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Norm ApproximationNorm approximation

minimize ∥Ax− b∥

(A ∈ Rm×n with m ≥ n, ∥ · ∥ is a norm on Rm)

interpretations of solution x⋆ = argminx ∥Ax− b∥:

• geometric: Ax⋆ is point in R(A) closest to b

• estimation: linear measurement model

y = Ax+ v

y are measurements, x is unknown, v is measurement error

given y = b, best guess of x is x⋆

• optimal design: x are design variables (input), Ax is result (output)

x⋆ is design that best approximates desired result b

Approximation and fitting 6–2



Norm Approximation:  
ell_2 normNorm approximation

minimize ∥Ax− b∥

(A ∈ Rm×n with m ≥ n, ∥ · ∥ is a norm on Rm)

interpretations of solution x⋆ = argminx ∥Ax− b∥:

• geometric: Ax⋆ is point in R(A) closest to b

• estimation: linear measurement model

y = Ax+ v

y are measurements, x is unknown, v is measurement error

given y = b, best guess of x is x⋆

• optimal design: x are design variables (input), Ax is result (output)

x⋆ is design that best approximates desired result b

Approximation and fitting 6–2

examples

• least-squares approximation (∥ · ∥2): solution satisfies normal equations

ATAx = AT b

(x⋆ = (ATA)−1AT b if rankA = n)

• Chebyshev approximation (∥ · ∥∞): can be solved as an LP

minimize t
subject to −t1 ≼ Ax− b ≼ t1

• sum of absolute residuals approximation (∥ · ∥1): can be solved as an LP

minimize 1Ty
subject to −y ≼ Ax− b ≼ y

Approximation and fitting 6–3



Norm Approximation:  
ell_infty normNorm approximation

minimize ∥Ax− b∥

(A ∈ Rm×n with m ≥ n, ∥ · ∥ is a norm on Rm)

interpretations of solution x⋆ = argminx ∥Ax− b∥:

• geometric: Ax⋆ is point in R(A) closest to b

• estimation: linear measurement model

y = Ax+ v

y are measurements, x is unknown, v is measurement error

given y = b, best guess of x is x⋆

• optimal design: x are design variables (input), Ax is result (output)

x⋆ is design that best approximates desired result b

Approximation and fitting 6–2

examples

• least-squares approximation (∥ · ∥2): solution satisfies normal equations

ATAx = AT b

(x⋆ = (ATA)−1AT b if rankA = n)

• Chebyshev approximation (∥ · ∥∞): can be solved as an LP

minimize t
subject to −t1 ≼ Ax− b ≼ t1

• sum of absolute residuals approximation (∥ · ∥1): can be solved as an LP

minimize 1Ty
subject to −y ≼ Ax− b ≼ y

Approximation and fitting 6–3



Norm Approximation: ell_1 norm
Norm approximation

minimize ∥Ax− b∥

(A ∈ Rm×n with m ≥ n, ∥ · ∥ is a norm on Rm)

interpretations of solution x⋆ = argminx ∥Ax− b∥:

• geometric: Ax⋆ is point in R(A) closest to b

• estimation: linear measurement model

y = Ax+ v

y are measurements, x is unknown, v is measurement error

given y = b, best guess of x is x⋆

• optimal design: x are design variables (input), Ax is result (output)

x⋆ is design that best approximates desired result b

Approximation and fitting 6–2

examples

• least-squares approximation (∥ · ∥2): solution satisfies normal equations

ATAx = AT b

(x⋆ = (ATA)−1AT b if rankA = n)

• Chebyshev approximation (∥ · ∥∞): can be solved as an LP

minimize t
subject to −t1 ≼ Ax− b ≼ t1

• sum of absolute residuals approximation (∥ · ∥1): can be solved as an LP

minimize 1Ty
subject to −y ≼ Ax− b ≼ y

Approximation and fitting 6–3



Penalty Function Approximation
Penalty function approximation

minimize φ(r1) + · · ·+ φ(rm)
subject to r = Ax− b

(A ∈ Rm×n, φ : R → R is a convex penalty function)

examples

• quadratic: φ(u) = u2

• deadzone-linear with width a:

φ(u) = max{0, |u|− a}

• log-barrier with limit a:

φ(u) =

{
−a2 log(1− (u/a)2) |u| < a
∞ otherwise
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Penalty Function Approximation
Huber penalty function (with parameter M)

φhub(u) =

{
u2 |u| ≤ M
M(2|u|−M) |u| > M

linear growth for large u makes approximation less sensitive to outliers
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• left: Huber penalty for M = 1

• right: affine function f(t) = α+ βt fitted to 42 points ti, yi (circles)
using quadratic (dashed) and Huber (solid) penalty

Approximation and fitting 6–6



Least Norm Problems
Least-norm problems

minimize ∥x∥
subject to Ax = b

(A ∈ Rm×n with m ≤ n, ∥ · ∥ is a norm on Rn)

interpretations of solution x⋆ = argminAx=b ∥x∥:

• geometric: x⋆ is point in affine set {x | Ax = b} with minimum
distance to 0

• estimation: b = Ax are (perfect) measurements of x; x⋆ is smallest
(’most plausible’) estimate consistent with measurements

• design: x are design variables (inputs); b are required results (outputs)

x⋆ is smallest (’most efficient’) design that satisfies requirements

Approximation and fitting 6–7



Least Norm Problems:  
ell_1 normLeast-norm problems

minimize ∥x∥
subject to Ax = b

(A ∈ Rm×n with m ≤ n, ∥ · ∥ is a norm on Rn)

interpretations of solution x⋆ = argminAx=b ∥x∥:

• geometric: x⋆ is point in affine set {x | Ax = b} with minimum
distance to 0

• estimation: b = Ax are (perfect) measurements of x; x⋆ is smallest
(’most plausible’) estimate consistent with measurements

• design: x are design variables (inputs); b are required results (outputs)

x⋆ is smallest (’most efficient’) design that satisfies requirements

Approximation and fitting 6–7

examples

• least-squares solution of linear equations (∥ · ∥2):
can be solved via optimality conditions

2x+ATν = 0, Ax = b

• minimum sum of absolute values (∥ · ∥1): can be solved as an LP

minimize 1Ty
subject to −y ≼ x ≼ y, Ax = b

tends to produce sparse solution x⋆

extension: least-penalty problem

minimize φ(x1) + · · ·+ φ(xn)
subject to Ax = b

φ : R → R is convex penalty function

Approximation and fitting 6–8



Least Norm Problems:  
least penalty extensionLeast-norm problems

minimize ∥x∥
subject to Ax = b

(A ∈ Rm×n with m ≤ n, ∥ · ∥ is a norm on Rn)

interpretations of solution x⋆ = argminAx=b ∥x∥:

• geometric: x⋆ is point in affine set {x | Ax = b} with minimum
distance to 0

• estimation: b = Ax are (perfect) measurements of x; x⋆ is smallest
(’most plausible’) estimate consistent with measurements

• design: x are design variables (inputs); b are required results (outputs)

x⋆ is smallest (’most efficient’) design that satisfies requirements

Approximation and fitting 6–7

examples

• least-squares solution of linear equations (∥ · ∥2):
can be solved via optimality conditions

2x+ATν = 0, Ax = b

• minimum sum of absolute values (∥ · ∥1): can be solved as an LP

minimize 1Ty
subject to −y ≼ x ≼ y, Ax = b

tends to produce sparse solution x⋆

extension: least-penalty problem

minimize φ(x1) + · · ·+ φ(xn)
subject to Ax = b

φ : R → R is convex penalty function

Approximation and fitting 6–8



Regularized ApproximationRegularized approximation

minimize (w.r.t. R2
+) (∥Ax− b∥, ∥x∥)

A ∈ Rm×n, norms on Rm and Rn can be different

interpretation: find good approximation Ax ≈ b with small x

• estimation: linear measurement model y = Ax+ v, with prior
knowledge that ∥x∥ is small

• optimal design: small x is cheaper or more efficient, or the linear
model y = Ax is only valid for small x

• robust approximation: good approximation Ax ≈ b with small x is
less sensitive to errors in A than good approximation with large x

