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Trust Region Methods

• Iteratively solve approximations to objective function 
that are accurate only in “trust region” 

• restrict step to lie in trust region R_k

min
p

mk(p) ⇡ f(xk + p)

s.t. p 2 Rk



A Popular Approximation for 
the Objective Function

• Recall Taylor’s Theorem: for some scalar t in (0,1) 

• So:  

• for some positive-definite symmetric B_k satisfies: 

• so the approx. error is small when p is small 
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where fk ! f (xk), ∇fk ! ∇f (xk), and Bk is some symmetric matrix. Since by (2.6) we
have

f (xk + p) ! fk + ∇f T
k p + 1

2p
T∇2f (xk + tp)p, (4.2)

for some scalar t ∈ (0, 1), and since mk(p) ! fk + ∇f T
k p + O

(

∥p∥2
)

, the difference
between mk(p) and f (xk + p) is O

(

∥p∥2
)

, so the approximation error is small when p is
small.

When Bk is equal to the true Hessian ∇2f (xk), the model function actually agrees
with the Taylor series to three terms. The approximation error is O

(

∥p∥3
)

in this case,
so this model is especially accurate when ∥p∥ is small. The algorithm based on setting
Bk ! ∇2f (xk) is called the trust-region Newton method, and will be discussed further in
Chapter 6. In the current chapter, we emphasize the generality of the trust-region approach
by assuming little about Bk except symmetry and uniform boundedness in the index k.

To obtain each step, we seek a solution of the subproblem

min
p∈IRn

mk(p) ! fk + ∇f T
k p + 1

2p
T Bkp s.t. ∥p∥ ≤ !k, (4.3)

where !k > 0 is the trust-region radius. For the moment, we define ∥ ·∥ to be the Euclidean
norm, so that the solution p∗k of (4.3) is the minimizer of mk in the ball of radius !k . Thus,
the trust-region approach requires us to solve a sequence of subproblems (4.3) in which the
objective function and constraint (which can be written as pT p ≤ !2

k) are both quadratic.
When Bk is positive definite and ∥B−1

k ∇fk∥ ≤ !k , the solution of (4.3) is easy to identify—it
is simply the unconstrained minimum pB

k ! −B−1
k ∇fk of the quadratic mk(p). In this case,

we call pB
k the full step. The solution of (4.3) is not so obvious in other cases, but it can usually

be found without too much expense. In any case, we need only an approximate solution to
obtain convergence and good practical behavior.

OUTLINE OF THE ALGORITHM

The first issue to arise in defining a trust-region method is the strategy for choosing
the trust-region radius !k at each iteration. We base this choice on the agreement between
the model function mk and the objective function f at previous iterations. Given a step pk

we define the ratio

ρk !
f (xk)− f (xk + pk)

mk(0)−mk(pk)
; (4.4)

the numerator is called the actual reduction, and the denominator is the predicted reduction.
Note that since the step pk is obtained by minimizing the model mk over a region that
includes the step p ! 0, the predicted reduction will always be nonnegative. Thus if ρk is
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Figure 4.1 Trust-region and line search steps.

allow longer, more ambitious, steps to be taken. On the other hand, a failed step indicates
that our model is an inadequate representation of the objective function over the current
trust region, so we reduce the size of the region and try again.

Figure 4.1 illustrates the trust-region approach on a function f of two variables in
which the current point lies at one end of a curved valley while the minimizer x∗ lies at the
other end. The quadratic model function mk , whose elliptical contours are shown as dashed
lines, is based on function and derivative information at xk and possibly also on information
accumulated from previous iterations and steps. A line search method based on this model
searches along the step to the minimizer of mk (shown), but this direction allows only a
small reduction in f even if an optimal step is taken. A trust-region method, on the other
hand, steps to the minimizer of mk within the dotted circle, which yields a more significant
reduction in f and a better step.

We will assume that the first two terms of the quadratic model functions mk at each
iterate xk are identical to the first two terms of the Taylor-series expansion of f around xk .
Specifically, we have

mk(p) " fk + ∇f T
k p + 1

2p
T Bkp, (4.1)

mk(p)� f(xk + p) = O(kpk2)
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where fk ! f (xk), ∇fk ! ∇f (xk), and Bk is some symmetric matrix. Since by (2.6) we
have

f (xk + p) ! fk + ∇f T
k p + 1

2p
T∇2f (xk + tp)p, (4.2)

for some scalar t ∈ (0, 1), and since mk(p) ! fk + ∇f T
k p + O

(

∥p∥2
)

, the difference
between mk(p) and f (xk + p) is O

(

∥p∥2
)

, so the approximation error is small when p is
small.

When Bk is equal to the true Hessian ∇2f (xk), the model function actually agrees
with the Taylor series to three terms. The approximation error is O

(

∥p∥3
)

in this case,
so this model is especially accurate when ∥p∥ is small. The algorithm based on setting
Bk ! ∇2f (xk) is called the trust-region Newton method, and will be discussed further in
Chapter 6. In the current chapter, we emphasize the generality of the trust-region approach
by assuming little about Bk except symmetry and uniform boundedness in the index k.

