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Last time: duality in linear programs

Given c ∈ Rn, A ∈ Rm×n, b ∈ Rm, G ∈ Rr×n, h ∈ Rr:

min
x

cTx

subject to Ax = b

Gx ≤ h

Primal LP

max
u,b

− bTu− hT v

subject to −ATu−GT v = c

v ≥ 0

Dual LP

Explanation: for any u and v ≥ 0, and x primal feasible,

uT (b−Ax) + vT (h−Gx) ≥ 0, i.e.,

(−ATu−GT v)Tx ≥ −bTu− hT v

So if c = −ATu−GT v, we get a bound on primal optimal value
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Explanation # 2: for any u and v ≥ 0, and x primal feasible

cTx ≥ cTx+ uT (Ax− b) + vT (Gx− h) := L(x, u, v)

So if C denotes primal feasible set, f? primal optimal value, then
for any u and v ≥ 0,

f? ≥ min
x∈C

L(x, u, v) ≥ min
x

L(x, u, v) := g(u, v)

In other words, g(u, v) is a lower bound on f? for any u and v ≥ 0.
Note that

g(u, v) =

{
−bTu− hT v if c = −ATu−GT v
−∞ otherwise

This second explanation reproduces the same dual, but is actually
completely general and applies to arbitrary optimization problems
(even nonconvex ones)
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Outline

Today:

• Lagrange dual function

• Langrange dual problem

• Weak and strong duality

• Examples
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Lagrangian

Consider general minimization problem

min
x

f(x)

subject to hi(x) ≤ 0, i = 1, . . .m

`j(x) = 0, j = 1, . . . r

Need not be convex, but of course we will pay special attention to
convex case

We define the Lagrangian as

L(x, u, v) = f(x) +

m∑
i=1

uihi(x) +

r∑
j=1

vj`j(x)

New variables u ∈ Rm, v ∈ Rr, with u ≥ 0 (implicitly, we define
L(x, u, v) = −∞ for u < 0)
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Important property: for any u ≥ 0 and v,

f(x) ≥ L(x, u, v) at each feasible x

Why? For feasible x,

L(x, u, v) = f(x) +

m∑
i=1

ui hi(x)︸ ︷︷ ︸
≤0

+

r∑
j=1

vj `j(x)︸ ︷︷ ︸
=0

≤ f(x)
5.1 The Lagrange dual function 217
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Figure 5.1 Lower bound from a dual feasible point. The solid curve shows the
objective function f0, and the dashed curve shows the constraint function f1.
The feasible set is the interval [−0.46, 0.46], which is indicated by the two
dotted vertical lines. The optimal point and value are x⋆ = −0.46, p⋆ = 1.54
(shown as a circle). The dotted curves show L(x, λ) for λ = 0.1, 0.2, . . . , 1.0.
Each of these has a minimum value smaller than p⋆, since on the feasible set
(and for λ ≥ 0) we have L(x, λ) ≤ f0(x).
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Figure 5.2 The dual function g for the problem in figure 5.1. Neither f0 nor
f1 is convex, but the dual function is concave. The horizontal dashed line
shows p⋆, the optimal value of the problem.

• Solid line is f

• Dashed line is h, hence
feasible set ≈ [−0.46, 0.46]

• Each dotted line shows
L(x, u, v) for different
choices of u ≥ 0 and v

(From B & V page 217)
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Lagrange dual function

Let C denote primal feasible set, f? denote primal optimal value.
Minimizing L(x, u, v) over all x gives a lower bound:

f? ≥ min
x∈C

L(x, u, v) ≥ min
x

L(x, u, v) := g(u, v)

We call g(u, v) the Lagrange dual function, and it gives a lower
bound on f? for any u ≥ 0 and v, called dual feasible u, v

• Dashed horizontal line is f?

• Dual variable λ is (our u)

• Solid line shows g(λ)

(From B & V page 217)

5.1 The Lagrange dual function 217
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objective function f0, and the dashed curve shows the constraint function f1.
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Figure 5.2 The dual function g for the problem in figure 5.1. Neither f0 nor
f1 is convex, but the dual function is concave. The horizontal dashed line
shows p⋆, the optimal value of the problem.
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Example: quadratic program

Consider quadratic program:

min
x

1

2
xTQx+ cTx

subject to Ax = b, x ≥ 0

where Q � 0. Lagrangian:

L(x, u, v) =
1

2
xTQx+ cTx− uTx+ vT (Ax− b)

Lagrange dual function:

g(u, v) = min
x

L(x, u, v) = −1

2
(c−u+AT v)TQ−1(c−u+AT v)−bT v

For any u ≥ 0 and any v, this is lower a bound on primal optimal
value f?
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Same problem

min
x

1

2
xTQx+ cTx

subject to Ax = b, x ≥ 0

but now Q � 0. Lagrangian:

L(x, u, v) =
1

2
xTQx+ cTx− uTx+ vT (Ax− b)

