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Outline

Today:

• Conditional gradient method

• Convergence analysis

• Properties and variants
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So far ...

Unconstrained optimization

• Gradient descent

• Conjugate gradient method

• Accelerated gradient methods

• Newton and Quasi-newton methods

• Trust region methods

• Proximal gradient descent

Constrained optimization

• Projected gradient descent

• Conditional gradient (Frank-Wolfe) method - today

• . . .
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Projected gradient descent

Consider the constrained problem

min
x

f(x) subject to x ∈ C

where f is convex and smooth, and C is convex.

Recall projected gradient descent: choose an initial x(0), and for
k = 1, 2, 3, . . .

x(k) = PC
(
x(k−1) − tk∇f(x(k−1)

)

where PC is the projection operator onto the set C

This was a special case of proximal gradient descent.
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Gradient, proximal and projected gradient descent were motivated
by a local quadratic expansion of f :

f(y) ≈ f(x) +∇f(x)T (y − x) + 1

2t
(y − x)T (y − x)

leading to

x(k) = PC

(
argmin

y
∇f(x(k−1))T (y− x(k−1)) + 1

2t
‖y− x(k−1)‖22

)

Newton method improved the quadratic expansion using Hessian
of f (can do projected Newton too):

f(y) ≈ f(x) +∇f(x)T (y − x) + 1

2
(y − x)T∇2f(x)(y − x)

What about a simpler linear expansion of f (when does it make
sense)?

f(y) ≈ f(x) +∇f(x)T (y − x)
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Conditional gradient (Frank-Wolfe) method

Using a simpler linear expansion of f :
Choose an initial x(0) ∈ C and for k = 1, 2, 3, . . .

s(k−1) ∈ argmin
s∈C

∇f(x(k−1))T s

x(k) = (1− γk)x(k−1) + γks
(k−1)

Note that there is no projection; update is solved directly over the
constraint set C

The default choice for step sizes is γk = 2/(k + 1), k = 1, 2, 3, . . ..
No dependence on Lipschitz constant, condition number, or
backtracking line search parameters.

For any choice 0 ≤ γk ≤ 1, we see that x(k) ∈ C by convexity.
(why?)
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x(k) = (1− γk)x(k−1) + γks
(k−1)

Note that there is no projection; update is solved directly over the
constraint set C

Can also think of the update as

x(k) = x(k−1) + γk(s
(k−1) − x(k−1))

i.e., we are moving less and less in the direction of the linearization
minimizer as the algorithm proceeds
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Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization

Martin Jaggi jaggi@cmap.polytechnique.fr

CMAP, École Polytechnique, Palaiseau, France

Abstract
We provide stronger and more general
primal-dual convergence results for Frank-
Wolfe-type algorithms (a.k.a. conditional
gradient) for constrained convex optimiza-
tion, enabled by a simple framework of du-
ality gap certificates. Our analysis also holds
if the linear subproblems are only solved ap-
proximately (as well as if the gradients are
inexact), and is proven to be worst-case opti-
mal in the sparsity of the obtained solutions.

On the application side, this allows us to
unify a large variety of existing sparse greedy
methods, in particular for optimization over
convex hulls of an atomic set, even if those
sets can only be approximated, including
sparse (or structured sparse) vectors or ma-
trices, low-rank matrices, permutation matri-
ces, or max-norm bounded matrices.
We present a new general framework for con-
vex optimization over matrix factorizations,
where every Frank-Wolfe iteration will con-
sist of a low-rank update, and discuss the
broad application areas of this approach.

1. Introduction

Our work here addresses general constrained convex
optimization problems of the form

min
x2D

f(x) . (1)

We assume that the objective function f is convex and
continuously di↵erentiable, and that the domain D is a
compact convex subset of any vector space1. For such
optimization problems, one of the simplest and earliest
known iterative optimizers is given by the Frank-Wolfe
method (1956), described in Algorithm 1, also known
as the conditional gradient method.

1Formally, we assume that the optimization domain D
is a compact and convex subset of a Hilbert space X , i.e.
a Banach space equipped with an inner product h., .i.
Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author. This
article builds upon the authors PhD thesis (Jaggi, 2011).

Algorithm 1 Frank-Wolfe (1956)

Let x(0) 2 D
for k = 0 . . . K do

Compute s := arg min
s2D

⌦
s,rf(x(k))

↵

Update x(k+1) := (1� �)x(k) + �s, for � := 2
k+2

end for

A step of this algorithm is illustrated in the inset fig-
ure: At a current position x, the algorithm considers
the linearization of the objective function, and moves

f(x)

D

f

x
s

g(x)

towards a minimizer of
this linear function (taken
over the same domain).

In terms of conver-
gence, it is known
that the iterates of
Algorithm 1 satisfy
f(x(k)) � f(x⇤)  O

�
1
k

�
,

for x⇤ being an optimal
solution to (1) (Frank & Wolfe, 1956; Dunn & Harsh-
barger, 1978). In recent years, Frank-Wolfe-type
methods have re-gained interest in several areas, fu-
eled by the good scalability, and the crucial property
that Algorithm 1 maintains its iterates as a convex
combination of only few “atoms” s, enabling e.g.
sparse and low-rank solutions (since at most one new
extreme point of the domain D is added in each step)
see e.g. (Clarkson, 2010; Jaggi, 2011) for an overview.