To obtain each step, we seek a solution of the subproblem

min
p∈IRn

mk(p) ! fk + ∇f T
k p + 1

2p
T Bkp s.t. ∥p∥ ≤ !k, (4.3)

where !k > 0 is the trust-region radius. For the moment, we define ∥ ·∥ to be the Euclidean
norm, so that the solution p∗k of (4.3) is the minimizer of mk in the ball of radius !k . Thus,
the trust-region approach requires us to solve a sequence of subproblems (4.3) in which the
objective function and constraint (which can be written as pT p ≤ !2

k) are both quadratic.
When Bk is positive definite and ∥B−1

k ∇fk∥ ≤ !k , the solution of (4.3) is easy to identify—it
is simply the unconstrained minimum pB

k ! −B−1
k ∇fk of the quadratic mk(p). In this case,

we call pB
k the full step. The solution of (4.3) is not so obvious in other cases, but it can usually

be found without too much expense. In any case, we need only an approximate solution to
obtain convergence and good practical behavior.

OUTLINE OF THE ALGORITHM

The first issue to arise in defining a trust-region method is the strategy for choosing
the trust-region radius !k at each iteration. We base this choice on the agreement between
the model function mk and the objective function f at previous iterations. Given a step pk

we define the ratio

ρk !
f (xk)− f (xk + pk)

mk(0)−mk(pk)
; (4.4)

the numerator is called the actual reduction, and the denominator is the predicted reduction.
Note that since the step pk is obtained by minimizing the model mk over a region that
includes the step p ! 0, the predicted reduction will always be nonnegative. Thus if ρk is
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allow longer, more ambitious, steps to be taken. On the other hand, a failed step indicates
that our model is an inadequate representation of the objective function over the current
trust region, so we reduce the size of the region and try again.

Figure 4.1 illustrates the trust-region approach on a function f of two variables in
which the current point lies at one end of a curved valley while the minimizer x∗ lies at the
other end. The quadratic model function mk , whose elliptical contours are shown as dashed
lines, is based on function and derivative information at xk and possibly also on information
accumulated from previous iterations and steps. A line search method based on this model
searches along the step to the minimizer of mk (shown), but this direction allows only a
small reduction in f even if an optimal step is taken. A trust-region method, on the other
hand, steps to the minimizer of mk within the dotted circle, which yields a more significant
reduction in f and a better step.

We will assume that the first two terms of the quadratic model functions mk at each
iterate xk are identical to the first two terms of the Taylor-series expansion of f around xk .
Specifically, we have

mk(p) " fk + ∇f T
k p + 1

2p
T Bkp, (4.1)

mk(p)� f(xk + p) = O(kpk2)

{p : kpk  �k} is the trust-region

�k is known as the trust-region radius



Quadratic Trust Region 
Method
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where fk ! f (xk), ∇fk ! ∇f (xk), and Bk is some symmetric matrix. Since by (2.6) we
have

f (xk + p) ! fk + ∇f T
k p + 1

2p
T∇2f (xk + tp)p, (4.2)

for some scalar t ∈ (0, 1), and since mk(p) ! fk + ∇f T
k p + O

(

∥p∥2
)

, the difference
between mk(p) and f (xk + p) is O

(

∥p∥2
)

, so the approximation error is small when p is
small.

When Bk is equal to the true Hessian ∇2f (xk), the model function actually agrees
with the Taylor series to three terms. The approximation error is O

(

∥p∥3
)

in this case,
so this model is especially accurate when ∥p∥ is small. The algorithm based on setting
Bk ! ∇2f (xk) is called the trust-region Newton method, and will be discussed further in
Chapter 6. In the current chapter, we emphasize the generality of the trust-region approach
by assuming little about Bk except symmetry and uniform boundedness in the index k.

To obtain each step, we seek a solution of the subproblem

min
p∈IRn

mk(p) ! fk + ∇f T
k p + 1

2p
T Bkp s.t. ∥p∥ ≤ !k, (4.3)

where !k > 0 is the trust-region radius. For the moment, we define ∥ ·∥ to be the Euclidean
norm, so that the solution p∗k of (4.3) is the minimizer of mk in the ball of radius !k . Thus,
the trust-region approach requires us to solve a sequence of subproblems (4.3) in which the
objective function and constraint (which can be written as pT p ≤ !2

k) are both quadratic.
When Bk is positive definite and ∥B−1

k ∇fk∥ ≤ !k , the solution of (4.3) is easy to identify—it
is simply the unconstrained minimum pB

k ! −B−1
k ∇fk of the quadratic mk(p). In this case,

we call pB
k the full step. The solution of (4.3) is not so obvious in other cases, but it can usually

be found without too much expense. In any case, we need only an approximate solution to
obtain convergence and good practical behavior.

