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Dual DerivativesDUAL DERIVATIVES

• Let

xµ = arg min
x∈X

L(x, µ) = arg min
x∈X

{
f(x) + µ′g(x)

}
.

Then for all µ̃ ∈ ℜr,

q(µ̃) = inf
x∈X

{
f(x) + µ̃′g(x)

}

≤ f(xµ) + µ̃′g(xµ)

= f(xµ) + µ′g(xµ) + (µ̃ − µ)′g(xµ)

= q(µ) + (µ̃ − µ)′g(xµ).

• Thus g(xµ) is a subgradient of q at µ.
• Proposition: Let X be compact, and let f and g
be continuous over X. Assume also that for every
µ, L(x, µ) is minimized over x ∈ X at a unique point
xµ. Then, q is everywhere continuously differen-
tiable and

∇q(µ) = g(xµ), ∀ µ ∈ ℜr.
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Example: Polyhedral, Non-
differentiable Dual

NONDIFFERENTIABLE DUAL

• If there exists a duality gap, the dual function is
nondifferentiable at every dual optimal solution.
• Important nondifferentiable case: When q is
polyhedral, that is,

q(µ) = min
i∈I

{
a′

iµ + bi

}
,

where I is a finite index set, and ai ∈ ℜr and bi

are given (arises when X is a discrete set, as in
integer programming).
• Proposition: Let q be polyhedral as above, and
let Iµ be the set of indices attaining the minimum

Iµ =
{

i ∈ I | a′
iµ + bi = q(µ)

}
.

The set of all subgradients of q at µ is

∂q(µ) =

⎧
⎨

⎩
g

∣∣∣ g =
∑

i∈Iµ

ξiai, ξi ≥ 0,
∑

i∈Iµ

ξi = 1

⎫
⎬

⎭
.
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Primal Problem

6.252 NONLINEAR PROGRAMMING

LECTURE 23: ADDITIONAL DUAL METHODS

LECTURE OUTLINE

• Cutting Plane Methods
• Decomposition

********************************

• Consider the primal problem

minimize f(x)

subject to x ∈ X, gj(x) ≤ 0, j = 1, . . . , r,

assuming −∞ < f∗ < ∞.

• Dual problem: Maximize

q(µ) = inf
x∈X

L(x, µ) = inf
x∈X

{f(x) + µ′g(x)}

subject to µ ∈ M = {µ | µ ≥ 0, q(µ) > −∞}.
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Cutting Plane Algorithms
• Cutting Plane Algorithms: iteratively refine the constraint set, or 

objective function by means of linear inequalities


• Constraint Set: For integer linear programs, iterate: if LP relaxation 
optimal point is not integral, refine the LP constraint set by a linear 
inequality separating non-integral point from integer constraint set


• Objective Function: Useful for convex, but non-differentiable programs


• Iteratively approximate objective via piece-wise linear function


• Popular use: for solving non-differentiable dual programs


• We will be focusing on this class of cutting plane algorithms



Cutting Plane Method

• Solve piece-wise linear approximation to dual

CUTTING PLANE METHOD

• kth iteration, after µi and gi = g
(
xµi

)
have been

generated for i = 0, . . . , k − 1: Solve

max
µ∈M

Qk(µ)

where

Qk(µ) = min
i=0,...,k−1

{
q(µi) + (µ − µi)′gi

}
.

Set
µk = arg max

µ∈M
Qk(µ).

M

q(µ)

µ1µ0 µ2µ3 µ*
µ

q(µ0) + (µ − µ0)'g(x    )µ0

q(µ1) + (µ − µ1)'g(x    )µ1
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Polyhedral Case

• Where dual objective is already a piece-wise linear 
function

POLYHEDRAL CASE

q(µ) = min
i∈I

{
a′

iµ + bi

}

where I is a finite index set, and ai ∈ ℜr and bi are
given.
• Then subgradient gk in the cutting plane method
is a vector aik for which the minimum is attained.
• Finite termination expected.

