Cutting Planes

Lecturer: Pradeep Ravikumar

Co-instructor: Aarti Singh

Convex Optimization 10-725/36-725

Dual Derivatives

Let

$$x_{\mu} = \arg\min_{x \in X} L(x, \mu) = \arg\min_{x \in X} \left\{ f(x) + \mu' g(x) \right\}.$$

Dual Derivatives

Let

$$x_{\mu} = \arg\min_{x \in X} L(x, \mu) = \arg\min_{x \in X} \left\{ f(x) + \mu' g(x) \right\}.$$

Then for all $\tilde{\mu} \in \Re^r$,

$$q(\tilde{\mu}) = \inf_{x \in X} \left\{ f(x) + \tilde{\mu}' g(x) \right\}$$

$$\leq f(x_{\mu}) + \tilde{\mu}' g(x_{\mu})$$

$$= f(x_{\mu}) + \mu' g(x_{\mu}) + (\tilde{\mu} - \mu)' g(x_{\mu})$$

$$= q(\mu) + (\tilde{\mu} - \mu)' g(x_{\mu}).$$

Dual Derivatives

Let

$$x_{\mu} = \arg\min_{x \in X} L(x, \mu) = \arg\min_{x \in X} \left\{ f(x) + \mu' g(x) \right\}.$$

Then for all $\tilde{\mu} \in \Re^r$,

$$q(\tilde{\mu}) = \inf_{x \in X} \left\{ f(x) + \tilde{\mu}' g(x) \right\}$$

$$\leq f(x_{\mu}) + \tilde{\mu}' g(x_{\mu})$$

$$= f(x_{\mu}) + \mu' g(x_{\mu}) + (\tilde{\mu} - \mu)' g(x_{\mu})$$

$$= q(\mu) + (\tilde{\mu} - \mu)' g(x_{\mu}).$$

• Thus $g(x_{\mu})$ is a subgradient of q at μ .

Example: Polyhedral, Non-differentiable Dual

$$q(\mu) = \min_{i \in I} \left\{ a_i' \mu + b_i \right\},\,$$

where I is a finite index set, and $a_i \in \Re^r$ and b_i are given (arises when X is a discrete set, as in integer programming).

Example: Polyhedral, Non-differentiable Dual

$$q(\mu) = \min_{i \in I} \left\{ a_i' \mu + b_i \right\},\,$$

where I is a finite index set, and $a_i \in \Re^r$ and b_i are given (arises when X is a discrete set, as in integer programming).

• Proposition: Let q be polyhedral as above, and let I_{μ} be the set of indices attaining the minimum

$$I_{\mu} = \{ i \in I \mid a'_{i}\mu + b_{i} = q(\mu) \}.$$

The set of all subgradients of q at μ is

$$\partial q(\mu) = \left\{ g \mid g = \sum_{i \in I_{\mu}} \xi_i a_i, \, \xi_i \ge 0, \, \sum_{i \in I_{\mu}} \xi_i = 1 \right\}.$$

Primal Problem

```
minimize f(x) subject to x \in X, g_j(x) \leq 0, j=1,\ldots,r, assuming -\infty < f^* < \infty.
```

Dual Problem

minimize f(x) subject to $x \in X$, $g_j(x) \le 0$, $j = 1, \ldots, r$,

• Dual problem: Maximize

assuming $-\infty < f^* < \infty$.

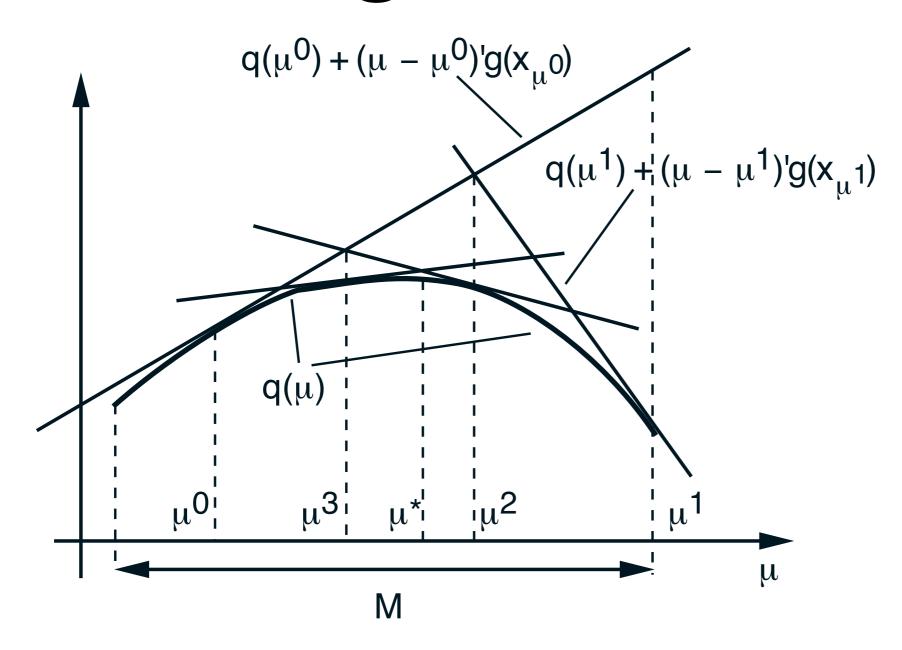
$$q(\mu) = \inf_{x \in X} L(x, \mu) = \inf_{x \in X} \{ f(x) + \mu' g(x) \}$$

