10-716: Advanced Machine Learning

Spring 2019

Review Session: April 30

Lecturer: Pradeep Ravikumar Scribes: Scribes: Raphael Olivier, Yuyan Wang

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

25.1 An Upper Bound for Cumulative Regret

This is a review session. In this session, we discuss Learning with Expert Advice, which is not covered in the homework. We are going to discuss a special case where we develop upper bounds on the cumulative regret.

25.1.1 Recap of Learnning With Expert Advice

We use $R_{E,n}$ to denote the cumulative regret for an expert E.

$$R_{E,n} = \sum_{t=1}^{n} (l(\hat{p}_t, y_t) - l(f_{E,t}, y_t)) = \hat{L}_n - L_{E,n}$$

The forecastor's goal is to minimize $R_{E,n}$. The instantaneous regret at time t is defined as:

$$r_{E,t} = l(\hat{p}_t, y_t) - l(f_{E,t}, y_t)$$

As a result, we have $R_{E,n} = \sum_{t=1}^{n} r_{E,t}$.

Assume the forecastor uses Weighted Average Prediction, i.e., at every step, we let

$$\hat{p}_t = \frac{\sum_{i=1}^{N} w_{i,t-1} f_{i,t}}{\sum_{j=1}^{N} w_{j,t-1}}$$

As in class, We define a Potential Function: $\Phi: \mathbb{R}^N \to \mathbb{R}$. Formally,

$$\Phi(\mathbf{u}) = \psi\left(\sum_{i=1}^{N} \phi(u_i)\right)$$

where **u** is a vector, $\phi(\cdot)$ is a non-negative, increasing, twice-differentiable function; $\psi(\cdot)$ is a non-negative, strictly increasing, concave, twice-differentiable function. Then we let $w_{j,t-1} = \nabla_j \Phi(R_{t-1})$. Then, we have the *Rockwell Condition*:

$$\sup_{y_t \in Y} \sum_{i=1}^{N} r_{i,t} \nabla_i \Phi(R_{t-1}) \le 0$$

If this condition is satisfied, we have:

$$\Phi(R_n) \le \Phi(0) + \frac{1}{2} \sum_{t=1}^n c(r_t)$$

with $c(r_t) = \sup_{\mathbf{u} \in \mathbb{R}^N} \psi'(\sum_{i=1}^N \phi(u_i)) \sum_{i=1}^N \phi''(u_i) r_{i,t}^2$. And if $\phi(\cdot)$ is invertible, we have:

$$\max_{i} R_{i,n} \le \phi^{-1} \psi^{-1}(\Phi(R_n))$$

25.1.2 Developing the Upper Bound

In this subsection, we focus on the Exponentially Weighted Average Forecastor, which uses weight:

$$w_{i,t-1} = \frac{e^{\eta R_{i,t-1}}}{\sum_{j=1}^{N} e^{\eta R_{j,t-1}}}$$

Since $w_{i,t-1} = \nabla_i \Phi(R_{t-1})$, we set $\Phi_{\eta}(\mathbf{u}) = \frac{1}{\eta} \ln(\sum_{i=1}^N e^{\eta u_i})$. We want to show the following inequality:

$$\hat{L}_n - \min_{i=1,\dots,N} L_{i,n} \le \frac{\ln N}{\eta} + \frac{n\eta}{2}$$

Let $\phi(x) = e^{\eta x}$ and $\psi(x) = \frac{1}{\eta} \ln x$. Then,

$$c(r_t) = \sup_{\mathbf{u} \in \mathbb{R}^N} \psi'(\sum_{i=1}^N \phi(u_i)) \sum_{i=1}^N \phi''(u_i) r_{i,t}^2$$
$$= (\frac{1}{\eta} \cdot \frac{1}{\sum_{i=1}^N e^{\eta u_i}} \eta^2 \cdot \sum_{i=1}^N [e^{\eta u_i} \cdot r_{i,t}^2])$$