OUTLINE OF THE ALGORITHM

The first issue to arise in defining a trust-region method is the strategy for choosing
the trust-region radius !k at each iteration. We base this choice on the agreement between
the model function mk and the objective function f at previous iterations. Given a step pk

we define the ratio

ρk !
f (xk)− f (xk + pk)

mk(0)−mk(pk)
; (4.4)

the numerator is called the actual reduction, and the denominator is the predicted reduction.
Note that since the step pk is obtained by minimizing the model mk over a region that
includes the step p ! 0, the predicted reduction will always be nonnegative. Thus if ρk is

kpk =

p
pT p is the `2 or Euclidean norm
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allow longer, more ambitious, steps to be taken. On the other hand, a failed step indicates
that our model is an inadequate representation of the objective function over the current
trust region, so we reduce the size of the region and try again.

Figure 4.1 illustrates the trust-region approach on a function f of two variables in
which the current point lies at one end of a curved valley while the minimizer x∗ lies at the
other end. The quadratic model function mk , whose elliptical contours are shown as dashed
lines, is based on function and derivative information at xk and possibly also on information
accumulated from previous iterations and steps. A line search method based on this model
searches along the step to the minimizer of mk (shown), but this direction allows only a
small reduction in f even if an optimal step is taken. A trust-region method, on the other
hand, steps to the minimizer of mk within the dotted circle, which yields a more significant
reduction in f and a better step.

We will assume that the first two terms of the quadratic model functions mk at each
iterate xk are identical to the first two terms of the Taylor-series expansion of f around xk .
Specifically, we have

mk(p) " fk + ∇f T
k p + 1

2p
T Bkp, (4.1)
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Figure 4.4 Solution of trust-region subproblem for different radii !1, !2, !3.

for λ sufficiently large that B + λI is positive definite (see the exercises), and seek a value
λ > 0 such that

∥p(λ)∥ " !. (4.20)

This problem is a one-dimensional root-finding problem in the variable λ.
To see that a value of λ with all the desired properties exists, we appeal to the eigende-

composition of B and use it to study the properties of ∥p(λ)∥. Since B is symmetric, there
is an orthogonal matrix Q and a diagonal matrix # such that B " Q#QT , where

# " diag(λ1, λ2, . . . , λn),

and λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of B; see (A.46). Clearly, B + λI " Q(# +
λI )QT , and for λ ̸" λj , we have

p(λ) " −Q(# + λI )−1QT g " −
n
∑

j"1

qT
j g

λj + λ
qj , (4.21)
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negative, the new objective value f (xk + pk) is greater than the current value f (xk), so the
step must be rejected.

On the other hand, if ρk is close to 1, there is good agreement between the model mk

and the function f over this step, so it is safe to expand the trust region for the next iteration.
If ρk is positive but not close to 1, we do not alter the trust region, but if it is close to zero or
negative, we shrink the trust region. The following algorithm describes the process.

Algorithm 4.1 (Trust Region).
Given "̄ > 0, "0 ∈ (0, "̄), and η ∈

[

0, 1
4

)

:
for k " 0, 1, 2, . . .

Obtain pk by (approximately) solving (4.3);
Evaluate ρk from (4.4);
if ρk < 1

4
"k+1 " 1

4∥pk∥
else

if ρk > 3
4 and ∥pk∥ " "k

"k+1 " min(2"k, "̄)
else

"k+1 " "k ;
if ρk > η

xk+1 " xk + pk

else
xk+1 " xk ;

end (for).

Here "̄ is an overall bound on the step lengths. Note that the radius is increased only if ∥pk∥
actually reaches the boundary of the trust region. If the step stays strictly inside the region,
we infer that the current value of "k is not interfering with the progress of the algorithm,
so we leave its value unchanged for the next iteration.

To turn Algorithm 4.1 into a practical algorithm, we need to focus on solving (4.3).
We first describe three strategies for finding approximate solutions, which achieve at least as
much reduction in mk as the reduction achieved by the so-called Cauchy point. This point is
simply the minimizer of mk along the steepest descent direction−∇fk , subject to the trust-
region bound. The first approximate strategy is the dogleg method, which is appropriate when
the model Hessian Bk is positive definite. The second strategy, known as two-dimensional
subspace minimization, can be applied when Bk is indefinite, though it requires an estimate
of the most negative eigenvalue of this matrix. The third strategy, due to Steihaug, is most
appropriate when Bk is the exact Hessian∇2f (xk) and when this matrix is large and sparse.

We also describe a strategy due to Moré and Sorensen that finds a “nearly exact”
solution of (4.3). This strategy is based on the fact that the solution p satisfies (Bk +λI )p "
−∇fk for some positive value of λ > 0. This strategy seeks the value of λ that corresponds to

by solving trust region problem
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where fk ! f (xk), ∇fk ! ∇f (xk), and Bk is some symmetric matrix. Since by (2.6) we
have

f (xk + p) ! fk + ∇f T
k p + 1

2p
T∇2f (xk + tp)p, (4.2)

for some scalar t ∈ (0, 1), and since mk(p) ! fk + ∇f T
k p + O

(

∥p∥2
)

, the difference
between mk(p) and f (xk + p) is O

(

∥p∥2
)

, so the approximation error is small when p is
small.