subject to $\mu \in M = \{ \mu \mid \mu \ge 0, \, q(\mu) > -\infty \}$.

Cutting Plane Algorithms

- Cutting Plane Algorithms: iteratively refine the constraint set, or objective function by means of linear inequalities
- Constraint Set: For integer linear programs, iterate: if LP relaxation optimal point is not integral, refine the LP constraint set by a linear inequality separating non-integral point from integer constraint set
- Objective Function: Useful for convex, but non-differentiable programs
 - Iteratively approximate objective via piece-wise linear function
 - Popular use: for solving non-differentiable dual programs
 - We will be focusing on this class of cutting plane algorithms

Cutting Plane Method



Solve piece-wise linear approximation to dual

Piece-wise Linear Approx.

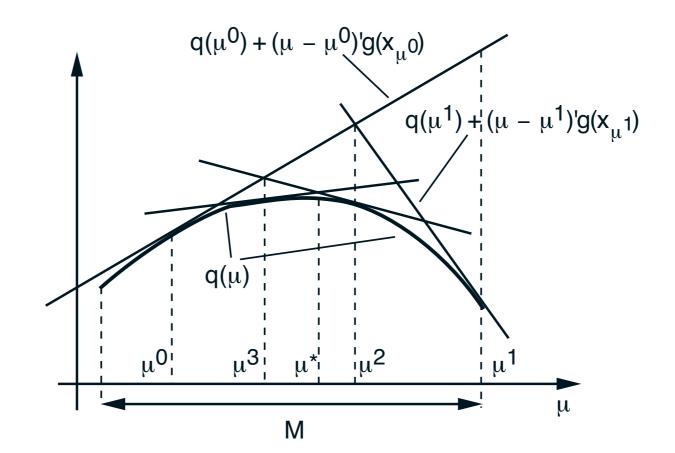
• kth iteration, after μ^i and $g^i = g(x_{\mu^i})$ have been generated for $i = 0, \dots, k-1$:

$$Q^{k}(\mu) = \min_{i=0,\dots,k-1} \left\{ q(\mu^{i}) + (\mu - \mu^{i})'g^{i} \right\}.$$

Piece-wise Linear Approx.

• kth iteration, after μ^i and $g^i = g(x_{\mu^i})$ have been generated for $i=0,\ldots,k-1$:

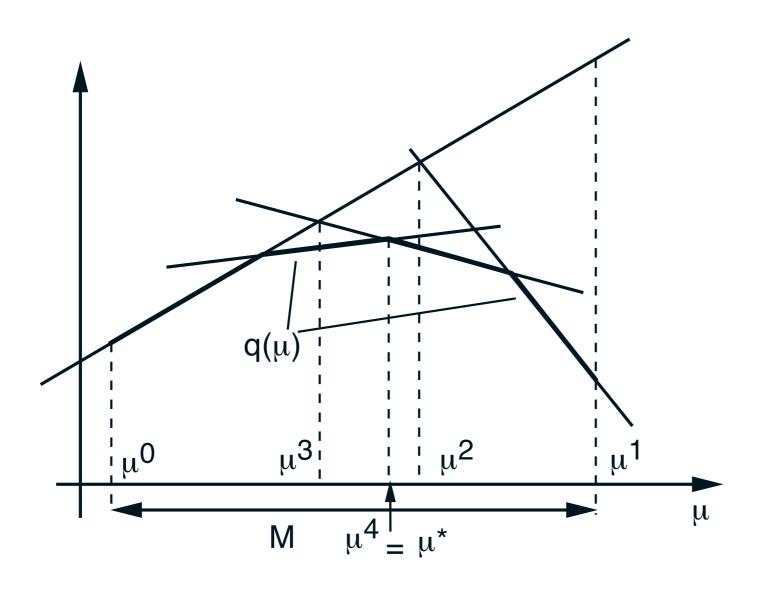
$$Q^{k}(\mu) = \min_{i=0,\dots,k-1} \left\{ q(\mu^{i}) + (\mu - \mu^{i})'g^{i} \right\}.$$



