Dual Ascent

Lecturer: Aarti Singh
Co-instructor: Pradeep Ravikumar

Convex Optimization 10-725/36-725

Summary of Duality
Lagrangian duality to derive lower bound on primal objective:

T
L(x,u,v) —I—Zu2 i +Zvj€j(a:), u>0
j=1

f(z) > L(z,u,v) Vax feasible,u > 0,v

f*> mlgL(:c u,v) > mmL(a: u,v) =: g(u,v) Yu>0,v
Te

Note: Procedure applies to non-convex problems as well

Summary of Duality
Lagrangian duality to derive lower bound on primal objective:

T
L(x,u,v) —I—Zu2 i +Zvj€j(a:), u>0
j=1

f(z) > L(z,u,v) Vax feasible,u > 0,v

f*> mlgL(:c u,v) > mmL(a: u,v) =: g(u,v) Yu>0,v
Te

Note: Procedure applies to non-convex problems as well

Primal problem Dual problem
min f(x) max g(u,v)
T u,v

subject to h(z) < N subject to u >0

Since
L(z,u,v) = f(z) +u' h(z) + 0" 0(z)

we have

max L(x,u,v) =

u>0,v

f(z) h(z) <0, £(z) =0 (i.e. x feasible)
{ 00 otherwise

Hence, we get:

Primal problem Dual problem

min max L(z,u,v) max min L(z,u,v)
r u>0,v u>0v T

Weak duality
Note: Holds even for non-convex problems
Strong duality
f* — g*
Note: Holds for convex problems under Slater's condition: There
exists at least one strictly feasible x € R™, meaning

hi(z) <0,...hp(x) <0 and fi(x)=0,...4.(z) =0

An important refinement: strict inequalities only need to hold over
functions h; that are not affine

Uses of duality

Pros:

e Optimal dual objective gives a lower bound (or sometimes
same value as) on the optimal primal objective

e Dual problem has as many variables as constraints in primal
problem - maybe easier to solve

e Dual problem often has simpler constraints - maybe easier to
solve

e Dual problem is convex (concave maximization) even if primal
is not - maybe easier to solve

Uses of duality

Pros:

Optimal dual objective gives a lower bound (or sometimes
same value as) on the optimal primal objective

Dual problem has as many variables as constraints in primal
problem - maybe easier to solve

Dual problem often has simpler constraints - maybe easier to
solve

Dual problem is convex (concave maximization) even if primal
is not - maybe easier to solve

Duality gap can be used as a stopping criterion (next)

Uses of duality

Pros:

Optimal dual objective gives a lower bound (or sometimes
same value as) on the optimal primal objective

Dual problem has as many variables as constraints in primal
problem - maybe easier to solve

Dual problem often has simpler constraints - maybe easier to
solve

Dual problem is convex (concave maximization) even if primal
is not - maybe easier to solve
Duality gap can be used as a stopping criterion (next)

KKT conditions can be used to understand (and under strong
duality, derive) primal solution; algorithms based on KKT
conditions (next)

Uses of duality

Pros:

Optimal dual objective gives a lower bound (or sometimes
same value as) on the optimal primal objective

Dual problem has as many variables as constraints in primal
problem - maybe easier to solve

Dual problem often has simpler constraints - maybe easier to
solve

Dual problem is convex (concave maximization) even if primal
is not - maybe easier to solve

Duality gap can be used as a stopping criterion (next)

KKT conditions can be used to understand (and under strong
duality, derive) primal solution; algorithms based on KKT
conditions (next)

Algorithms based on dual problem, e.g. dual ascent (next)

Uses of duality

Cons:
e May be difficult to evaluate the dual (requires unconstrained
minimization of Lagrangian)
e Dual function is often non-differentiable

e Dual optimal solution (u*,v*) in general does not yield primal
optimal solution z* (unless strong duality holds)

Duality gap

Given primal feasible x and dual feasible u, v, the quantity
f(@) = g(u,v)
is called the duality gap between = and u,v. Note that

fl@) =7 < flx) = g(u,v)

so if the duality gap is zero, then x is primal optimal (and similarly,
u, v are dual optimal)

From an algorithmic viewpoint, provides a stopping criterion: if
f(x) — g(u,v) < e, then we are guaranteed that f(z) — f* <e

Very useful, especially in conjunction with iterative methods ...

KKT conditions

Consider a general primal optimization problem (no assumptions of
convexity or differentiability).

