
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∈

−D T W

R D T W
V

V

 (49)

In the above, the step that updates the template is a ‘usual’ reconstruction. The difficult step is 
to one that updates the deformation, which in turn is precisely the shape-based reconstruction 
problem solved in this paper.

Regarding alternate semigroup actions, one natural alternative is to consider a mass-pre-
serving action. This implies that the deformation operator in (8) is given by

x x f x x: Jac for and .f( )( ) ( )( ) ( )( )      ν φ φ ν= ∈ ∈Ων ν!W V (50)

All of the analysis done here, including results in sections 7 and 9, can also be carried out for 
this new group action.

Finally, one may also mimic the way metamorphosis extends LDDMM by allowing 
deformations Gφ ∈ν V to act simultaneously on both the shape and image intensity—see  
[50, Chapter 13] for further details on metamorphosis.

12.3. Connection to spatiotemporal imaging

In spatiotemporal imaging, the image we seek to reconstruct will have a temporal and a spa-
tial component, i.e. elements in the reconstruction space X  are functions f t t: ,0 1[ ] →R×Ω  
where x f t x t t, , ,2

0 1L( ) ([ ] )R∈!  and t f t x, 0X( )∈! , where 0X  is some suitable Hilbert 
space of functions defined on Ω. Hence, f t,( )⋅  is the image at time t t t,0 1[ ]∈  and f x,( )⋅  is 
the time evolution of an image point x∈Ω. Now, it often makes sense to explicitly separate 
the spatial and temporal components of f. Such a separation can be achieved by introducing a 
time evolution operator

: .0X X→×W V (51)

Here, V is a fixed parameter set for the time evolution and 0X  is the reconstruction space for 
the spatial component. Spatiotemporal signals are now assumed to be of the form

f t x I t x x t t t I, , , for and , for given and .0 1 0X( ) ( )( )     [ ]        ν ν= ∈Ω ∈ ∈ ∈W V

Here, I is the template, which is the time independent spatial component of the spatiotemporal 
signal. The evolution parameter ν∈ V governs the time evolution of the template I. In this set-
ting, the spatiotemporal inverse problem is to estimate both the true template I 0X∈∗  and the 
true evolution parameter ν ∈∗ V from data g t, H( )⋅ ∈  where

g t I t e t t t t, , , , for , .0 1( ) ( ( )( )) ( )   [ ]ν⋅ = ⋅ + ⋅ ∈∗ ∗T W (52)

Note that 0X  is the reconstruction space for the spatial component of the spatiotemporal 
signals, H  is the data space, which is common for all data across time, : 0X H→T  is the 
Fréchet differentiable (spatial) forward operator, and W in (51) is the time evolution operator 
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modelling the evolution, governed by the evolution parameter in V, across time. Finally, 
e t, H( )⋅ ∈  are samples of independent (as t varies) H –valued random process t tE{ } .

Now, if V is a normed space, then one scheme for solving the spatiotemporal inverse prob-
lem in (52) is to consider

X
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(53)

for fixed , 0⩾λ µ  and given operators : 0X →R+R  and : H H →R× +D . The rationale for 
the above scheme is based on the following assumptions:

 (i) Regularity properties of image intensities can be encoded by the functional R. These are 
assumed to be the same for all evolved templates I t, , 0X( )( )ν ⋅ ∈W  with t t t,0 1[ ]∈ .

 (ii) The stochastic process t tE{ }  modelling noise in data has elements that are inde-
pendent and equally distributed so we may use the same data discrepancy functional 

: H H →R× +D .

Solving (53) is quite challenging. Similar to (49), it may be simpler to consider the follow-
ing intertwined recursive scheme where the evolution model is updated separately from the 
template:

I t g t t

I I t I t g t t

: arg inf , , , , d
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n

t

t
n

n

I t

t
n n

2 1

0

1

0 0

1

X

  ∥ ∥ ( ( ( )( )) ( )) 

  { ( ( )( )) ( ( ( )( )) ( ))} 

⎧

⎨
⎪⎪

⎩
⎪⎪

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

∫

∫

ν λ ν ν

µ ν ν

= + ⋅ ⋅

= ⋅ + ⋅ ⋅

ν∈

−

∈
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R W D T W

V
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(54)

The above is computationally more feasible, but it is unclear how these intertwined iterates 
relate to a solution of (53). Furthermore, it is highly non-trivial to understand whether (53), or 
(54), constitutes a regularisation of the inverse problem in (52). As shown in [20], one may use 
the LDDMM framework (section 12.1) to define evolution operators with diffeomorphisms 
parametrised by admissible Hilbert spaces of vector fields , n

0
1C ( )R⊂ ΩV .

Finally, the notion of ‘time’ above does not have to correspond to physical time. It could be 
a mere parametrisation of the evolution. The shape-based reconstruction we considered in (3) 
is now a special case with only one dataset at say t1  =  1 (stationary data) and known template 
I 0X∈∗ . In such a case, the time evolution operator W models the (shape) deformation of the 
template and the goal is to estimate the evolution parameter ν∈ V from indirect noisy data.
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