Cutting Plane Method

• kth iteration, after μ^i and $g^i = g\left(x_{\mu^i}\right)$ have been generated for $i=0,\ldots,k-1$: Solve

$$\max_{\mu \in M} Q^k(\mu)$$



Where dual objective is already a piece-wise linear function

$$q(\mu) = \min_{i \in I} \left\{ a_i' \mu + b_i \right\}$$

where I is a finite index set, and $a_i \in \Re^r$ and b_i are given.

$$q(\mu) = \min_{i \in I} \left\{ a_i' \mu + b_i \right\}$$

where I is a finite index set, and $a_i \in \Re^r$ and b_i are given.

• Then subgradient g^k in the cutting plane method is a vector a_{ik} for which the minimum is attained.

$$q(\mu) = \min_{i \in I} \left\{ a_i' \mu + b_i \right\}$$

where I is a finite index set, and $a_i \in \Re^r$ and b_i are given.

- Then subgradient g^k in the cutting plane method is a vector a_{ik} for which the minimum is attained.
- Finite termination expected.

Convergence

• Proposition: Assume that the max of Q_k over M is attained and that q is real-valued. Then every limit point of a sequence $\{\mu^k\}$ generated by the cutting plane method is a dual optimal solution.

Proof: g^i is a subgradient of q at μ^i , so

$$q(\mu^{i}) + (\mu - \mu^{i})'g^{i} \ge q(\mu), \qquad \forall \ \mu \in M,$$

$$Q^{k}(\mu^{k}) \ge Q^{k}(\mu) \ge q(\mu), \qquad \forall \ \mu \in M. \tag{1}$$

Proof: g^i is a subgradient of q at μ^i , so

$$q(\mu^{i}) + (\mu - \mu^{i})'g^{i} \ge q(\mu), \qquad \forall \ \mu \in M,$$

$$Q^{k}(\mu^{k}) \ge Q^{k}(\mu) \ge q(\mu), \qquad \forall \ \mu \in M. \tag{1}$$

• Suppose $\{\mu^k\}_K$ converges to $\bar{\mu}$. Then, $\bar{\mu} \in M$, and by Eq. (1) and continuity of Q^k and q (real-valued assumption), $Q^k(\bar{\mu}) \geq q(\bar{\mu})$. Using this and Eq. (1), we obtain for all k and i < k,

$$q(\mu^i) + (\mu^k - \mu^i)'g^i \ge Q^k(\mu^k) \ge Q^k(\bar{\mu}) \ge q(\bar{\mu}).$$

Proof: g^i is a subgradient of q at μ^i , so

$$q(\mu^{i}) + (\mu - \mu^{i})'g^{i} \ge q(\mu), \qquad \forall \ \mu \in M,$$

$$Q^{k}(\mu^{k}) \ge Q^{k}(\mu) \ge q(\mu), \qquad \forall \ \mu \in M. \tag{1}$$

• Suppose $\{\mu^k\}_K$ converges to $\bar{\mu}$. Then, $\bar{\mu} \in M$, and by Eq. (1) and continuity of Q^k and q (real-valued assumption), $Q^k(\bar{\mu}) \geq q(\bar{\mu})$. Using this and Eq. (1), we obtain for all k and i < k,

$$q(\mu^i) + (\mu^k - \mu^i)'g^i \ge Q^k(\mu^k) \ge Q^k(\bar{\mu}) \ge q(\bar{\mu}).$$

• Take the limit as $i \to \infty$, $k \to \infty$, $i \in K$, $k \in K$,

$$\lim_{k \to \infty, k \in K} Q^k(\mu^k) = q(\bar{\mu}).$$

Proof: g^i is a subgradient of q at μ^i , so

$$q(\mu^{i}) + (\mu - \mu^{i})'g^{i} \ge q(\mu), \qquad \forall \ \mu \in M,$$

$$Q^{k}(\mu^{k}) \ge Q^{k}(\mu) \ge q(\mu), \qquad \forall \ \mu \in M. \tag{1}$$