The KKT(Karush-Kuhn-Tucker) conditions are

DNINS 8<f(x) + Z w;hi(z) + Z vl (x)) (stationarity)
i=1 j=1

e u; - hi(z) =0 for all ¢ (complementary slackness)
e hi(z) <0, £j(x) =0 forall 4, (primal feasibility)
o u; >0 for all ¢ (dual feasibility)

Sufficiency
General (no assumptions of convexity or differentiability): If
e r* = argmin, L(x,u*,v*) < 0 € OL(z*,u*, v*) (stationarity)
e r* is primal feasible
e u* >0 i.e. dual feasible
o uf =0Vig A(x*) := {i: hi(z*) = 0}
< uf - hi(z*) = 0 Vi (complementary slackness)

then z* is global minimum of the problem.

Sufficiency
General (no assumptions of convexity or differentiability): If
e r* = argmin, L(x,u*,v*) < 0 € OL(z*,u*, v*) (stationarity)
e r* is primal feasible
e u* >0 i.e. dual feasible
o uf =0Vig A(x*) := {i: hi(z*) = 0}
< uf - hi(z*) = 0 Vi (complementary slackness)

then z* is global minimum of the problem.

Note: (u*,v*) are also dual optimal.
g(u*,v*) = min{f(z) + w* T h(z) +v* l(x)}
= f(*) +u* "h(x*) + v* l(2*) = f(a¥)

where the first equality holds from stationarity, and the second
holds from complementary slackness and primal feasibility

KKT conditions are sufficient for primal and dual optimality.

Alternate sufficiency conditions:
If problem is convex and differentiable, stationarity condition
becomes
0=V ,L(z",u*,v")
and corresponding KKT conditions are sometimes called
first-order sufficiency conditions.

for both equality and inequality constraints, see DB book Prop 3.3.2

10

Alternate sufficiency conditions:

If problem is convex and differentiable, stationarity condition
becomes
0=V ,L(z",u*,v")

and corresponding KKT conditions are sometimes called
first-order sufficiency conditions.

If problem is twice differentiable but not necessarily convex
(discussed earlier for equality constraints only!), then if 2*, v*
satisfy
0=V.,L(z",v"),
0=V,L(z*v") & {(z*)=0,
yTVixL(:B*,u*,v*)y >0 Yy#0,Vez)Ty=0
then it is guaranteed that z* is a local minimum. These are
called second-order sufficiency conditions.

for both equality and inequality constraints, see DB book Prop 3.3.2

10

Necessity
KKT conditions are necessary for primal and dual optimality
under strong duality.
Let x* and u*,v* be primal and dual solutions with zero duality
gap (strong duality holds, e.g., under Slater’s condition). Then
e ¥ is primal feasible

e u*, v* are dual feasible

11

Necessity

KKT conditions are necessary for primal and dual optimality
under strong duality.

Let x* and u*,v* be primal and dual solutions with zero duality
gap (strong duality holds, e.g., under Slater’s condition). Then

e ¥ is primal feasible
e u*, v* are dual feasible

Also, zero duality gap implies
f@) = g(u,v")

= mln fz)+ Zu*h + Zv]*»fj(x)
j=1
)+ Z uihi(e®) +) vjti(a) < f(z%)
i=1 j=1

where last inequality holds since x* is primal feasible.
11

In other words, all previous inequalities are actually equalities. This
implies:
e the point * minimizes L(x,u*,v*) over x € R™. Hence the
subdifferential of L(z,u*,v*) must contain 0 at x = z*.

0 € OL(x*,u*,v*) (stationarity)

o Y urhi(z*) =0, and since each term here is < 0, this
implies wrh;(z*) = 0 for every ¢

u; - hi(z*) =0 Vi (complementary slackness)

12

In other words, all previous inequalities are actually equalities. This
implies:
e the point * minimizes L(x,u*,v*) over x € R™. Hence the
subdifferential of L(z,u*,v*) must contain 0 at x = z*.

0 € OL(x*,u*,v*) (stationarity)

o Y urhi(z*) =0, and since each term here is < 0, this
implies wrh;(z*) = 0 for every ¢

u; - hi(z*) =0 Vi (complementary slackness)

i.e. If x* and uw*,v* are primal and dual solutions with zero duality
gap, then they satisfy KKT conditions.

