Duality in General Programs

Lecturer: Aarti Singh

Co-instructor: Pradeep Ravikumar

Convex Optimization 10-725/36-725

Last time: duality in linear programs

Given $c \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $G \in \mathbb{R}^{r \times n}$, $h \in \mathbb{R}^r$:

Explanation: for any u and $v \ge 0$, and x primal feasible,

$$u^T(b-Ax)+v^T(h-Gx)\geq 0, \quad \text{i.e.,} \\ (-A^Tu-G^Tv)^Tx\geq -b^Tu-h^Tv$$

So if $c = -A^T u - G^T v$, we get a bound on primal optimal value

Explanation # 2: for any u and $v \ge 0$, and x primal feasible

$$c^T x \ge c^T x + u^T (Ax - b) + v^T (Gx - h) := L(x, u, v)$$

So if C denotes primal feasible set, f^\star primal optimal value, then for any u and $v \geq 0$,

$$f^{\star} \; \geq \; \min_{x \in C} \; L(x,u,v) \; \geq \; \min_{x} \; L(x,u,v) \; := \; g(u,v)$$

In other words, g(u,v) is a lower bound on f^{\star} for any u and $v\geq 0$. Note that

$$g(u,v) = \begin{cases} -b^T u - h^T v & \text{if } c = -A^T u - G^T v \\ -\infty & \text{otherwise} \end{cases}$$

This second explanation reproduces the same dual, but is actually completely general and applies to arbitrary optimization problems (even nonconvex ones)

Outline

Today:

- Lagrange dual function
- Langrange dual problem
- Weak and strong duality
- Examples

Lagrangian

Consider general minimization problem

$$\min_{x} f(x)$$
subject to $h_{i}(x) \leq 0, i = 1, \dots m$

$$\ell_{j}(x) = 0, j = 1, \dots r$$

Need not be convex, but of course we will pay special attention to convex case

We define the Lagrangian as

$$L(x, u, v) = f(x) + \sum_{i=1}^{m} u_i h_i(x) + \sum_{j=1}^{r} v_j \ell_j(x)$$

New variables $u \in \mathbb{R}^m, v \in \mathbb{R}^r$, with $u \ge 0$ (implicitly, we define $L(x,u,v)=-\infty$ for u<0)

Important property: for any $u \ge 0$ and v,

$$f(x) \ge L(x, u, v)$$
 at each feasible x

Why? For feasible x,

$$L(x, u, v) = f(x) + \sum_{i=1}^{m} u_i \underbrace{h_i(x)}_{\leq 0} + \sum_{j=1}^{r} v_j \underbrace{\ell_j(x)}_{=0} \leq f(x)$$

- Solid line is *f*
- Dashed line is h, hence feasible set $\approx [-0.46, 0.46]$
- $\begin{array}{l} \bullet \ \, \text{Each dotted line shows} \\ L(x,u,v) \ \, \text{for different} \\ \text{choices of} \ \, u \geq 0 \ \, \text{and} \ \, v \\ \end{array}$

(From B & V page 217)

Lagrange dual function

Let C denote primal feasible set, f^{\star} denote primal optimal value. Minimizing L(x,u,v) over all x gives a lower bound:

$$f^{\star} \geq \min_{x \in C} L(x, u, v) \geq \min_{x} L(x, u, v) := g(u, v)$$

We call g(u,v) the Lagrange dual function, and it gives a lower bound on f^* for any $u \geq 0$ and v, called dual feasible u,v

- Dashed horizontal line is f^*
- Dual variable λ is (our u)
- Solid line shows $g(\lambda)$

(From B & V page 217)

Example: quadratic program

Consider quadratic program:

$$\min_{x} \frac{1}{2}x^{T}Qx + c^{T}x$$
subject to $Ax = b, x \ge 0$

where $Q \succ 0$. Lagrangian:

$$L(x, u, v) = \frac{1}{2}x^{T}Qx + c^{T}x - u^{T}x + v^{T}(Ax - b)$$

Lagrange dual function:

$$g(u,v) = \min_{x} L(x,u,v) = -\frac{1}{2}(c-u+A^{T}v)^{T}Q^{-1}(c-u+A^{T}v) - b^{T}v$$