When Bk is equal to the true Hessian ∇2f (xk), the model function actually agrees
with the Taylor series to three terms. The approximation error is O

(

∥p∥3
)

in this case,
so this model is especially accurate when ∥p∥ is small. The algorithm based on setting
Bk ! ∇2f (xk) is called the trust-region Newton method, and will be discussed further in
Chapter 6. In the current chapter, we emphasize the generality of the trust-region approach
by assuming little about Bk except symmetry and uniform boundedness in the index k.

To obtain each step, we seek a solution of the subproblem

min
p∈IRn

mk(p) ! fk + ∇f T
k p + 1

2p
T Bkp s.t. ∥p∥ ≤ !k, (4.3)

where !k > 0 is the trust-region radius. For the moment, we define ∥ ·∥ to be the Euclidean
norm, so that the solution p∗k of (4.3) is the minimizer of mk in the ball of radius !k . Thus,
the trust-region approach requires us to solve a sequence of subproblems (4.3) in which the
objective function and constraint (which can be written as pT p ≤ !2

k) are both quadratic.
When Bk is positive definite and ∥B−1

k ∇fk∥ ≤ !k , the solution of (4.3) is easy to identify—it
is simply the unconstrained minimum pB

k ! −B−1
k ∇fk of the quadratic mk(p). In this case,

we call pB
k the full step. The solution of (4.3) is not so obvious in other cases, but it can usually

be found without too much expense. In any case, we need only an approximate solution to
obtain convergence and good practical behavior.

OUTLINE OF THE ALGORITHM

The first issue to arise in defining a trust-region method is the strategy for choosing
the trust-region radius !k at each iteration. We base this choice on the agreement between
the model function mk and the objective function f at previous iterations. Given a step pk

we define the ratio

ρk !
f (xk)− f (xk + pk)

mk(0)−mk(pk)
; (4.4)

the numerator is called the actual reduction, and the denominator is the predicted reduction.
Note that since the step pk is obtained by minimizing the model mk over a region that
includes the step p ! 0, the predicted reduction will always be nonnegative. Thus if ρk is

(reduction ratio)
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negative, the new objective value f (xk + pk) is greater than the current value f (xk), so the
step must be rejected.

On the other hand, if ρk is close to 1, there is good agreement between the model mk

and the function f over this step, so it is safe to expand the trust region for the next iteration.
If ρk is positive but not close to 1, we do not alter the trust region, but if it is close to zero or
negative, we shrink the trust region. The following algorithm describes the process.

Algorithm 4.1 (Trust Region).
Given "̄ > 0, "0 ∈ (0, "̄), and η ∈

[

0, 1
4

)

:
for k " 0, 1, 2, . . .

Obtain pk by (approximately) solving (4.3);
Evaluate ρk from (4.4);
if ρk < 1

4
"k+1 " 1

4∥pk∥
else

if ρk > 3
4 and ∥pk∥ " "k

"k+1 " min(2"k, "̄)
else

"k+1 " "k ;
if ρk > η

xk+1 " xk + pk

else
xk+1 " xk ;

end (for).

Here "̄ is an overall bound on the step lengths. Note that the radius is increased only if ∥pk∥
actually reaches the boundary of the trust region. If the step stays strictly inside the region,
we infer that the current value of "k is not interfering with the progress of the algorithm,
so we leave its value unchanged for the next iteration.

To turn Algorithm 4.1 into a practical algorithm, we need to focus on solving (4.3).
We first describe three strategies for finding approximate solutions, which achieve at least as
much reduction in mk as the reduction achieved by the so-called Cauchy point. This point is
simply the minimizer of mk along the steepest descent direction−∇fk , subject to the trust-
region bound. The first approximate strategy is the dogleg method, which is appropriate when
the model Hessian Bk is positive definite. The second strategy, known as two-dimensional
subspace minimization, can be applied when Bk is indefinite, though it requires an estimate
of the most negative eigenvalue of this matrix. The third strategy, due to Steihaug, is most
appropriate when Bk is the exact Hessian∇2f (xk) and when this matrix is large and sparse.

We also describe a strategy due to Moré and Sorensen that finds a “nearly exact”
solution of (4.3). This strategy is based on the fact that the solution p satisfies (Bk +λI )p "
−∇fk for some positive value of λ > 0. This strategy seeks the value of λ that corresponds to

by solving trust region problem
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where fk ! f (xk), ∇fk ! ∇f (xk), and Bk is some symmetric matrix. Since by (2.6) we
have

f (xk + p) ! fk + ∇f T
k p + 1

2p
T∇2f (xk + tp)p, (4.2)

for some scalar t ∈ (0, 1), and since mk(p) ! fk + ∇f T
k p + O

(

∥p∥2
)

, the difference
between mk(p) and f (xk + p) is O

(

∥p∥2
)

, so the approximation error is small when p is
small.