Approximation and fitting 6–9



Regularized Approximation Scalarized problem

minimize ∥Ax− b∥+ γ∥x∥

• solution for γ > 0 traces out optimal trade-off curve

• other common method: minimize ∥Ax− b∥2 + δ∥x∥2 with δ > 0

Tikhonov regularization

minimize ∥Ax− b∥22 + δ∥x∥22

can be solved as a least-squares problem

minimize

∥∥∥∥

[
A√
δI

]
x−

[
b
0

]∥∥∥∥
2

2

solution x⋆ = (ATA+ δI)−1AT b

Approximation and fitting 6–10



Signal ReconstructionSignal reconstruction

minimize (w.r.t. R2
+) (∥x̂− xcor∥2,φ(x̂))

• x ∈ Rn is unknown signal

• xcor = x+ v is (known) corrupted version of x, with additive noise v

• variable x̂ (reconstructed signal) is estimate of x

• φ : Rn → R is regularization function or smoothing objective

examples: quadratic smoothing, total variation smoothing:

φquad(x̂) =
n−1∑

i=1

(x̂i+1 − x̂i)
2, φtv(x̂) =

n−1∑

i=1

|x̂i+1 − x̂i|

Approximation and fitting 6–13



Signal Reconstruction: 
Quadratic Smoothing

quadratic smoothing example
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Signal Reconstruction:  
Total Variation Smoothing

total variation reconstruction example
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quadratic smoothing smooths out noise and sharp transitions in signal
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Signal Reconstruction:  
Total Variation Smoothing
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total variation smoothing preserves sharp transitions in signal
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Robust Approximation
Robust approximation

minimize ∥Ax− b∥ with uncertain A

two approaches:

• stochastic: assume A is random, minimize E ∥Ax− b∥
• worst-case: set A of possible values of A, minimize supA∈A ∥Ax− b∥

tractable only in special cases (certain norms ∥ · ∥, distributions, sets A)

example: A(u) = A0 + uA1

• xnom minimizes ∥A0x− b∥22
• xstoch minimizes E ∥A(u)x− b∥22
with u uniform on [−1, 1]

• xwc minimizes sup−1≤u≤1 ∥A(u)x− b∥22
figure shows r(u) = ∥A(u)x− b∥2
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Robust Approximation
Robust approximation

minimize ∥Ax− b∥ with uncertain A

two approaches:

• stochastic: assume A is random, minimize E ∥Ax− b∥
• worst-case: set A of possible values of A, minimize supA∈A ∥Ax− b∥

tractable only in special cases (certain norms ∥ · ∥, distributions, sets A)

example: A(u) = A0 + uA1

• xnom minimizes ∥A0x− b∥22
• xstoch minimizes E ∥A(u)x− b∥22
with u uniform on [−1, 1]

• xwc minimizes sup−1≤u≤1 ∥A(u)x− b∥22
figure shows r(u) = ∥A(u)x− b∥2
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Robust Approximation: 
Stochastic

stochastic robust LS with A = Ā+U , U random, EU = 0, EUTU = P

minimize E ∥(Ā+ U)x− b∥22

• explicit expression for objective:

E ∥Ax− b∥22 = E ∥Āx− b+ Ux∥22
= ∥Āx− b∥22 +ExTUTUx

= ∥Āx− b∥22 + xTPx

• hence, robust LS problem is equivalent to LS problem

minimize ∥Āx− b∥22 + ∥P 1/2x∥22

• for P = δI, get Tikhonov regularized problem

minimize ∥Āx− b∥22 + δ∥x∥22

Approximation and fitting 6–18



Robust Approximation: 
Worst-Case

worst-case robust LS with A = {Ā+ u1A1 + · · ·+ upAp | ∥u∥2 ≤ 1}

minimize supA∈A ∥Ax− b∥22 = sup∥u∥2≤1 ∥P (x)u+ q(x)∥22

where P (x) =
[
A1x A2x · · · Apx

]
, q(x) = Āx− b

• from page 5–14, strong duality holds between the following problems

maximize ∥Pu+ q∥22
subject to ∥u∥22 ≤ 1

minimize t+ λ

subject to

⎡

⎣
I P q
PT λI 0
qT 0 t

⎤

⎦ ≽ 0

• hence, robust LS problem is equivalent to SDP

minimize t+ λ

subject to

⎡

⎣
I P (x) q(x)