For any $u \geq 0$ and any v, this is lower a bound on primal optimal value f^\star

Same problem

$$\min_{x} \frac{1}{2}x^{T}Qx + c^{T}x$$
subject to $Ax = b, x \ge 0$

but now $Q \succeq 0$. Lagrangian:

$$L(x, u, v) = \frac{1}{2}x^{T}Qx + c^{T}x - u^{T}x + v^{T}(Ax - b)$$

Lagrange dual function:

$$g(u,v) = \begin{cases} -\frac{1}{2}(c-u+A^Tv)^TQ^+(c-u+A^Tv) - b^Tv \\ & \text{if } c-u+A^Tv \perp \text{null}(Q) \\ -\infty & \text{otherwise} \end{cases}$$

where Q^+ denotes generalized inverse of Q. For any $u \geq 0$, v, and $c - u + A^T v \perp \text{null}(Q)$, g(u, v) is a nontrivial lower bound on f^*

Example: quadratic program in 2D

We choose f(x) to be quadratic in 2 variables, subject to $x \geq 0$. Dual function g(u) is also quadratic in 2 variables, also subject to $u \geq 0$

Dual function g(u) provides a bound on f^* for every $u \ge 0$

Largest bound this gives us: turns out to be exactly f^* ... coincidence?

Lagrange dual problem

Given primal problem

$$\min_{x} f(x)$$
subject to $h_{i}(x) \leq 0, i = 1, \dots m$

$$\ell_{j}(x) = 0, j = 1, \dots r$$

Our constructed dual function g(u,v) satisfies $f^* \geq g(u,v)$ for all $u \geq 0$ and v. Hence best lower bound is given by maximizing g(u,v) over all dual feasible u,v, yielding Lagrange dual problem:

$$\max_{u,v} g(u,v)$$
subject to $u > 0$

Key property, called weak duality: if dual optimal value is g^* , then

$$f^{\star} \geq g^{\star}$$

Note that this always holds (even if primal problem is nonconvex)

Another key property: the dual problem is a convex optimization problem (as written, it is a concave maximization problem)

Again, this is always true (even when primal problem is not convex)

By definition:

$$g(u,v) = \min_{x} \left\{ f(x) + \sum_{i=1}^{m} u_i h_i(x) + \sum_{j=1}^{r} v_j \ell_j(x) \right\}$$

$$= -\max_{x} \left\{ -f(x) - \sum_{i=1}^{m} u_i h_i(x) - \sum_{j=1}^{r} v_j \ell_j(x) \right\}$$
pointwise maximum of convex functions in (u,v)

I.e., g is concave in (u,v), and $u\geq 0$ is a convex constraint, hence dual problem is a concave maximization problem

Example: nonconvex quartic minimization

Define $f(x) = x^4 - 50x^2 + 100x$ (nonconvex), minimize subject to constraint $x \ge -4.5$

Dual function g can be derived explicitly, via closed-form equation for roots of a cubic equation

Form of g is rather complicated:

$$g(u) = \min_{i=1,2,3} \left\{ F_i^4(u) - 50F_i^2(u) + 100F_i(u) \right\},$$

where for i = 1, 2, 3,

$$F_i(u) = \frac{-a_i}{12 \cdot 2^{1/3}} \left(432(100 - u) - \left(432^2(100 - u)^2 - 4 \cdot 1200^3 \right)^{1/2} \right)^{1/3} - 100 \cdot 2^{1/3} \frac{1}{\left(432(100 - u) - \left(432^2(100 - u)^2 - 4 \cdot 1200^3 \right)^{1/2} \right)^{1/3}},$$
 and $a_1 = 1$, $a_2 = (-1 + i\sqrt{3})/2$, $a_3 = (-1 - i\sqrt{3})/2$

Without the context of duality it would be difficult to tell whether or not q is concave ... but we know it must be!