Lagrange dual function:

g(u, v) =


−1

2(c− u+AT v)TQ+(c− u+AT v)− bT v
−∞ if c− u+AT v ⊥ null(Q)

−∞ otherwise

where Q+ denotes generalized inverse of Q. For any u ≥ 0, v, and
c− u+AT v ⊥ null(Q), g(u, v) is a nontrivial lower bound on f?
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Example: quadratic program in 2D

We choose f(x) to be quadratic in 2 variables, subject to x ≥ 0.
Dual function g(u) is also quadratic in 2 variables, also subject to
u ≥ 0

x1 / u1 x2 / u
2

f / g

●●

primal

dual

Dual function g(u)
provides a bound on
f? for every u ≥ 0

Largest bound this
gives us: turns out
to be exactly f? ...
coincidence?
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Lagrange dual problem

Given primal problem

min
x

f(x)

subject to hi(x) ≤ 0, i = 1, . . .m

`j(x) = 0, j = 1, . . . r

Our constructed dual function g(u, v) satisfies f? ≥ g(u, v) for all
u ≥ 0 and v. Hence best lower bound is given by maximizing
g(u, v) over all dual feasible u, v, yielding Lagrange dual problem:

max
u,v

g(u, v)

subject to u ≥ 0

Key property, called weak duality: if dual optimal value is g?, then

f? ≥ g?

Note that this always holds (even if primal problem is nonconvex)
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Another key property: the dual problem is a convex optimization
problem (as written, it is a concave maximization problem)

Again, this is always true (even when primal problem is not convex)

By definition:

g(u, v) = min
x

{
f(x) +

m∑
i=1

uihi(x) +

r∑
j=1

vj`j(x)
}

= −max
x

{
− f(x)−

m∑
i=1

uihi(x)−
r∑
j=1

vj`j(x)
}

︸ ︷︷ ︸
pointwise maximum of convex functions in (u, v)

I.e., g is concave in (u, v), and u ≥ 0 is a convex constraint, hence
dual problem is a concave maximization problem
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Example: nonconvex quartic minimization

Define f(x) = x4 − 50x2 + 100x (nonconvex), minimize subject to
constraint x ≥ −4.5
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Dual function g can be derived explicitly, via closed-form equation
for roots of a cubic equation
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Form of g is rather complicated:

g(u) = min
i=1,2,3

{
F 4
i (u)− 50F 2

i (u) + 100Fi(u)
}
,

where for i = 1, 2, 3,

Fi(u) =
−ai

12 · 21/3
(
432(100−u)−

(
4322(100−u)2−4·12003

)1/2)1/3
−100·21/3 1(

432(100− u)−
(
4322(100− u)2 − 4 · 12003

)1/2)1/3 ,
and a1 = 1, a2 = (−1 + i

√
3)/2, a3 = (−1− i

√
3)/2

Without the context of duality it would be difficult to tell whether
or not g is concave ... but we know it must be!
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Strong duality

Recall that we always have f? ≥ g? (weak duality). On the other
hand, in some problems we have observed that actually

f? = g?

which is called strong duality

Slater’s condition: if the primal is a convex problem (i.e., f and
h1, . . . hm are convex, `1, . . . `r are affine), and there exists at least
one strictly feasible x ∈ Rn, meaning

h1(x) < 0, . . . hm(x) < 0 and `1(x) = 0, . . . `r(x) = 0

then strong duality holds

This is a pretty weak condition. An important refinement: strict
inequalities only need to hold over functions hi that are not affine
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LPs: back to where we started

For linear programs:

• Easy to check that the dual of the dual LP is the primal LP

• Refined version of Slater’s condition: strong duality holds for
an LP if it is feasible

• Apply same logic to its dual LP: strong duality holds if it is
feasible

• Hence strong duality holds for LPs, except when both primal
and dual are infeasible

(In other words, we nearly always have strong duality for LPs)
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Example: support vector machine dual

Given y ∈ {−1, 1}n, X ∈ Rn×p, rows x1, . . . xn, recall the support
vector machine problem:

min
β,β0,ξ

1

2
‖β‖22 + C

n∑
i=1

ξi

subject to ξi ≥ 0, i = 1, . . . n

yi(x
T
i β + β0) ≥ 1− ξi, i = 1, . . . n

Introducing dual variables v, w ≥ 0, we form the Lagrangian:

L(β, β0, ξ, v, w) =
1

2
‖β‖22 + C

n∑
i=1

ξi −
n∑
i=1

viξi +

n∑
i=1

wi
(
1− ξi − yi(xTi β + β0)

)
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Minimizing over β, β0, ξ gives Lagrange dual function:

g(v, w) =

{
−1

2w
T X̃X̃Tw + 1Tw if w = C1− v, wT y = 0

−∞ otherwise

where X̃ = diag(y)X.

Thus SVM dual problem, eliminating slack
variable v, becomes

max
w

− 1

2
wT X̃X̃Tw + 1Tw

subject to 0 ≤ w ≤ C1, wT y = 0

Check: Slater’s condition is satisfied, and we have strong duality.
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