P (x)T λI 0
q(x)T 0 t

⎤

⎦ ≽ 0

Approximation and fitting 6–19



Robust Approximation: 
Worst-Case

worst-case robust LS with A = {Ā+ u1A1 + · · ·+ upAp | ∥u∥2 ≤ 1}

minimize supA∈A ∥Ax− b∥22 = sup∥u∥2≤1 ∥P (x)u+ q(x)∥22

where P (x) =
[
A1x A2x · · · Apx

]
, q(x) = Āx− b

• from page 5–14, strong duality holds between the following problems

maximize ∥Pu+ q∥22
subject to ∥u∥22 ≤ 1

minimize t+ λ

subject to

⎡

⎣
I P q
PT λI 0
qT 0 t

⎤

⎦ ≽ 0

• hence, robust LS problem is equivalent to SDP

minimize t+ λ

subject to

⎡

⎣
I P (x) q(x)

P (x)T λI 0
q(x)T 0 t

⎤

⎦ ≽ 0

Approximation and fitting 6–19

It can be shown



Statistical EstimationParametric distribution estimation

• distribution estimation problem: estimate probability density p(y) of a
random variable from observed values

• parametric distribution estimation: choose from a family of densities
px(y), indexed by a parameter x

maximum likelihood estimation

maximize (over x) log px(y)

• y is observed value

• l(x) = log px(y) is called log-likelihood function

• can add constraints x ∈ C explicitly, or define px(y) = 0 for x ̸∈ C

• a convex optimization problem if log px(y) is concave in x for fixed y

Statistical estimation 7–2



Statistical Estimation: 
Linear Measurements with NoiseLinear measurements with IID noise

linear measurement model

yi = aTi x+ vi, i = 1, . . . ,m

• x ∈ Rn is vector of unknown parameters

• vi is IID measurement noise, with density p(z)

• yi is measurement: y ∈ Rm has density px(y) =
∏m

i=1 p(yi − aTi x)

maximum likelihood estimate: any solution x of

maximize l(x) =
∑m

i=1 log p(yi − aTi x)

(y is observed value)

Statistical estimation 7–3



Statistical Estimation: 
Linear Measurements with Noise
examples

• Gaussian noise N (0,σ2): p(z) = (2πσ2)−1/2e−z2/(2σ2),

l(x) = −m

2
log(2πσ2)− 1

2σ2

m∑

i=1

(aTi x− yi)
2

ML estimate is LS solution

• Laplacian noise: p(z) = (1/(2a))e−|z|/a,

l(x) = −m log(2a)− 1

a

m∑

i=1

|aTi x− yi|

ML estimate is ℓ1-norm solution

• uniform noise on [−a, a]:

l(x) =

{
−m log(2a) |aTi x− yi| ≤ a, i = 1, . . . ,m
−∞ otherwise

ML estimate is any x with |aTi x− yi| ≤ a

Statistical estimation 7–4



Statistical Estimation: 
Logistic RegressionLogistic regression

random variable y ∈ {0, 1} with distribution

p = prob(y = 1) =
exp(aTu+ b)

1 + exp(aTu+ b)

• a, b are parameters; u ∈ Rn are (observable) explanatory variables

• estimation problem: estimate a, b from m observations (ui, yi)

log-likelihood function (for y1 = · · · = yk = 1, yk+1 = · · · = ym = 0):

l(a, b) = log

⎛

⎝
k∏

i=1

exp(aTui + b)

1 + exp(aTui + b)

m∏

i=k+1

1

1 + exp(aTui + b)