Strong duality

Recall that we always have $f^* \geq g^*$ (weak duality). On the other hand, in some problems we have observed that actually

$$f^* = g^*$$

which is called strong duality

Slater's condition: if the primal is a convex problem (i.e., f and $h_1, \ldots h_m$ are convex, $\ell_1, \ldots \ell_r$ are affine), and there exists at least one strictly feasible $x \in \mathbb{R}^n$, meaning

$$h_1(x) < 0, \dots h_m(x) < 0$$
 and $\ell_1(x) = 0, \dots \ell_r(x) = 0$

then strong duality holds

This is a pretty weak condition. An important refinement: strict inequalities only need to hold over functions h_i that are not affine

LPs: back to where we started

For linear programs:

- Easy to check that the dual of the dual LP is the primal LP
- Refined version of Slater's condition: strong duality holds for an LP if it is feasible
- Apply same logic to its dual LP: strong duality holds if it is feasible
- Hence strong duality holds for LPs, except when both primal and dual are infeasible

(In other words, we nearly always have strong duality for LPs)

Example: support vector machine dual

Given $y \in \{-1,1\}^n$, $X \in \mathbb{R}^{n \times p}$, rows $x_1, \dots x_n$, recall the support vector machine problem:

$$\min_{\beta,\beta_0,\xi} \frac{1}{2} \|\beta\|_2^2 + C \sum_{i=1}^n \xi_i$$

subject to $\xi_i \ge 0, \ i = 1, \dots n$
$$y_i(x_i^T \beta + \beta_0) \ge 1 - \xi_i, \ i = 1, \dots n$$

Introducing dual variables $v, w \ge 0$, we form the Lagrangian:

$$L(\beta, \beta_0, \xi, v, w) = \frac{1}{2} \|\beta\|_2^2 + C \sum_{i=1}^n \xi_i - \sum_{i=1}^n v_i \xi_i + \sum_{i=1}^n w_i (1 - \xi_i - y_i (x_i^T \beta + \beta_0))$$

Minimizing over β , β_0 , ξ gives Lagrange dual function:

$$g(v,w) = \begin{cases} -\frac{1}{2}w^T \tilde{X} \tilde{X}^T w + 1^T w & \text{if } w = C1 - v, \ w^T y = 0 \\ -\infty & \text{otherwise} \end{cases}$$

where $\tilde{X} = \operatorname{diag}(y)X$.

Minimizing over β , β_0 , ξ gives Lagrange dual function:

$$g(v,w) = \begin{cases} -\frac{1}{2}w^T \tilde{X} \tilde{X}^T w + 1^T w & \text{if } w = C1 - v, \ w^T y = 0 \\ -\infty & \text{otherwise} \end{cases}$$

where $\tilde{X} = \mathrm{diag}(y)X$. Thus SVM dual problem, eliminating slack variable v, becomes

$$\max_{w} -\frac{1}{2}w^{T}\tilde{X}\tilde{X}^{T}w + 1^{T}w$$

subject to $0 \le w \le C1, \ w^{T}y = 0$

Minimizing over β , β_0 , ξ gives Lagrange dual function:

$$g(v,w) = \begin{cases} -\frac{1}{2}w^T \tilde{X} \tilde{X}^T w + 1^T w & \text{if } w = C1 - v, \ w^T y = 0 \\ -\infty & \text{otherwise} \end{cases}$$

where $\tilde{X} = \mathrm{diag}(y)X$. Thus SVM dual problem, eliminating slack variable v, becomes

$$\max_{w} -\frac{1}{2}w^{T}\tilde{X}\tilde{X}^{T}w + 1^{T}w$$
 subject to $0 \le w \le C1, \ w^{T}y = 0$

Check: Slater's condition is satisfied, and we have strong duality.