When Bk is equal to the true Hessian ∇2f (xk), the model function actually agrees
with the Taylor series to three terms. The approximation error is O

(

∥p∥3
)

in this case,
so this model is especially accurate when ∥p∥ is small. The algorithm based on setting
Bk ! ∇2f (xk) is called the trust-region Newton method, and will be discussed further in
Chapter 6. In the current chapter, we emphasize the generality of the trust-region approach
by assuming little about Bk except symmetry and uniform boundedness in the index k.

To obtain each step, we seek a solution of the subproblem

min
p∈IRn

mk(p) ! fk + ∇f T
k p + 1

2p
T Bkp s.t. ∥p∥ ≤ !k, (4.3)

where !k > 0 is the trust-region radius. For the moment, we define ∥ ·∥ to be the Euclidean
norm, so that the solution p∗k of (4.3) is the minimizer of mk in the ball of radius !k . Thus,
the trust-region approach requires us to solve a sequence of subproblems (4.3) in which the
objective function and constraint (which can be written as pT p ≤ !2

k) are both quadratic.
When Bk is positive definite and ∥B−1

k ∇fk∥ ≤ !k , the solution of (4.3) is easy to identify—it
is simply the unconstrained minimum pB

k ! −B−1
k ∇fk of the quadratic mk(p). In this case,

we call pB
k the full step. The solution of (4.3) is not so obvious in other cases, but it can usually

be found without too much expense. In any case, we need only an approximate solution to
obtain convergence and good practical behavior.

OUTLINE OF THE ALGORITHM

The first issue to arise in defining a trust-region method is the strategy for choosing
the trust-region radius !k at each iteration. We base this choice on the agreement between
the model function mk and the objective function f at previous iterations. Given a step pk

we define the ratio

ρk !
f (xk)− f (xk + pk)

mk(0)−mk(pk)
; (4.4)

the numerator is called the actual reduction, and the denominator is the predicted reduction.
Note that since the step pk is obtained by minimizing the model mk over a region that
includes the step p ! 0, the predicted reduction will always be nonnegative. Thus if ρk is

(reduction ratio)

… reduce trust region radius

… increase trust region radius

… same trust region radius
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negative, the new objective value f (xk + pk) is greater than the current value f (xk), so the
step must be rejected.

On the other hand, if ρk is close to 1, there is good agreement between the model mk

and the function f over this step, so it is safe to expand the trust region for the next iteration.
If ρk is positive but not close to 1, we do not alter the trust region, but if it is close to zero or
negative, we shrink the trust region. The following algorithm describes the process.

Algorithm 4.1 (Trust Region).
Given "̄ > 0, "0 ∈ (0, "̄), and η ∈

[

0, 1
4

)

:
for k " 0, 1, 2, . . .

Obtain pk by (approximately) solving (4.3);
Evaluate ρk from (4.4);
if ρk < 1

4
"k+1 " 1

4∥pk∥
else

if ρk > 3
4 and ∥pk∥ " "k

"k+1 " min(2"k, "̄)
else

"k+1 " "k ;
if ρk > η

xk+1 " xk + pk

else
xk+1 " xk ;

end (for).

Here "̄ is an overall bound on the step lengths. Note that the radius is increased only if ∥pk∥
actually reaches the boundary of the trust region. If the step stays strictly inside the region,
we infer that the current value of "k is not interfering with the progress of the algorithm,
so we leave its value unchanged for the next iteration.

To turn Algorithm 4.1 into a practical algorithm, we need to focus on solving (4.3).
We first describe three strategies for finding approximate solutions, which achieve at least as
much reduction in mk as the reduction achieved by the so-called Cauchy point. This point is
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where fk ! f (xk), ∇fk ! ∇f (xk), and Bk is some symmetric matrix. Since by (2.6) we
have

f (xk + p) ! fk + ∇f T
k p + 1

2p
T∇2f (xk + tp)p, (4.2)

for some scalar t ∈ (0, 1), and since mk(p) ! fk + ∇f T
k p + O

(

∥p∥2
)

, the difference
between mk(p) and f (xk + p) is O

(

∥p∥2
)

, so the approximation error is small when p is
small.

When Bk is equal to the true Hessian ∇2f (xk), the model function actually agrees
with the Taylor series to three terms. The approximation error is O

(

∥p∥3
)

in this case,
so this model is especially accurate when ∥p∥ is small. The algorithm based on setting
Bk ! ∇2f (xk) is called the trust-region Newton method, and will be discussed further in
Chapter 6. In the current chapter, we emphasize the generality of the trust-region approach
by assuming little about Bk except symmetry and uniform boundedness in the index k.