⎞

⎠

=
k∑

i=1

(aTui + b)−
m∑

i=1

log(1 + exp(aTui + b))

concave in a, b

Statistical estimation 7–5



Minimum Volume Ellipsoid 
Around a Set

Efficiency of ellipsoidal approximations

C ⊆ Rn convex, bounded, with nonempty interior

• Löwner-John ellipsoid, shrunk by a factor n, lies inside C

• maximum volume inscribed ellipsoid, expanded by a factor n, covers C

example (for two polyhedra in R2)

factor n can be improved to
√
n if C is symmetric

Geometric problems 8–4



Minimum Volume Ellipsoid 
Around a SetMinimum volume ellipsoid around a set

Löwner-John ellipsoid of a set C: minimum volume ellipsoid E s.t. C ⊆ E

• parametrize E as E = {v | ∥Av + b∥2 ≤ 1}; w.l.o.g. assume A ∈ Sn
++

• vol E is proportional to detA−1; to compute minimum volume ellipsoid,

minimize (over A, b) log detA−1

subject to supv∈C ∥Av + b∥2 ≤ 1

convex, but evaluating the constraint can be hard (for general C)

finite set C = {x1, . . . , xm}:

minimize (over A, b) log detA−1

subject to ∥Axi + b∥2 ≤ 1, i = 1, . . . ,m

also gives Löwner-John ellipsoid for polyhedron conv{x1, . . . , xm}

Geometric problems 8–2



Minimum Volume Ellipsoid 
Around a SetMinimum volume ellipsoid around a set

Löwner-John ellipsoid of a set C: minimum volume ellipsoid E s.t. C ⊆ E

• parametrize E as E = {v | ∥Av + b∥2 ≤ 1}; w.l.o.g. assume A ∈ Sn
++

• vol E is proportional to detA−1; to compute minimum volume ellipsoid,

minimize (over A, b) log detA−1

subject to supv∈C ∥Av + b∥2 ≤ 1

convex, but evaluating the constraint can be hard (for general C)

finite set C = {x1, . . . , xm}:

minimize (over A, b) log detA−1

subject to ∥Axi + b∥2 ≤ 1, i = 1, . . . ,m

also gives Löwner-John ellipsoid for polyhedron conv{x1, . . . , xm}

Geometric problems 8–2



Maximum Volume  
Inscribed Ellipsoid

Efficiency of ellipsoidal approximations

C ⊆ Rn convex, bounded, with nonempty interior

• Löwner-John ellipsoid, shrunk by a factor n, lies inside C

• maximum volume inscribed ellipsoid, expanded by a factor n, covers C

example (for two polyhedra in R2)

factor n can be improved to
√
n if C is symmetric

Geometric problems 8–4



Maximum Volume  
Inscribed EllipsoidMaximum volume inscribed ellipsoid

maximum volume ellipsoid E inside a convex set C ⊆ Rn

• parametrize E as E = {Bu+ d | ∥u∥2 ≤ 1}; w.l.o.g. assume B ∈ Sn
++

• vol E is proportional to detB; can compute E by solving

maximize log detB
subject to sup∥u∥2≤1 IC(Bu+ d) ≤ 0

(where IC(x) = 0 for x ∈ C and IC(x) = ∞ for x ̸∈ C)

convex, but evaluating the constraint can be hard (for general C)

polyhedron {x | aTi x ≤ bi, i = 1, . . . ,m}:

maximize log detB
subject to ∥Bai∥2 + aTi d ≤ bi, i = 1, . . . ,m

(constraint follows from sup∥u∥2≤1 a
T
i (Bu+ d) = ∥Bai∥2 + aTi d)

Geometric problems 8–3



Maximum Volume  
Inscribed EllipsoidMaximum volume inscribed ellipsoid

maximum volume ellipsoid E inside a convex set C ⊆ Rn

• parametrize E as E = {Bu+ d | ∥u∥2 ≤ 1}; w.l.o.g. assume B ∈ Sn
++

• vol E is proportional to detB; can compute E by solving

maximize log detB
subject to sup∥u∥2≤1 IC(Bu+ d) ≤ 0

(where IC(x) = 0 for x ∈ C and IC(x) = ∞ for x ̸∈ C)

convex, but evaluating the constraint can be hard (for general C)

polyhedron {x | aTi x ≤ bi, i = 1, . . . ,m}:

maximize log detB
subject to ∥Bai∥2 + aTi d ≤ bi, i = 1, . . . ,m

(constraint follows from sup∥u∥2≤1 a
T
i (Bu+ d) = ∥Bai∥2 + aTi d)

Geometric problems 8–3


