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Constrained optimization
e Projected gradient descent
e Conditional gradient (Frank-Wolfe) method - today



Projected gradient descent

Consider the constrained problem
min f(x) subject to z € C
x

where f is convex and smooth, and C is convex.

Recall projected gradient descent: choose an initial (%), and for
k=1,2,3,...

.’E(k) :PC($(k 1) tkvf( (k— 1)

where P¢ is the projection operator onto the set C



Projected gradient descent

Consider the constrained problem
min f(x) subject to z € C
x

where f is convex and smooth, and C is convex.

Recall projected gradient descent: choose an initial (%), and for
k=1,2,3,...

2k — Pc(a;(k 1) — .V f(z (k=1) )
where P¢ is the projection operator onto the set C

This was a special case of proximal gradient descent.



Gradient, proximal and projected gradient descent were motivated
by a local quadratic expansion of f:

Fl) ~ F@) + V@)~ ) + 50— )" (5~ 2)

leading to

1
24 = P <argmm V)T (g — D) 4y x<k-1>||%>
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Newton method improved the quadratic expansion using Hessian
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Gradient, proximal and projected gradient descent were motivated
by a local quadratic expansion of f:

Fl) ~ F@) + V@)~ ) + 50— )" (5~ 2)

leading to

1
24 = P <argmm V)T (g — D) 4y x<k-1>||%>
Yy

Newton method improved the quadratic expansion using Hessian
of f (can do projected Newton too):

Fl) ~ (@) + V7@ 5~ 2) + 5y~ )TV @)y~ )

What about a simpler linear expansion of f (when does it make
sense)?

fy) = @)+ V@) (y— =)



Conditional gradient (Frank-Wolfe) method

Using a simpler linear expansion of f:
Choose an initial () € C and for k = 1,2,3, ...

s ¢ argmin Vf(z*F1)Ts
seC

2®) = (1= yp)a®) s

Note that there is no projection; update is solved directly over the
constraint set C



Conditional gradient (Frank-Wolfe) method
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Note that there is no projection; update is solved directly over the
constraint set C

The default choice for step sizes is v, =2/(k+ 1), k=1,2,3,....
No dependence on Lipschitz constant, condition number, or
backtracking line search parameters.
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Using a simpler linear expansion of f:
Choose an initial () € C and for k = 1,2,3, ...
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seC
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Note that there is no projection; update is solved directly over the
constraint set C

The default choice for step sizes is v, =2/(k+ 1), k=1,2,3,....
No dependence on Lipschitz constant, condition number, or
backtracking line search parameters.

For any choice 0 < 4, < 1, we see that 2(¥) € C' by convexity.
(why?)
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Conditional gradient (Frank-Wolfe) method

Using a simpler linear expansion of f:
Choose an initial () € C and for k = 1,2,3, ...

s ¢ argmin Vf(z*F1)Ts
seC

28 = (1 = p)2#D 4 s

Note that there is no projection; update is solved directly over the
constraint set C

Can also think of the update as

2 ) = 1) oy (1) (k)

i.e., we are moving less and less in the direction of the linearization
minimizer as the algorithm proceeds



(From Jaggi 2011)



Norm constraints
What happens when C' = {z : ||z|| <t} for a norm || - [|? Then

s € argmin Vf(z*")Ts
llsll<t

=—t- <argmax Vf(x(k_l))T5>

lIsll<1

= —t- 0|V f ("),
where || - ||« is the corresponding dual norm.

Norms: f(x) = ||z||,. Let ¢ be such that 1/p+1/¢ =1, then

|z|l, = max z'x

||2’Hq§1
And

Of (x) = argmax 2z
lIzllg<1



Norm constraints

What happens when C' = {z : ||z|| <t} for a norm || - [|? Then

s € argmin Vf(z*~)Ts
llsll<t

=—t- <argmax Vf(x(k_l))Ts>

!
= —t- 0|V f(@* V).

where || - ||« is the corresponding dual norm.

