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Norm Approximation

minimize |[Ax — b|

(A € R™*™ with m > n,

- || is a norm on R™)
interpretations of solution z* = argmin,, ||[Ax — b|:

e geometric: Az is point in R(A) closest to b

e estimation: linear measurement model
y = Ax +v

y are measurements, x is unknown, v Is measurement error
given y = b, best guess of = is x*
e optimal design: x are design variables (input), Az is result (output)

x™ is design that best approximates desired result b



Norm Approximation:
ell_ 2 norm
minimize ||Az — b

(A e R™*™ withm >n, || - || is a norm on R™)

e least-squares approximation (|| - ||2): solution satisfies normal equations
AT Az = A"b

(x* = (ATA)"1ATD if rank A = n)



Norm Approximation:
ell_infty norm

minimize ||Ax — b|

(A e R™*™ withm >n, || - || is a norm on R™)

e Chebyshev approximation (|| - ||sc): can be solved as an LP

minimize t
subject to —t1 < Ax —b <t1



Norm Approximation: ell_1 norm

minimize ||Ax — b|

(A e R™*™ withm >n, || - || is a norm on R™)

e sum of absolute residuals approximation (|| - |[1): can be solved as an LP

minimize 11y
subjectto —y <Az —-b=<y



Penalty Function Approximation

minimize  ¢(ry) + - + O(rm)

subjectto r = Ax —b

(A€ R™ "™ ¢:R — Ris a convex penalty function)

examples

e quadratic: ¢(u) = u?

e deadzone-linear with width a:

¢(u) = max{0, lu| —a}

e |og-barrier with limit a:

] o

¢(u) _ { —CL2 log(l o (u/a)2)

adratic

adzone-linear

u| < a
otherwise
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Penalty Function Approximation

Huber penalty function (with parameter M)

_ ul < M
Prub{u) = { M2Ju|— M) [u] > M

linear growth for large u makes approximation less sensitive to outliers
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o left: Huber penalty for M =1

e right: affine function f(t) = a + St fitted to 42 points t;, y; (circles)
using quadratic (dashed) and Huber (solid) penalty



| east Norm Problems

minimize  ||z||
subject to Ax =0

(A e R™ ™ withm <mn, || -] isa norm on R")

interpretations of solution z* = argmin 4.._, ||z||:

e geometric: x* is point in affine set {x | Az = b} with minimum
distance to 0

e estimation: b = Ax are (perfect) measurements of x; x* is smallest
("'most plausible’) estimate consistent with measurements

e design: x are design variables (inputs); b are required results (outputs)

x* is smallest ('most efficient’) design that satisfies requirements



| east Norm Problems:
ell 1 norm

minimize  ||z||
subject to Ax =0b

(A e R™*™ withm <mn, ||| is a norm on R")

e minimum sum of absolute values (|| - ||1): can be solved as an LP

minimize 1%y
subjectto —y <z <y, Ax=0b

tends to produce sparse solution x*



| east Norm Problems:
least penalty extension

minimize  ||z||
subject to Ax =0b

(A e R™*™ withm <mn, ||| is a norm on R")

extension: least-penalty problem

minimize  ¢(x1) + - + ¢(xy)
subject to Ax =10

® : R — R is convex penalty function



Regularized Approximation

minimize (w.r.t. Ri) (||[Az — b, ||x])

A R™™ norms on R™ and R" can be different

interpretation: find good approximation Ax ~ b with small x

e estimation: linear measurement model y = Ax + v, with prior
knowledge that ||x|| is small

e optimal design: small x is cheaper or more efficient, or the linear
model y = Ax is only valid for small x

e robust approximation: good approximation Ax =~ b with small z is
less sensitive to errors in A than good approximation with large x