M

q(µ)

µ1µ0 µ2µ3

µ
µ*µ4 =
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ConvergenceCONVERGENCE

• Proposition: Assume that the max of Qk over M
is attained and that q is real-valued. Then every
limit point of a sequence {µk} generated by the
cutting plane method is a dual optimal solution.
Proof: gi is a subgradient of q at µi, so

q(µi) + (µ − µi)′gi ≥ q(µ), ∀ µ ∈ M,

Qk(µk) ≥ Qk(µ) ≥ q(µ), ∀ µ ∈ M. (1)

• Suppose {µk}K converges to µ̄. Then, µ̄ ∈ M ,
and by Eq. (1) and continuity of Qk and q (real-
valued assumption), Qk(µ̄) ≥ q(µ̄). Using this and
Eq. (1), we obtain for all k and i < k,

q(µi) + (µk − µi)′gi ≥ Qk(µk) ≥ Qk(µ̄) ≥ q(µ̄).

• Take the limit as i → ∞, k → ∞, i ∈ K, k ∈ K,

lim
k→∞, k∈K

Qk(µk) = q(µ̄).

Combining with (1), q(µ̄) = maxµ∈M q(µ).
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Separable Problem
LAGRANGIAN RELAXATION

• Solving the dual of the separable problem

minimize
J∑

j=1

fj(xj)

subject to xj ∈ Xj , j = 1, . . . , J,

J∑

j=1

Ajxj = b.

• Dual function is

q(λ) =

J∑

j=1

min
xj∈Xj

{
fj(xj) + λ′Ajxj

}
− λ′b

=

J∑

j=1

{
fj

(
xj(λ)

)
+ λ′Ajxj(λ)

}
− λ′b

where xj(λ) attains the min. A subgradient at λ is

gλ =

J∑

j=1

Ajxj(λ) − b.
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Dantzig-Wolfe 
DecompositionDANTSIG-WOLFE DECOMPOSITION

• D-W decomposition method is just the cutting
plane applied to the dual problem maxλ q(λ).
• At the kth iteration, we solve the “approximate
dual”

λk = arg max
λ∈ℜr

Qk(λ) ≡ min
i=0,...,k−1

{
q(λi) + (λ − λi)′gi

}
.

• Equivalent linear program in v and λ

maximize v

subject to v ≤ q(λi) + (λ − λi)′gi, i = 0, . . . , k − 1

The dual of this (called master problem) is

minimize
k−1∑

i=0

ξi
(
q(λi) − λi′gi

)

subject to
k−1∑

i=0

ξi = 1,

k−1∑

i=0

ξigi = 0,

ξi ≥ 0, i = 0, . . . , k − 1,
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DANTSIG-WOLFE DECOMPOSITION (CONT.)

• The master problem is written as

minimize
J∑

j=1

(
k−1∑

i=0

ξifj

(
xj(λ

i)
)
)

subject to
k−1∑

i=0

ξi = 1,

J∑

j=1

Aj

(
k−1∑

i=0

ξixj(λ
i)

)
= b,

ξi ≥ 0, i = 0, . . . , k − 1.

• The primal cost function terms fj(xj) are ap-
proximated by

k−1∑

i=0

ξifj

(
xj(λ

i)
)

• Vectors xj are expressed as

k−1∑

i=0

ξixj(λ
i)
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(
xj(λ

i)
)

• Vectors xj are expressed as

k−1∑

i=0

ξixj(λ
i)



DANTSIG-WOLFE DECOMPOSITION (CONT.)

• The master problem is written as

minimize
J∑

j=1

(
k−1∑

i=0

ξifj

(
xj(λ

i)
)
)

subject to
k−1∑

i=0

ξi = 1,

J∑

j=1

Aj

(
k−1∑

i=0

ξixj(λ
i)

)
= b,

ξi ≥ 0, i = 0, . . . , k − 1.

• The primal cost function terms fj(xj) are ap-
proximated by

k−1∑

i=0

ξifj

(
xj(λ

i)
)

• Vectors xj are expressed as

k−1∑

i=0

ξixj(λ
i)



Dantzig-Wolfe Decomposition: 
Geometric IntuitionGEOMETRICAL INTERPRETATION

• Geometric interpretation of the master problem
(the dual of the approximate dual solved in the
cutting plane method) is inner linearization.

0
Xj

fj(xj)

xj

xj(λ0) xj(λ1)xj(λ2) xj(λ3)

• This is a “dual” operation to the one involved
in the cutting plane approximation, which can be
viewed as outer linearization.
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