To obtain each step, we seek a solution of the subproblem

min
p∈IRn

mk(p) ! fk + ∇f T
k p + 1

2p
T Bkp s.t. ∥p∥ ≤ !k, (4.3)

where !k > 0 is the trust-region radius. For the moment, we define ∥ ·∥ to be the Euclidean
norm, so that the solution p∗k of (4.3) is the minimizer of mk in the ball of radius !k . Thus,
the trust-region approach requires us to solve a sequence of subproblems (4.3) in which the
objective function and constraint (which can be written as pT p ≤ !2

k) are both quadratic.
When Bk is positive definite and ∥B−1

k ∇fk∥ ≤ !k , the solution of (4.3) is easy to identify—it
is simply the unconstrained minimum pB

k ! −B−1
k ∇fk of the quadratic mk(p). In this case,

we call pB
k the full step. The solution of (4.3) is not so obvious in other cases, but it can usually

be found without too much expense. In any case, we need only an approximate solution to
obtain convergence and good practical behavior.

OUTLINE OF THE ALGORITHM

The first issue to arise in defining a trust-region method is the strategy for choosing
the trust-region radius !k at each iteration. We base this choice on the agreement between
the model function mk and the objective function f at previous iterations. Given a step pk

we define the ratio

ρk !
f (xk)− f (xk + pk)

mk(0)−mk(pk)
; (4.4)

the numerator is called the actual reduction, and the denominator is the predicted reduction.
Note that since the step pk is obtained by minimizing the model mk over a region that
includes the step p ! 0, the predicted reduction will always be nonnegative. Thus if ρk is

(reduction ratio)

… reduce trust region radius

… increase trust region radius

… same trust region radius

… take step only if relative reduction is large
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• So the unconstrained optimum can be written as:

• Trust Region Problem:

pBk = �B�1
k rfk

• So if unconstrained optimum lies within trust region, 
it is also the constrained optimum:

pBk is the solution to the trust region problem when kpBk k  �k



Unconstrained vs 
Constrained Optimum

• But the unconstrained optimum will typically not be 
the solution to trust region problem 

• Solving exactly might be too expensive  

• recall that in “large scale” iterative methods, we 
do not want to spend too much computation per 
iteration 

• Solve trust region problem approximately



Approximate Solutions to 
Trust Region Problem

• Cauchy 

• Dogleg 

• Two-Dim Subspace Minimization 

• One-dimensional root finding
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Figure 4.2 The Cauchy point.

the unconstrained minimizer of this quadratic, ∥∇fk∥3/(!k∇f T
k Bk∇fk), or the boundary

value 1, whichever comes first. In summary, we have

pC
k # −τk

!k

∥∇fk∥
∇fk, (4.7)

where

τk #
{

1 if ∇f T
k Bk∇fk ≤ 0;

min
(

∥∇fk∥3/(!k∇f T
k Bk∇fk), 1

)

otherwise.
(4.8)

Figure 4.2 illustrates the Cauchy point for a subproblem in which Bk is positive definite.
In this example, pC

k lies strictly inside the trust region.
The Cauchy step pC

k is inexpensive to calculate—no matrix factorizations are
required—and is of crucial importance in deciding if an approximate solution of the
trust-region subproblem is acceptable. Specifically, a trust-region method will be globally
convergent if its steps pk attain a sufficient reduction in mk ; that is, they give a reduction in
the model mk that is at least some fixed multiple of the decrease attained by the Cauchy step
at each iteration.

IMPROVING ON THE CAUCHY POINT

Since the Cauchy point pC
k provides sufficient reduction in the model function mk to

yield global convergence, and since the cost of calculating it is so small, why should we look
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the trust-region radius !k and performs additional calculations in the special case in which
the resulting modified Hessian (Bk + λI ) is nonsingular. Details are given below.

4.1 THE CAUCHY POINT AND RELATED ALGORITHMS

THE CAUCHY POINT

As we saw in the previous chapter, line search methods do not require optimal step
lengths to be globally convergent. In fact, only a crude approximation to the optimal step
length that satisfies certain loose criteria is needed. A similar situation applies in trust-region
methods. Although in principle we are seeking the optimal solution of the subproblem (4.3),
it is enough for global convergence purposes to find an approximate solution pk that lies
within the trust region and gives a sufficient reduction in the model. The sufficient reduction
can be quantified in terms of the Cauchy point, which we denote by pC

k and define in terms
of the following simple procedure:

Algorithm 4.2 (Cauchy Point Calculation).
Find the vector pS

k that solves a linear version of (4.3), that is,

pS
k ! arg min

p∈IRn
fk + ∇f T

k p s.t. ∥p∥ ≤ !k; (4.5)

Calculate the scalar τk > 0 that minimizes mk(τpS
k) subject to

satisfying the trust-region bound, that is,

τk ! arg min
τ>0

mk(τpS
k) s.t. ∥τpS

k∥ ≤ !k; (4.6)

Set pC
k ! τkp

S
k .

In fact, it is easy to write down a closed-form definition of the Cauchy point. The solution
of (4.5) is simply

pS
k ! −

!k

∥∇fk∥
∇fk.