In other words, if we know how to compute subgradients of the
dual norm, then we can easily perform Frank-Wolfe steps

A key to Frank-Wolfe: this can often be simpler or cheaper than
projection onto C' = {x : ||z|| < t}. Also often simpler or cheaper
than the prox operator for || - ||
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Example: ¢; regularization

For the ¢1-regularized problem

min f(x) subject to |[z|1 <t
T

we have s(*=1) ¢ —t8||Vf(:1:(k_1))||Oo. Frank-Wolfe update is thus

ip_1 € argmax ‘V flx ))‘
i=1,...p

k) = (1- 7k)$(k_1) — Ykt - Sign( g 1f( a1 )) “ Gy

This is a kind of coordinate descent. (More on coordinate descent
later.)

Note: this is a lot simpler than projection onto the ¢; ball, though
both require O(n) operations
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Example: 7, regularization

For the ¢,-regularized problem

min f(z) subject to ||z, <t
T

for 1 < p < oo, we have s*=1) € —19||V f(x*~1)]|,, where p, q
are dual, i.e., 1/p+1/qg = 1. Claim: can choose

sk — . sign(V fi(z*=)) - sz‘(»’ﬂ(k_l))‘q/p’ t=L...n

)

where « is a constant such that ||s(*~1)||, =t (check this), and
then Frank-Wolfe updates are as usual

Note: this is a lot simpler than projection onto the ¢, ball, for
general p. Aside from special cases (p = 1,2, 00), these projections
cannot be directly computed (must be treated as an optimization)
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Example: trace norm regularization

For the trace-regularized problem

m)}n f(X) subject to [| Xl <t

we have S*=1D ¢ 9|V f(X#=1)||,p. Claim: can choose
S — .7

where u, v are leading left, right singular vectors of Vf(X(k_l))
(check this), and then Frank-Wolfe updates are as usual

Note: this is a lot simpler and more efficient than projection onto

the trace norm ball, which requires a singular value decomposition.
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Constrained and Lagrange forms

Recall that solution of the constrained problem
mxin f(z) subject to |z| <t
are equivalent to those of the Lagrange problem
min f(x) + Az

as we let the tuning parameters ¢ and A vary over [0, c0]. More on
this later.

We should also compare the Frank-Wolfe updates under || - || to
the proximal operator of || - ||

14



e /1 norm: Frank-Wolfe update scans for maximum of gradient;
proximal operator soft-thresholds the gradient step; both use
O(n) flops

e /, norm: Frank-Wolfe update raises each entry of gradient to
power and sums, in O(n) flops; proximal operator not
generally directly computable

e Trace norm: Frank-Wolfe update computes top left and right
singular vectors of gradient; proximal operator soft-thresholds
the gradient step, requiring a singular value decomposition

Many other regularizers yield efficient Frank-Wolfe updates, e.g.,
special polyhedra or cone constraints, sum-of-norms (group-based)
regularization, atomic norms. See Jaggi (2011)
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Comparing projected and conditional gradient for constrained lasso
problem, with n = 100, p = 500:

— Projected gradient
—— Conditional gradient
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We will see that Frank-Wolfe methods match convergence rates of
known first-order methods; but in practice they can be slower to
converge to high accuracy (note: fixed step sizes here, line search
would probably improve convergence)
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Sub-optimality gap

Frank-Wolfe iterations admit a very natural suboptimality gap:

max Vf(zF )T (1) — g)

seC
This is an upper bound on f(z(*~1) — f*
Proof: by the first-order condition for convexity

f(s) > f(x(k—l)) + Vf@(k—l))T(s _ x(k—l))
Minimizing both sides over all s € C' yields

= fE®Y) +min V)T (s - 207Y)