Regularized Approximation

minimize |[Ax — b|| + v||x||

e solution for v > 0 traces out optimal trade-off curve

e other common method: minimize ||Ax — b||* + §|z||* with § > 0
Tikhonov regularization
minimize || Ax — b||5 + 6|z

can be solved as a least-squares problem

2
2

wiimize [ A, o= [ 8]

solution % = (AT A+ 6I)"tATb



Signal Reconstruction

minimize (w.r.t. Ri) (|| — xcor||2, @(T))

e z € R" is unknown signal
® T.or = x + v is (known) corrupted version of x, with additive noise v
e variable & (reconstructed signal) is estimate of x

e ¢ : R" — R is regularization function or smoothing objective

examples: quadratic smoothing, total variation smoothing:

n—1 n—1

Pquad(£) = > (Bip1 — £:)%  uw(®) = ) |Big1 — &

1=1 1=1



Signal Reconstruction:
Quadratic Smoothing
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Signal Reconstruction:
Total Variation smoothing
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Signal Reconstruction:
Total Variation smoothing
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Robust Approximation

minimize ||Ax — b|| with uncertain A
two approaches:

e stochastic: assume A is random, minimize E ||Ax — b||

e worst-case: set A of possible values of A, minimize sup 4 4 ||[Az — b||

tractable only in special cases (certain norms || - ||, distributions, sets A)



Robust Approximation

minimize ||Ax — b|| with uncertain A
two approaches:

e stochastic: assume A is random, minimize E ||Ax — b||

e worst-case: set A of possible values of A, minimize sup 4 4 ||[Az — b||

tractable only in special cases (certain norms || - ||, distributions, sets A)

example: A(u) = Ag + uA;
® T,om Minimizes || Aoz — b3

® Tioch Minimizes E||A(u)z — b||3
with u uniform on [—1,1]

® Ty Minimizes sup_ ;<1 ||A(u)x — b||3

figure shows r(u) = ||[A(u)x — bl|2 0




Robust Approximation:
Stochastic

stochastic robust LS with A = A+ U, U random, EU =0, EU'U =P
minimize E||[(A+U)x — b3
e explicit expression for objective:

E|Az —b||3 = E|Axz—b+Uzx|3
= ||Az = b5+ E2'U Uz
= ||Az —b||5 + 2! Pz

e hence, robust LS problem is equivalent to LS problem
minimize ||Az — b||2 + || P'/2z||3
o for P = 01, get Tikhonov regularized problem

minimize ||Axz — b||3 + §]|z|3



Robust Approximation:
Worst-Case

worst-case robust LS with A = {A +u1 A1 + - +up,A, | |Jull2 < 1}
minimize supac 4 [|Az — b5 = supy, <1 |1P(2)u + q()]|3

where P(x) = | Az Asx -+ Apx |, q(z) = Az —b



Robust Approximation:
Worst-Case

worst-case robust LS with A = {A +u1 A1 + - +up,A, | |Jull2 < 1}
minimize sup . 4 || Az — b||5 = SUD|y |, <1 |1 P(z)u + q(2)||5
where P(x) = | Az Asx -+ Apx |, q(z) = Az —b

e It can be shown strong duality holds between the following problems

maximize || Pu+ q||3 minimize ¢+ A
subject to  |lull5 < 1 I P q |
subject to Pl X 0| =0
L 0t

e hence, robust LS problem is equivalent to SDP

minimize t+ )\

~
g
=
=
=

subject to P(zx)t A 0 >~ 0
t




Statistical Estimation

e distribution estimation problem: estimate probability density p(y) of a
random variable from observed values

e parametric distribution estimation: choose from a family of densities
p=(y), indexed by a parameter x

maximum likelihood estimation

maximize (over ) logp.(y)

e y Is observed value
e [(x) =logp.(y) is called log-likelihood function
e can add constraints x € C explicitly, or define p,.(y) =0 for x ¢ C

e a convex optimization problem if logp.(y) is concave in x for fixed y



Statistical Estimation:
L Inear Measurements with Noise

linear measurement model

T .
yi=a;x+wv, 1=1....,m

e x € R" is vector of unknown parameters

e v; is IID measurement noise, with density p(z)

e y; is measurement: y € R™ has density p,.(y) = [['=, p(y: — a] x)

maximum likelihood estimate: any solution x of

maximize [(z)=>_1" logp(y; — a] x)