To obtain τk explicitly, we consider the cases of ∇f T
k Bk∇fk ≤ 0 and∇f T

k Bk∇fk > 0 sepa-
rately. For the former case, the function mk(τpS

k) decreases monotonically with τ whenever
∇fk ̸! 0, so τk is simply the largest value that satisfies the trust-region bound, namely,
τk ! 1. For the case ∇f T

k Bk∇fk > 0, mk(τpS
k) is a convex quadratic in τ , so τk is either
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• These steps have a closed form
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it is enough for global convergence purposes to find an approximate solution pk that lies
within the trust region and gives a sufficient reduction in the model. The sufficient reduction
can be quantified in terms of the Cauchy point, which we denote by pC

k and define in terms
of the following simple procedure:

Algorithm 4.2 (Cauchy Point Calculation).
Find the vector pS

k that solves a linear version of (4.3), that is,

pS
k ! arg min

p∈IRn
fk + ∇f T

k p s.t. ∥p∥ ≤ !k; (4.5)

Calculate the scalar τk > 0 that minimizes mk(τpS
k) subject to

satisfying the trust-region bound, that is,

τk ! arg min
τ>0

mk(τpS
k) s.t. ∥τpS

k∥ ≤ !k; (4.6)

Set pC
k ! τkp

S
k .

In fact, it is easy to write down a closed-form definition of the Cauchy point. The solution
of (4.5) is simply

pS
k ! −

!k

∥∇fk∥
∇fk.

To obtain τk explicitly, we consider the cases of ∇f T
k Bk∇fk ≤ 0 and∇f T

k Bk∇fk > 0 sepa-
rately. For the former case, the function mk(τpS

k) decreases monotonically with τ whenever
∇fk ̸! 0, so τk is simply the largest value that satisfies the trust-region bound, namely,
τk ! 1. For the case ∇f T

k Bk∇fk > 0, mk(τpS
k) is a convex quadratic in τ , so τk is either

• Cauchy Point:
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the trust-region radius !k and performs additional calculations in the special case in which
the resulting modified Hessian (Bk + λI ) is nonsingular. Details are given below.
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Figure 4.2 The Cauchy point.

the unconstrained minimizer of this quadratic, ∥∇fk∥3/(!k∇f T
k Bk∇fk), or the boundary

value 1, whichever comes first. In summary, we have

pC
k # −τk

!k

∥∇fk∥
∇fk, (4.7)

where

τk #
{

1 if ∇f T
k Bk∇fk ≤ 0;

min
(

∥∇fk∥3/(!k∇f T
k Bk∇fk), 1

)

otherwise.
(4.8)

Figure 4.2 illustrates the Cauchy point for a subproblem in which Bk is positive definite.
In this example, pC

k lies strictly inside the trust region.
The Cauchy step pC

k is inexpensive to calculate—no matrix factorizations are
required—and is of crucial importance in deciding if an approximate solution of the
trust-region subproblem is acceptable. Specifically, a trust-region method will be globally
convergent if its steps pk attain a sufficient reduction in mk ; that is, they give a reduction in
the model mk that is at least some fixed multiple of the decrease attained by the Cauchy step
at each iteration.

IMPROVING ON THE CAUCHY POINT

Since the Cauchy point pC
k provides sufficient reduction in the model function mk to

yield global convergence, and since the cost of calculating it is so small, why should we look
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Figure 4.3 Exact trajectory and dogleg approximation.

origin to the unconstrained minimizer along the steepest descent direction defined by

pU ! − gT g

gT Bg
g, (4.12)

while the second line segment runs from pU to pB (see Figure 4.3). Formally, we denote this
trajectory by p̃(τ ) for τ ∈ [0, 2], where

p̃(τ ) !
{

τpU, 0 ≤ τ ≤ 1,

pU + (τ − 1)(pB − pU), 1 ≤ τ ≤ 2.
(4.13)

The dogleg method chooses p to minimize the model m along this path, subject to
the trust-region bound. In fact, it is not even necessary to carry out a search, because the
dogleg path intersects the trust-region boundary at most once and the intersection point
can be computed analytically. We prove these claims in the following lemma.

Lemma 4.1.
Let B be positive definite. Then

(i) ∥p̃(τ )∥ is an increasing function of τ , and

(ii) m(p̃(τ )) is a decreasing function of τ .
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Let B be positive definite. Then
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Dogleg path:

⌧̃ = arg inf
⌧2[0,2]

mk(p̃(⌧))

pD = p̃(⌧̃)

Dogleg Step:



Two-dimensional Subspace 
Minimization

• Note that entire dogleg path lies in span[g, B^-1 g] 

• Note also that Cauchy point is feasible
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TWO-DIMENSIONAL SUBSPACE MINIMIZATION

When B is positive definite, the dogleg method strategy can be made slightly more
sophisticated by widening the search for p to the entire two-dimensional subspace spanned
by pU and pB (equivalently, g and−B−1g). The subproblem (4.9) is replaced by

min
p

m(p) " f + gT p + 1
2p

T Bp s.t. ∥p∥ ≤ !, p ∈ span[g, B−1g]. (4.14)

This is a problem in two variables that can be solved without much effort (see the exercises).
Clearly, the Cauchy point pC is feasible for (4.14), so the optimal solution of this subproblem
yields at least as much reduction in m as the Cauchy point, resulting in global convergence
of the algorithm. The two-dimensional subspace minimization strategy is obviously an
extension of the dogleg method as well, since the entire dogleg path lies in span[g, B−1g].