Apply Hlder's inequality and we get $\sum_{i=1}^{N} [e^{\eta u_i} \cdot r_{i,t}^2] \leq \eta^2 (\sum_{i=1}^{N} e^{\eta u_i}) \max_{i=1,\dots,N} r_{i,t}^2$. Putting this together, we have $c(r_t) \leq \eta \max_{i=1,\dots,N} r_{i,t}^2 \leq \eta$ since we assume $r_{i,t} \in [0,1]$. Plugging $c(r_t)$ in, we reach the conclusion:

$$\Phi_{\eta}(R_n) \le \frac{\ln N}{\eta} + \frac{n\eta}{2}$$

25.2 A refined inequality

The Blackwell condition actually gives rarely an optimal result. Now we will use a different method to prove the following result:

Lemma 25.1 Under the previous notations,

$$\hat{L}_n - \min_{1 \le i \le N} \frac{\ln(N)}{\eta} + \frac{n\eta}{8}$$

Proof: By simply dividing the weights by a constant factor, we can redefine

$$w_{i,t} = e^{-\eta L_{i,n}}$$

$$\hat{p}_{i,t} = \frac{\sum_{i=1}^{N} w_{i,t} R_{i,t}}{\sum_{j=1}^{N} w_{j,t}}$$

We also define $W_t = \sum_{i=1}^N w_{i,t}$. In particular, $W_0 = N$ and $W_n = \sum_{i=1}^N e^{-\eta L_{i,n}}$

On the one hand,

$$\ln\left(\frac{W_n}{W_0}\right) = \ln\left(\sum_{i=1}^N e^{-\eta L_{i,n}}\right) - \ln(N)$$

$$\geq \ln(\max_i e^{-\eta L_{i,n}} - \ln(N))$$

$$= -\eta \min_i L_{i,n} - \ln(N)$$

On the other hand,

$$\ln(\frac{W_t}{W_{t-1}}) = \ln(\frac{\sum_{i=1}^{N} e^{-\eta L_{i,t}}}{\sum_{j=1}^{N} e^{-\eta L_{j,t-1}}})$$

$$= \ln(\frac{\sum_{i=1}^{N} e^{-\eta L_{i,t-1}} + l(f_{i,t},y_t))}{\sum_{j=1}^{N} e^{-\eta L_{j,t-1}}})$$

$$= \ln(\frac{\sum_{i=1}^{N} e^{-\eta L_{i,t-1}} e^{-\eta l(f_{i,t},y_t)}}{\sum_{j=1}^{N} e^{-\eta L_{j,t-1}}})$$

$$= \ln(\frac{\sum_{i=1}^{N} w_{i,t-1} e^{-\eta l(f_{i,t},y_t)}}{\sum_{j=1}^{N} w_{j,t-1}})$$

$$= \ln(\mathbb{E}[e^{-\eta X}])$$

where X is a discrete random variable defined by

$$\mathbb{P}[X = l(f_{i,t}, y_t)] = \frac{w_{i,t-1}}{\sum_{i=1}^{N} w_{j,t-1}}$$

We can use Hoeffding's lemma : if $a \leq X \leq b$ then

$$\ln(\mathbb{E}[e^{sX}]) \le s\mathbb{E}[X] + \frac{s^2(b-a)^2}{8}$$

With $s = -\eta$, a = 0 and b = 1:

$$\ln\left(\frac{W_t}{W_{t-1}}\right) \le -\eta \frac{\sum_{i=1}^{N} w_{i,t-1} l(f_{i,t}, y_t)}{\sum_{i=1}^{N} w_{i,t-1}} + \frac{\eta^2}{8}$$

$$\le -\eta l\left(\frac{\sum_{i=1}^{N} w_{i,t-1} f_{i,t}}{\sum_{i=1}^{N} w_{i,t-1}}, y_t\right) + \frac{\eta^2}{8} = l(\hat{p}_t, y_t)$$

using Jensen's inequality. By induction we get:

$$\ln(\frac{W_n}{W_0}) \le -\eta \hat{L}_{n,t} + \frac{n\eta^2}{8}$$

We can combine our two inequalities involving $\ln(\frac{W_n}{W_0})$:

$$-\eta \min_{i} L_{i,n} - \ln(N) \le -\eta \hat{L}_{n,t} + \frac{n\eta^2}{8}$$

Which can be rearanged into

$$\hat{L}_n - \min_{1 \le i \le N} \frac{\ln(N)}{\eta} + \frac{n\eta}{8}$$