Note: The sufficiency and necessity statements don't assume
anything about convexity or differentiability

12

Note: The necessity condition just presented require strong duality
to hold, but do not require regularity assumptions

Alternate sufficiency conditions under regularity assumptions:

Let x* be a local minimum and a regular point. Then there
exist unique Lagrange multiplier vectors u*, v* such that

0=V, ,L(z",u*v"),

y V2, L(a* u vty >0 Yy e V(z¥)

where

V(z*) = {y: Vhi(z*) Ty =0 for i € A(z*), Vl(z*) Ty = 0}

13

Characterizing primal using dual

Recall that under strong duality, the KKT conditions are necessary
for optimality. Thus, if the dual is solved exactly to yield u*, v*,
then the primal solution must minimize L(x,u*, v*).

e Generally, this reveals a characterization of primal solutions

e In particular, if this is satisfied uniquely (i.e., above problem
has a unique minimizer), then the corresponding point must
be the primal optimal solution.

but can also yield other solutions that are primal infeasible.

14

Characterizing primal using dual

Recall that under strong duality, the KKT conditions are necessary
for optimality. Thus, if the dual is solved exactly to yield u*, v*,
then the primal solution must minimize L(x,u*, v*).

e Generally, this reveals a characterization of primal solutions

e In particular, if this is satisfied uniquely (i.e., above problem
has a unique minimizer), then the corresponding point must
be the primal optimal solution.

but can also yield other solutions that are primal infeasible.

Example: One way to establish sparsity of lasso solution and
conditions under which it holds is via constructing a set of primal
and dual candidate solutions (certificate) that satisfy KKT
conditions, and observing the conditions which allow the primal to
be sparse [Wainwright'09].

14

Algorithms based on KKT conditions

Since the KKT conditions are sufficient for primal (and dual)
optimality, we can try to solve for primal = and dual variables u, v
that satisfy KKT conditions. These will then be primal and dual
optimal due to sufficiency.

The KKT conditions can be thought of as a system of nonlinear
equations that can be solved approximately via Newton's method.
We saw two methods inspired by this idea:

e Barrier method

e Primal-dual method
Both solve for perturbed KKT conditions (where complementary

slackness is perturbed) that are easier to solve than standard KKT
conditions.

15

Algorithms based on dual problem

Since dual problem is always convex (concave maximization)
irrespective of primal, we can use the methods for convex
minimization we have learnt so far.

16

Algorithms based on dual problem

Since dual problem is always convex (concave maximization)
irrespective of primal, we can use the methods for convex
minimization we have learnt so far.

Key challenge: Differentiability of Lagrange dual function g(u,v)

e Whenever L(z,u,v) is minimized over a unique z,, for any
given (u,v), then g is differentiable.

e This holds, for example, if f is strictly convex and h is affine.

e But in general, this often does not hold. In particular,
whenever there is duality gap, the dual function is not
differentiable at every dual optimal solution.

16

Algorithms based on dual problem

Since dual problem is always convex (concave maximization)
irrespective of primal, we can use the methods for convex
minimization we have learnt so far.

Key challenge: Differentiability of Lagrange dual function g(u,v)

e Whenever L(z,u,v) is minimized over a unique z,, for any
given (u,v), then g is differentiable.

e This holds, for example, if f is strictly convex and h is affine.

e But in general, this often does not hold. In particular,
whenever there is duality gap, the dual function is not
differentiable at every dual optimal solution.

Algorithms for dual problems:
e Differentiable - Dual gradient ascent (next)

¢ Non-differentiable - Dual subgradient ascent (next), Cutting
plane, Decomposition methods

16

Dual ascent
Since dual problem is always convex (concave maximization)

irrespective of primal, we can use gradient or sub-gradient ascent
on the dual variables.

Let 2/ be a minimizer of L(x,u/,v") for given v/ > 0,v’. Then

/ /
[Z((;B,))] is a (sub)gradient of g at [:}L,] because Vu, v

17

Dual ascent
Since dual problem is always convex (concave maximization)
irrespective of primal, we can use gradient or sub-gradient ascent
on the dual variables.
Let 2/ be a minimizer of L(x,u/,v") for given v/ > 0,v’. Then
/

/
[Z((;B,))] is a (sub)gradient of g at [:}L,] because Vu, v

g(u,v) = rr;in L(z,u,v)
= mxin f(x) +uh(z) +o" ()
< f@') +uh(z') +oT (')
= f(@') +u'Th(@') + (u—) " h(2))
+0' M0y + (v — ') Te(a))
= g v) + (uw—u) Th(z) + (v = ') " U(a)

Last step follows since «’ is a minimizer of L(z,u/,v").