• Suppose $\{\mu^k\}_K$ converges to $\bar{\mu}$. Then, $\bar{\mu} \in M$, and by Eq. (1) and continuity of Q^k and q (real-valued assumption), $Q^k(\bar{\mu}) \geq q(\bar{\mu})$. Using this and Eq. (1), we obtain for all k and i < k,

$$q(\mu^i) + (\mu^k - \mu^i)'g^i \ge Q^k(\mu^k) \ge Q^k(\bar{\mu}) \ge q(\bar{\mu}).$$

• Take the limit as $i \to \infty$, $k \to \infty$, $i \in K$, $k \in K$,

$$\lim_{k \to \infty, k \in K} Q^k(\mu^k) = q(\bar{\mu}).$$

Combining with (1), $q(\bar{\mu}) = \max_{\mu \in M} q(\mu)$.

Separable Problem

minimize
$$\sum_{j=1}^{J} f_j(x_j)$$

subject to
$$x_j \in X_j, \quad j = 1, \ldots, J, \quad \sum_{j=1}^J A_j x_j = b.$$

Separable Problem

minimize
$$\sum_{j=1}^{J} f_j(x_j)$$

subject to
$$x_j \in X_j$$
, $j = 1, \ldots, J$, $\sum_{j=1}^{s} A_j x_j = b$.

Solving for its dual:

$$q(\lambda) = \sum_{j=1}^{J} \min_{x_j \in X_j} \left\{ f_j(x_j) + \lambda' A_j x_j \right\} - \lambda' b$$
$$= \sum_{j=1}^{J} \left\{ f_j(x_j(\lambda)) + \lambda' A_j x_j(\lambda) \right\} - \lambda' b$$

where $x_j(\lambda)$ attains the min.

Separable Problem

minimize
$$\sum_{j=1}^{J} f_j(x_j)$$

subject to
$$x_j \in X_j$$
, $j = 1, \ldots, J$, $\sum_{j=1}^{J} A_j x_j = b$.

Solving for its dual:

$$q(\lambda) = \sum_{j=1}^{J} \min_{x_j \in X_j} \left\{ f_j(x_j) + \lambda' A_j x_j \right\} - \lambda' b$$
$$= \sum_{j=1}^{J} \left\{ f_j(x_j(\lambda)) + \lambda' A_j x_j(\lambda) \right\} - \lambda' b$$

where $x_j(\lambda)$ attains the min.

subgradient at
$$\lambda$$
: $g_{\lambda} = \sum_{j=1}^{J} A_j x_j(\lambda) - b$.

Dantzig-Wolfe Decomposition

- D-W decomposition method is just the cutting plane applied to the dual problem $\max_{\lambda} q(\lambda)$.
- At the *k*th iteration, we solve the "approximate dual"

$$\lambda^k = \arg\max_{\lambda \in \Re^r} Q^k(\lambda) \equiv \min_{i=0,\dots,k-1} \left\{ q(\lambda^i) + (\lambda - \lambda^i)' g^i \right\}.$$

Dantzig-Wolfe Decomposition

 At the kth iteration, we solve the "approximate dual"

$$\lambda^k = \arg\max_{\lambda \in \Re^r} Q^k(\lambda) \equiv \min_{i=0,\dots,k-1} \left\{ q(\lambda^i) + (\lambda - \lambda^i)' g^i \right\}.$$

• Equivalent linear program in v and λ

maximize v subject to $v \leq q(\lambda^i) + (\lambda - \lambda^i)' g^i, \quad i = 0, \dots, k-1$

Dantzig-Wolfe Decomposition

• At the *k*th iteration, we solve the "approximate dual"

$$\lambda^k = \arg\max_{\lambda \in \Re^r} Q^k(\lambda) \equiv \min_{i=0,\dots,k-1} \left\{ q(\lambda^i) + (\lambda - \lambda^i)' g^i \right\}.$$

• Equivalent linear program in v and λ

maximize
$$v$$
 subject to $v \leq q(\lambda^i) + (\lambda - \lambda^i)'g^i, \quad i = 0, \dots, k-1$

