Trust Region Methods

Lecturer: Pradeep Ravikumar
Co-instructor: Aarti Singh

Convex Optimization 10-725/36-725



Trust Region Methods

minmy(p) ~ f(zk + p)

s.t.p € R

* |teratively solve approximations to objective function
that are accurate only in “trust region”

* restrict step to lie in trust region R_K



A Popular Approximation for
the Objective Function

 Recall Taylor's Theorem: for some scalar tin (0,1)
fe+p)= fi+Vfip+3p Vfx+1p)p.

« So: mi(p) = fi +Vfl p+ip" Bip,

* for some positive-definite symmetric B_k satisfies:

mi(p) — f(zx +p) = O(|[p]*)

e so the approx. error is small when p is small



A Popular Approximation for
the Objective Function

* Recall Taylor's Theorem: tor some scalar tin (0,1)
fe+p) = fi+ Vi p+3p Vi i +1tp)p.
e So. mi(p)= fi+Vfip+3ip Bip,
* for some positive-definite symmetric B_k satisfies:

my(p) — f(xx +p) = O(|Ip[°)

e so the approx. error is small when p is small

{p : ||p|| < Ag} is the trust-region

A is known as the trust-region radius



Quadratic Trust Region
Method

min mi(p) = fe + VS p+ 30 Bep st Pl = A

|p|| = \/pLpis the ¢5 or Euclidean norm



L ine Search vs Trust Region

Trust region

Line search direction

contours of m K

Trust region step contours of f




olution of Trust Region

Problem for

Different Radi

contours of m K
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Adaptive Trust Region
Radius

Given A > 0, Ay € (0, A),and n € [O, i)z
fork=0,1,2,...
Obtain p; by solving trust region problem

Evaluate oy (reduction ratio) = S ) = J o+ pe)
my(0) — my(py)




Adaptive Trust Region
Radius

Given A > 0, Ay € (0, A),and n € [O, i)z
fork=0,1,2,...
Obtain p; by solving trust region problem
Evaluate p; (reduction ratio) = 7% — /(& + pu)
. 1 m(0) — my(pi)
if o < 5
Aji = i” il ... reduce trust region radius

else
if o > §and || prll = A | | |
Ars1 = min(2Ag, A) ... Increase trust region radius

else
Aks1 = Ag; ... same trust region radius



Adaptive Trust Region
Radius

Given A > 0, Ay € (0, A),and n € [O, i)z
fork=0,1,2,...
Obtain p; by solving trust region problem
: . f ) = f(xe + pe)
Evaluate p; (reduction ratio) =

. 1 m(0) — my(pi)
if o < 5
Aji = i” il ... reduce trust region radius
else
if pr > 2 and || pll = Ax . . .
Apy1 = min(2Ag, A) ... Increase trust region radius
else
Aks1 = Ag; ... same trust region radius
if o > 7
Xk+1 = Xk + Pk
else ... take step only if relative reduction is large
X+1 = Xk

end (for).



How 1O solve trust
region problem?



Unconstrained Optimum

* Jrust Region Problem:

min m(p) = fi+Vfi p+3p Bep st lipll < Ag,
p

* S0 the unconstrained optimum can be written as:

Py = =B, 'V

e S0 if unconstrained optimum lies within trust region,
it Is also the constrained optimum:

pf is the solution to the trust region problem when HpkB | < Ay



Unconstrained vs
Constrained Optimum

* But the unconstrained optimum will typically not be
the solution to trust region problem

e Solving exactly might be too expensive

* recall that in “large scale” iterative methods, we
do not want to spend too much computation per
iteration

* Solve trust region problem approximately



Approximate Solutions to
Trust Region Problem

 Cauchy
* Dogleg
e Two-Dim Subspace Minimization

* One-dimensional root finding



Cauchy Point

Trust region
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Cauchy Point

* Solve just the linear approximation:

p; = arg ]r)r;iRrg H+VEip  stopll < A



Cauchy Point

* Solve just the linear approximation:

pi = argmin f; + VIIp st |pll < Ag;
P

Calculate the scalar 7, > 0 that minimizes m (7 p; ) subject to
satisfying the trust-region bound, that is,

T = argmin mi(tpy) st llTppll < Ag;



Cauchy Point

* Solve just the linear approximation:

pi = argmin f; + VIIp st |pll < Ag;
P

Calculate the scalar 7 > 0 that minimizes m (7 p;) subject to
satisfying the trust-region bound, that is,

T, = arg rgi(r)l my(Tp;) s.t. [Tp |l < Ag;

Set p; = w p,.

* [hese steps have a closed form



Cauchy Point

* Cauchy Direction:

pi =argmin fi + Viip  stollpll < A

Ag
V
IV fill

Jie:



Cauchy Point

* Cauchy Direction:

Ay .y
k-
IV Jll

Pr =

e Cauchy Point:

T, = arg Igl>i(r)1 mi(Tp;) s.t. |lTprll < Ags



Cauchy Point

* Cauchy Direction:

Ay .y
k-
IV Jll

Dp =

e Cauchy Point:

Ag
— Tk Vv
IV fill

p](é: fka

1 ifokTBkak < 0;
T, —
¢ min (|V £/ (AcV T BV £), 1) otherwise.



Trust region

Optimal trajectory p(A)

? S pB  (full step)
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pU (unco\ﬁstmined min along — g )
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Dogleg

pP = —B, 'Vf. ... unconstrained minimum
v (V)" (Vi)

p- = (Y F)TBr(V 1) Vfr ... steepest descent

Dogleg path:

- Tp, 0<t<1,
p(t)=1 | o
p +(t—1)(p —p), 1=<71=<2



Dogleg

pP = —B, 'Vf. ... unconstrained minimum
v (V)" (Vi)
p- = (Y F)TBr(V 1) Vfr ... steepest descent
Dogleg path:
- Tp, 0<t<1,
p(t)=1 | o
p+-DpE —-p) l=t=2

Dogleg Step:

Fearg inf m(5(r)

p? = p(7)



Two-dimensional Subspace
Minimization

minm(p) = f + g'p+ip'Bp st |pl <A, pespan[g, B~'gl.

* Note that entire dogleg path lies in span|[g, BA-1 Q]

* Note also that Cauchy point is feasible



Characterization of Solution

The vector p* is a global solution of the trust-region problem

minm(p) = f+g ' p+3ip'Bp, st |pll <A,

peR”

if and only if p* is feasible and there is a scalar A > 0 such that the following conditions are
satisfied:

AA —Ip*[) =0,
(B + AI) is positive semidefinite.



One-dim. root finding

e Define;

p(A)=—(B+Al)"g

* \lambda large enough s.t. B + \lambda | is positive definite

e Solve:
[p(A)]| = A.

« one-dimensional root finding problem

 Approaches include Newton Raphson



Convergence Analyses

* Loosely: the gradients converge to zero under mild
regularity conditions

* Requires adaptive adjusting of trust region radius
as discussed earlier