17

Recall: Subgradient of a concave function f at x is any s s.t.

f) < fl@)+s"(y—z) Yy

18

Recall: Subgradient of a concave function f at x is any s s.t.

f) < fl@)+s"(y—z) Yy

Dual (sub)gradient ascent method " /
e Start 7
with an initial dual guess u(?) > 0, v(9),
e Repeat for k=1,2,3,...

¥ € argmin f(z) + W* N Th(z) + (%) Te(2)
u® = max{u®V 4, h(z®), 0}
o) = =1 g p(R)

Step sizes tx, k = 1,2,3,... are chosen in standard ways
Proximal gradients and acceleration can be applied as they would
usually

18

Method of multipliers as dual ascent

Recall Method of Multipliers: Solve sequence of unconstrained

minimization of Augmented Lagrangian

k)

2B — argmin L) (%)\(k))

where for equality constrained problem (min, f(x) s.t. h(z) = 0)
(k) (k)T c® 2
Ly (2, X9) = £ (@) + 20 Th(z) + - ()]
and using the following multiplier update:
AL — A(R) c(k)h(x(k)).

This is precisely dual ascent for the augmented problem!

19

Gradient vs Subgradient descent/ascent

e Subgradient may not be a direction of ascent at (u,v) where
dual function g is non-differentiable, so we take best iterate so
far:

9((™, v ®)pest) = max g(u®,v1)

20

Gradient vs Subgradient descent/ascent

e Subgradient may not be a direction of ascent at (u,v) where
dual function g is non-differentiable, so we take best iterate so
far:

91,0)peer) = mavx g(ul?, o)

e The subgradient makes an angle < 90 with all ascent
directions at (u,v)

fy) < fl@)+s'(y—2) Yy = 0<s'(y—z) Yf(y) > f(2)

20

Gradient vs Subgradient descent/ascent

e Subgradient may not be a direction of ascent at (u,v) where
dual function g is non-differentiable, so we take best iterate so
far:

91,0)peer) = mavx g(ul?, o)

e The subgradient makes an angle < 90 with all ascent
directions at (u,v)

fy) < fl@)+s'(y—2) Yy = 0<s'(y—z) Yf(y) > f(2)

This implies that a small move from (u, v) in the direction of
any subgradient at u, v decreases the distance to any
maximizer of g. To see this, let vy = vi + tisg. Then

lorsr = o* 12 = llow — v 1> + llsil® + 2tis; (v — v*)
Since g(vk) < g(v*), we have

[vsr = 0| < Jog = o*[VO <t < 2(g(0*) = g(vr))/ sl
20

Step size choices

o Fixed step sizes: tp =t all k=1,2,3,...
e Diminishing step sizes: choose to meet conditions

o0 o0
Zt% < 00, Ztk = 00,
k=1 k=1

i.e., square summable but not summable

Important that step sizes go to zero, but not too fast

Other options too, but important difference to gradient descent:

step sizes are typically pre-specified, not adaptively computed

21

Dual decomposition

Consider

B B
min Zf,(xl) subject to Zhw(az,) <0 j=1,...,m
x
i=1 i=1

Here © = (z1,...2p) € R™ divides into B blocks of variables, with
each x; € R™.

Simple but powerful observation, in calculation of (sub)gradient, is
that the minimization decomposes into B separate problems:

B
vt € argmin Y (fi(w:) +u" ()
v i=1
— xj € argmin f;(z;) +ul hi(z;), i=1,...B

T

22

Dual decomposition algorithm: repeat for k =1,2,3,...

w*) € argmin fi(w) + (@) hi(as), i=1,...

T

u® = max {u(k_l) + ti (Z hi(x;

Can think of these steps as:

e Broadcast: send u to each of
the B processors, each
optimizes in parallel to find x;

e Gather: collect h;(z;) from
each processor, update the
global dual variable u

B

23

Price coordination interpretation (Vandenberghe):
e Have B units in a system, each unit chooses its own decision
variable z; (how to allocate its goods)

e There are m resources. Constraints are limits on shared
resources (Zf‘;l hi;j(z) is constraint on resource j), each
component of dual variable u; is price of resource j

e Dual update:

j (uj+t&)y, j=1,...m

where §; = Zil hij(z;) are slacks
» Increase price u; if resource j is over-utilized, §; > 0
» Decrease price u; if resource j is under-utilized, {; < 0

» Never let prices get negative

24