The dual of this (called master problem) is

$$\begin{array}{ll} \text{minimize} & \displaystyle\sum_{i=0}^{k-1} \xi^i \Big(q(\lambda^i) - {\lambda^i}' g^i \Big) \\ \\ \text{subject to} & \displaystyle\sum_{i=0}^{k-1} \xi^i = 1, \qquad \sum_{i=0}^{k-1} \xi^i g^i = 0, \\ \\ \xi^i \geq 0, \quad i = 0, \dots, k-1, \end{array}$$

The master problem is written as

$$\begin{split} & \text{minimize} \quad \sum_{j=1}^J \left(\sum_{i=0}^{k-1} \xi^i f_j \left(x_j(\lambda^i) \right) \right) \\ & \text{subject to} \quad \sum_{i=0}^{k-1} \xi^i = 1, \qquad \sum_{j=1}^J A_j \left(\sum_{i=0}^{k-1} \xi^i x_j(\lambda^i) \right) = b, \\ & \xi^i \geq 0, \quad i = 0, \dots, k-1. \end{split}$$

The master problem is written as

$$\begin{split} & \text{minimize} \quad \sum_{j=1}^J \left(\sum_{i=0}^{k-1} \xi^i f_j \left(x_j(\lambda^i) \right) \right) \\ & \text{subject to} \quad \sum_{i=0}^{k-1} \xi^i = 1, \qquad \sum_{j=1}^J A_j \left(\sum_{i=0}^{k-1} \xi^i x_j(\lambda^i) \right) = b, \\ & \xi^i \geq 0, \quad i = 0, \dots, k-1. \end{split}$$

• The primal cost function terms $f_j(x_j)$ are approximated by

$$\sum_{i=0}^{k-1} \xi^i f_j \left(x_j(\lambda^i) \right)$$

The master problem is written as

$$\begin{array}{ll} \text{minimize} & \displaystyle\sum_{j=1}^J \left(\sum_{i=0}^{k-1} \xi^i f_j \left(x_j(\lambda^i) \right) \right) \\ \text{subject to} & \displaystyle\sum_{i=0}^{k-1} \xi^i = 1, \qquad \sum_{j=1}^J A_j \left(\sum_{i=0}^{k-1} \xi^i x_j(\lambda^i) \right) = b, \\ & \displaystyle\xi^i \geq 0, \quad i = 0, \dots, k-1. \end{array}$$

• The primal cost function terms $f_j(x_j)$ are approximated by

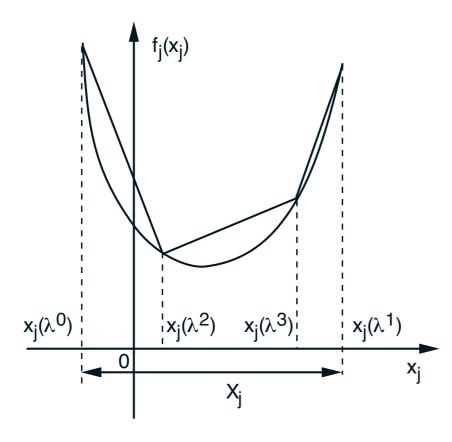
$$\sum_{i=0}^{k-1} \xi^i f_j \left(x_j(\lambda^i) \right)$$

• Vectors x_j are expressed as

$$\sum_{i=0}^{k-1} \xi^i x_j(\lambda^i)$$

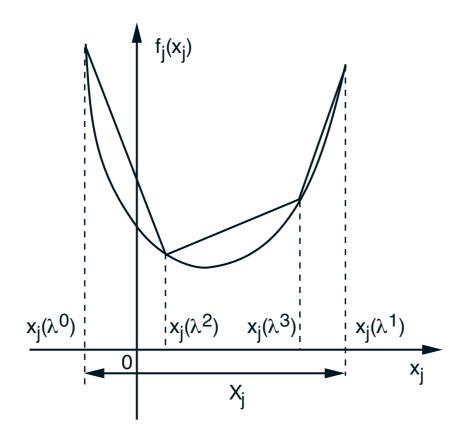
Dantzig-Wolfe Decomposition: Geometric Intuition

• Geometric interpretation of the master problem (the dual of the approximate dual solved in the cutting plane method) is *inner linearization*.



Dantzig-Wolfe Decomposition: Geometric Intuition

• Geometric interpretation of the master problem (the dual of the approximate dual solved in the cutting plane method) is *inner linearization*.



• This is a "dual" operation to the one involved in the cutting plane approximation, which can be viewed as *outer linearization*.