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reX
< flzp) + i'g(@p)
= fzp) + w'g(@w) + (7 — p)'g(zu)

=q(p) + (f—p) g(zu).

e Thus g(z,) is a subgradient of q at p.
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integer programming).



Example: Polyhedral, Non-
differentiable Dual

q(p) = Iglei?{aéu +b; },

where 7 iIs a finite index set, and «; € ®" and b,

are given (arises when X is a discrete set, as in
integer programming).

e Proposition: Let ¢ be polyhedral as above, and
let 1, be the set of indices attaining the minimum

I,={i€T|ajp+bi=qp}.

The set of all subgradients of ¢ at 1. is

Oq(p) = {9 ‘ QZZ&M,&:ZO, Zfil}-

icl, icl,



Primal Problem

minimize f(x)
subject to z= € X, gi(z) <0, J=1,..., T,

assuming —oo < f* < oco.



Dual Problem

o Dual problem: Maximize

q(p) = inf L(z,p) = inf {f(z) + u'g(z)}

subjecttope M = {u| >0, g(p) > —oco}.



Cutting Plane Algorithms

e Cutting Plane Algorithms: iteratively refine the constraint set, or
objective function by means of linear inequalities

 Constraint Set: For integer linear programs, iterate: if LP relaxation
optimal point is not integral, refine the LP constraint set by a linear
iInequality separating non-integral point from integer constraint set

* Objective Function: Useful for convex, but non-differentiable programs
e [teratively approximate objective via piece-wise linear function
* Popular use: for solving non-differentiable dual programs

* We will be focusing on this class of cutting plane algorithms



Cuttlng Plane Method

e Solve piece-wise linear approximation to dual



Piece-wise Linear Approx.

o kth iteration, after »’ and ¢° = ¢(=z,:) have been
generated fori=o,..., k—1:
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Cutting Plane Method

o kth iteration, after ' and 4* = ¢(=,:) have been
generated fori=o,..., k—1: Solve

k
max Q" (1)



Polyhedral Case

* Where dual objective is already a piece-wise linear
function



Polyhedral Case
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e Then subgradient ¢* in the cutting plane method
IS a vector a;, for which the minimum is attained.



Polyhedral Case

— mind o’ b,
a(p) = min{ajp + b, |
where 7 1S a finite index set, and «; € ®" and »; are
given.

e Then subgradient ¢* in the cutting plane method
IS a vector a;, for which the minimum is attained.

o Finite termination expected.



Convergence

e Proposition: Assume that the max of Q. over M
IS attained and that ¢ is real-valued. Then every

limit point of a sequence {.*} generated by the
cutting plane method is a dual optimal solution.



Proof of Convergence
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Proof: ¢* IS a subgradient of ¢ at ut, SO
a(p) + (p—p")'g" > q(p),  VYpeEM,
QF (1) > QF(n) > q(n),  VwpeM. (1)
e Suppose {u*}x converges to z. Then, n € M,
and by Eqg. (1) and continuity of @ and ¢ (real-
valued assumption), Q*(z) > ¢(z). Using this and
Eqg. (1), we obtain for all x and i < &,

a(u®) + (u® — 1t gt > Q* (u®) > Q% () > q(R).

e Takethelmitasi - o, k - >, i € K, k € K,

i k k _ 7).
k_)@é{l}ceKQ (1™) = q(in)

Combining with (1), ¢(7) = max,,cas q(1)-

Proof of Convergence



Separable Problem
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Separable Problem

minimize )  f;(=;)
j=1
J

subjectto =, € x;, j=1,...,J Zijj —b.

=1

e Solving for its dual:

J
q(>\) — Z xrrél?({fj (ZIZ‘J) —|— )\’Ajmj} — )\,b
i—1
J
— Z {5 (z5(N) + N Ajz;(0) = N'b
j=1

where z;()\) attains the min.



Separable Problem

J
subgradient at A: g\ = Z Aizi(A\) —b.

j=1



Dantzig-Wolfe
Decomposition

e D-W decomposition method is just the cutting
plane applied to the dual problem max, q()).

o At the kth iteration, we solve the “approximate
dual’

N = BN = ' 2\ A=\ gt L
argArrel%;gQ (A) izoff}}flk_l{q( ) + ( )g}



Dantzig-Wolfe
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o At the kth iteration, we solve the “approximate
dual’

A= () = ' A+ A= 2Yg L.
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Dantzig-Wolfe
Decomposition

o At the kth iteration, we solve the “approximate
dual”

A= K()) = i )\ A— ) gt L
argkrrelaﬁQ (A) i:ofr.l.l.flk_l{Q( )+ ( )9}

o Equivalent linear program in v and X

maximize v
subjectto v < g\ + (A =X\Y)'¢", i=0,...,k—1

The dual of this (called master problem) IS

k—1
minimize Zgi (a(x%) = A¥'g?)
1=0
k—1 k—1
subject to Zgi =1 Zg@'gi —0,
1=0 =0

£>0, i=0,...,k—1,



o The master problem is written as
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o The master problem is written as
J k—1
minimize ) (Zg’?fj (a;j(Ai)))
j=1 \i=0
k—1 J k—1
subject to Zgi — 1, ZAj (Zg’ixj(/\’i)) — b,
j=1 i=0

1=0

>0, i=0,...,k—1.

e The primal cost function terms f;(z;) are ap-
proximated by

k—1
Z & fi(z;(0)
1=0

e Vectors z; are expressed as

k—1
> gla;(\)
1=0



Dantzig-Wolfe Decomposition:
Geometric Intuition

o Geometric interpretation of the master problem
(the dual of the approximate dual solved in the
cutting plane method) is inner linearization.

A

i)




Dantzig-Wolfe Decomposition:
Geometric Intuition

o Geometric interpretation of the master problem
(the dual of the approximate dual solved in the
cutting plane method) is inner linearization.

A

fj(x))

e This is a “dual” operation to the one involved
In the cutting plane approximation, which can be
viewed as outer linearization.