Rearranged, this gives the sub-optimality gap above
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Note that

max Vf(x (k-1) ) (:E(k:—l) —35) = Vf(x(k—l))T(x(k—l) _ S(k_l))

seC

so this quantity comes directly from the Frank-Wolfe update.
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Convergence analysis

Following Jaggi (2011), define the curvature constant of f over C:

2
M= max 5 (f) - ) - V@) - 0)
y=(1—v)z+7s

(Above we restrict v € [0,1].) Note that M = 0 when f is linear.
The quantity f(y) — f(z) — Vf(z)T(y — ) is called the Bregman
divergence defined by f

Theorem: Conditional gradient method using fixed step sizes
v =2/(k+1), k=1,2,3,... satisfies

2M

(k)y _ pr o 2
f() f§k+2

Number of iterations needed to have f(z(*)) — f* < eis O(1/¢)
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This matches the known rate for projected gradient descent when
V f is Lipschitz, but how do the assumptions compare?. In fact, if
V£ is Lipschitz with constant L then M < diam?(C) - L, where

diam(C) = max |z — s||2

To see this, recall that V f Lipschitz with constant L means

L
< Z

_ 2
< Sy - I3

fy) = f@) = V@) (y—2)

Maximizing over all y = (1 — )z + ~vs, and multiplying by 2/+2,

2
M < max — -
z,s,ycC v

y=(1—7)z+~s

L
S lly - x| = max Lz - s|l3

and the bound follows. Essentially, assuming a bounded curvature
is no stronger than what we assumed for proximal gradient
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Basic inequality

The key inequality used to prove the Frank-Wolfe convergence rate
is:

2
f@®) < F@D) =gtV + Em

Here g(z) = max,ec Vf(z)? (z — s) is the sub-optimality gap
discussed earlier. The rate follows from this inequality, using
induction

Proof: write 2T = 2%, 2 = z(b=1) s = s(b=1) ~ =~ Then
f@h) = f(z+(s — 1))
2
< f(@) + V@) (s = x) + 5 M
2

= f(2) = g(a) + 3 M

Second line used definition of M, and third line the definition of g
21



Affine invariance

Important property of Frank-Wolfe: its updates are affine invariant.

Given nonsingular A : R™ — R", define z = A2/, h(z') = f(Ax').
Then Frank-Wolfe on h(z’) proceeds as

s’ = argmin Vh(z')? 2
2€A-1C

()t = (1 —7)a’ + s

Multiplying by A reveals precisely the same Frank-Wolfe update as
would be performed on f(x). Even convergence analysis is affine
invariant. Note that the curvature constant M of h is

2
M = max ~ — (h(y') — h(z") = Vh(zT(y — x'))
/s’y eA"1C Y
y'=(1—7)z'+vs’

matching that of f, because Vh(z)T (v — 2') = Vf(2)T (y — x)

22



Inexact updates

Jaggi (2011) also analyzes inexact Frank-Wolfe updates. That is,
suppose we choose s(*~1) so that

V f (DT =D < min ¥ p(at-0yTs 4 Mk

1)
seC 2

where § > 0 is our inaccuracy parameter. Then we basically attain
the same rate

Theorem: Conditional gradient method using fixed step sizes
v =2/(k+1), k=1,2,3,..., and inaccuracy parameter § > 0,

satisfies
2M

Ry — v < 22 (146
P - < S 140)
Note: the optimization error at step k is % -d. Since v — 0, we

require the errors to vanish
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Some variants

Some variants of the conditional gradient method:

e Line search: instead of fixing v, =2/(k+1), k=1,2,3,...,
use exact line search for the step sizes

Ve = argmin f(l‘(k_l) + 7(3("5—1) _ x(k—l)))
~v€[0,1]

ateach k =1,2,3,.... Or, we could use backtracking

e Fully corrective: directly update according to

) = argmin f(y) subject to y € conv{a:(o), sO . s(kfl)}
y

Can make much better progress, but is also quite a bit harder
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