An advantage of this strategy is that it can be modified to handle the case of indefinite
B in a way that is intuitive, practical, and theoretically sound. We mention just the salient
points of the handling of the indefiniteness here, and refer the reader to papers by Byrd,
Schnabel, and Schultz (see [39] and [226]) for details. When B has negative eigenvalues, the
two-dimensional subspace in (4.14) is changed to

span[g, (B + αI )−1g], for some α ∈ (−λ1,−2λ1], (4.15)

where λ1 denotes the most negative eigenvalue of B. (This choice of α ensures that B +αI is
positive definite, and the flexibility in this definition allows us to use a numerical procedure
such as the Lanczos method to compute an acceptable value ofα.) When∥(B+αI )−1g∥ ≤ !,
we discard the subspace search of (4.14), (4.15) and instead define the step to be

p " −(B + αI )−1g + v, (4.16)

where v is a vector that satisfies vT (B + αI )−1g ≤ 0. (This condition ensures that v does
not move p back toward zero, but instead continues to move roughly in the direction of
−(B + αI )−1g).

When B has zero eigenvalues but no negative eigenvalues, the Cauchy step p " pC is
used as the approximate solution of (4.9).

The reduction in model function m achieved by the two-dimensional minimization
strategy often is close to the reduction achieved by the exact solution of (4.9). Most of the
computational effort lies in a single factorization of B or B + αI (estimation of α and
solution of (4.14) are less significant), while strategies that find nearly exact solutions of
(4.9) typically require two or three such factorizations.



Characterization of Solution
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factorization for the dogleg and two-dimensional subspace minimization methods. This
approach is based on a convenient characterization of the exact solution of (4.9) (we need to
be able to recognize an exact solution when we see it, after all) and an ingenious application
of Newton’s method in one variable. Essentially, we see that a solution p of the trust-region
problem satisfies the formula

(B + λI )p∗ " −g

for some λ ≥ 0, and our algorithm for finding p∗ aims to identify the appropriate value of λ.
The following theorem gives the precise characterization of the solution of (4.9).

Theorem 4.3.
The vector p∗ is a global solution of the trust-region problem

min
p∈IRn

m(p) " f + gT p + 1
2p

T Bp, s.t. ∥p∥ ≤ ", (4.18)

if and only if p∗ is feasible and there is a scalar λ ≥ 0 such that the following conditions are
satisfied:

(B + λI )p∗ " −g, (4.19a)

λ("− ||p∗||) " 0, (4.19b)

(B + λI ) is positive semidefinite. (4.19c)

We delay the proof of this result until later in the chapter, and instead discuss just its
key features here with the help of Figure 4.4. The condition (4.19b) is a complementarity
condition that states that at least one of the nonnegative quantities λ and ("−∥p∗∥) must be
zero. Hence, when the solution lies strictly inside the trust region (as it does when " " "1 in
Figure 4.4), we must haveλ " 0 and so Bp∗ " −g with B positive semidefinite, from (4.19a)
and (4.19c), respectively. In the other cases " " "2 and " " "3, we have ∥p∗∥ " ", and
so λ is allowed to take a positive value. Note from (4.19a) that

λp∗ " −Bp∗ − g " −∇m(p∗),

that is, the solution p∗ is collinear with the negative gradient of m and normal to its contours.
These properties can be seen clearly in Figure 4.4.

CALCULATING NEARLY EXACT SOLUTIONS

The characterization of Theorem 4.3 suggests an algorithm for finding the solution p

of (4.18). Either λ " 0 satisfies (4.19a) and (4.19c) with ∥p∥ ≤ ", or else we define

p(λ) " −(B + λI )−1g



One-dim. root finding
• Define:
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• Solve:
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Figure 4.4 Solution of trust-region subproblem for different radii !1, !2, !3.

for λ sufficiently large that B + λI is positive definite (see the exercises), and seek a value
λ > 0 such that

∥p(λ)∥ " !. (4.20)

This problem is a one-dimensional root-finding problem in the variable λ.
To see that a value of λ with all the desired properties exists, we appeal to the eigende-

composition of B and use it to study the properties of ∥p(λ)∥. Since B is symmetric, there
is an orthogonal matrix Q and a diagonal matrix # such that B " Q#QT , where

# " diag(λ1, λ2, . . . , λn),

and λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of B; see (A.46). Clearly, B + λI " Q(# +
λI )QT , and for λ ̸" λj , we have

p(λ) " −Q(# + λI )−1QT g " −
n
∑

j"1

qT
j g

λj + λ
qj , (4.21)

• \lambda large enough s.t. B + \lambda I is positive definite

• one-dimensional root finding problem 

• Approaches include Newton Raphson



Convergence Analyses

• Loosely: the gradients converge to zero under mild 
regularity conditions  

• Requires adaptive adjusting of trust region radius 
as discussed earlier