(y is observed value)



Statistical Estimation:
L Inear Measurements with Noise

e Gaussian noise N'(0,02%): p(z) = (27T02)—1/2€—z2/(202),

1 m
l(x):—%log (2mo?) Q—Z a;i v —y;)*

ML estimate is LS solution
e Laplacian noise: p(2) = (1/(2a))e~I#!/2,

1 m
[(x) = —mlog(2a) — — E |a;-r:1:' — i
a

i=1
ML estimate is /1-norm solution

e uniform noise on [—a, al:

@) = § ~mlog(2e) lojz —yl <a, i=1..m
v —00 otherwise

ML estimate is any = with |a]z — y;| < a



Statistical Estimation:
|_ogistic Regression

random variable y € {0, 1} with distribution

exp(alu +b)
p = prob(y = 1) 1 4+ exp(alu + b)

e a, b are parameters; u € R™ are (observable) explanatory variables

e estimation problem: estimate a, b from m observations (u;, y;)

log-likelihood function (for y1 = =y =1, ypo1 =+ = Ym = 0):
k T m
exp(a’ u; + b) 1
[(a,b) = 1
(a,b) o };[1 1 + exp(a’u; + b) izl;!rl 1 +exp(a’u; +b)
k m
— Z(aTui +b) — Z log(1 + exp(aTui + b))
i=1 1=1

concave in a, b



Minimum Volume Ellipsolo
Around a Set



Minimum Volume Ellipsolo
Around a Set

Lowner-John ellipsoid of a set C: minimum volume ellipsoid £ s.t. C C &

o parametrize £ as & = {v | ||[Av +b|]2 < 1}; w.l.o.g. assume A € S} |

e vol £ is proportional to det A™!; to compute minimum volume ellipsoid,

minimize (over A, b) logdet A~1
subject to sup,ec ||[Av +blj2 < 1

convex, but evaluating the constraint can be hard (for general C)



Minimum Volume Ellipsolo
Around a Set

Lowner-John ellipsoid of a set C: minimum volume ellipsoid £ s.t. C C &

o parametrize £ as & = {v | ||[Av +b|]2 < 1}; w.l.o.g. assume A € S} |

e vol £ is proportional to det A™!; to compute minimum volume ellipsoid,

minimize (over A, b) logdet A~1
subject to sup,ec ||[Av +blj2 < 1

convex, but evaluating the constraint can be hard (for general C)
finite set C' = {x1,..., 2z, }:

minimize (over A, b) logdet A~1
subject to |Az; + 0|2 <1, i=1,...,m

also gives Lowner-John ellipsoid for polyhedron conv{zx1,...,z,}



Maximum Volume
Inscribed Ellipsoid



Maximum Volume
Inscribed Ellipsoid

maximum volume ellipsoid £ inside a convex set C' C R"

o parametrize £ as £ = {Bu+d | ||u|2 < 1}; w.l.o.g. assume B € ST |

e vol £ is proportional to det B; can compute &£ by solving

maximize logdet B
subject to  supj,,<1 lo(Bu+d) <0

(where Io(x) =0 for z € C' and Io(x) = oo for x & C)

convex, but evaluating the constraint can be hard (for general C')



Maximum Volume
Inscribed Ellipsoid

maximum volume ellipsoid £ inside a convex set C' C R"

o parametrize £ as £ = {Bu+d | ||u|2 < 1}; w.l.o.g. assume B € ST |

e vol £ is proportional to det B; can compute &£ by solving

maximize logdet B
subject to  supj,,<1 lo(Bu+d) <0

(where Io(x) =0 for z € C' and Io(x) = oo for x & C)

convex, but evaluating the constraint can be hard (for general C')

polyhedron {z | alz < b;, i =1,...,m}:

maximize logdet B
subject to  [|Ba;|2 +ald <b;, i=1,...,m

(constraint follows from sup,, <1 al (Bu+d) = ||Ba;||2 + al d)