Contributions. The contributions of this paper are
two-fold: On the theoretical side, we give a conver-
gence analysis for the general Frank-Wolfe algorithm
guaranteeing small duality gap, and provide e�cient
certificates for the approximation quality (which are
useful even for other optimizers). This result is ob-
tained by extending the duality concept as well as the
analysis of (Clarkson, 2010) to general Fenchel duality,
and approximate linear subproblems. Furthermore,
the presented analysis unifies several existing conver-
gence results for di↵erent sparse greedy algorithm vari-
ants into one simplified proof. In contrast to existing
convex optimization methods, our convergence anal-
ysis (as well as the algorithm itself) are fully invari-
ant under any a�ne transformation/pre-conditioning

(From Jaggi 2011)
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Norm constraints
What happens when C = {x : ‖x‖ ≤ t} for a norm ‖ · ‖? Then

s ∈ argmin
‖s‖≤t

∇f(x(k−1))T s

= −t ·
(
argmax
‖s‖≤1

∇f(x(k−1))T s
)

= −t · ∂‖∇f(x(k−1))‖∗

where ‖ · ‖∗ is the corresponding dual norm.

Norms: f(x) = ‖x‖p. Let q be such that 1/p+ 1/q = 1, then

‖x‖p = max
‖z‖q≤1

zTx

And
∂f(x) = argmax

‖z‖q≤1
zTx
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Norm constraints

What happens when C = {x : ‖x‖ ≤ t} for a norm ‖ · ‖? Then

s ∈ argmin
‖s‖≤t

∇f(x(k−1))T s

= −t ·
(
argmax
‖s‖≤1

∇f(x(k−1))T s
)

= −t · ∂‖∇f(x(k−1))‖∗

where ‖ · ‖∗ is the corresponding dual norm.

In other words, if we know how to compute subgradients of the
dual norm, then we can easily perform Frank-Wolfe steps

A key to Frank-Wolfe: this can often be simpler or cheaper than
projection onto C = {x : ‖x‖ ≤ t}. Also often simpler or cheaper
than the prox operator for ‖ · ‖
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Example: `1 regularization

For the `1-regularized problem

min
x

f(x) subject to ‖x‖1 ≤ t

we have s(k−1) ∈ −t∂‖∇f(x(k−1))‖∞. Frank-Wolfe update is thus

ik−1 ∈ argmax
i=1,...p

∣∣∇if(x(k−1))
∣∣

x(k) = (1− γk)x(k−1) − γkt · sign
(
∇ik−1

f(x(k−1))
)
· eik−1

This is a kind of coordinate descent. (More on coordinate descent
later.)

Note: this is a lot simpler than projection onto the `1 ball, though
both require O(n) operations
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Example: `p regularization

For the `p-regularized problem

min
x

f(x) subject to ‖x‖p ≤ t

for 1 ≤ p ≤ ∞, we have s(k−1) ∈ −t∂‖∇f(x(k−1))‖q, where p, q
are dual, i.e., 1/p+ 1/q = 1. Claim: can choose

s
(k−1)
i = −α · sign

(
∇fi(x(k−1))

)
·
∣∣∇fi(x(k−1))

∣∣q/p, i = 1, . . . n

where α is a constant such that ‖s(k−1)‖q = t (check this), and
then Frank-Wolfe updates are as usual

Note: this is a lot simpler than projection onto the `p ball, for
general p. Aside from special cases (p = 1, 2,∞), these projections
cannot be directly computed (must be treated as an optimization)
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Example: trace norm regularization

For the trace-regularized problem

min
X

f(X) subject to ‖X‖tr ≤ t

we have S(k−1) ∈ −t∂‖∇f(X(k−1))‖op. Claim: can choose

S(k−1) = −t · uvT

where u, v are leading left, right singular vectors of ∇f(X(k−1))
(check this), and then Frank-Wolfe updates are as usual

Note: this is a lot simpler and more efficient than projection onto
the trace norm ball, which requires a singular value decomposition.
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Constrained and Lagrange forms

Recall that solution of the constrained problem

min
x

f(x) subject to ‖x‖ ≤ t

are equivalent to those of the Lagrange problem

min
x

f(x) + λ‖x‖

as we let the tuning parameters t and λ vary over [0,∞]. More on
this later.

We should also compare the Frank-Wolfe updates under ‖ · ‖ to
the proximal operator of ‖ · ‖
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• `1 norm: Frank-Wolfe update scans for maximum of gradient;
proximal operator soft-thresholds the gradient step; both use
O(n) flops

• `p norm: Frank-Wolfe update raises each entry of gradient to
power and sums, in O(n) flops; proximal operator not
generally directly computable

• Trace norm: Frank-Wolfe update computes top left and right
singular vectors of gradient; proximal operator soft-thresholds
the gradient step, requiring a singular value decomposition

Many other regularizers yield efficient Frank-Wolfe updates, e.g.,
special polyhedra or cone constraints, sum-of-norms (group-based)
regularization, atomic norms. See Jaggi (2011)
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Comparing projected and conditional gradient for constrained lasso
problem, with n = 100, p = 500:
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We will see that Frank-Wolfe methods match convergence rates of
known first-order methods; but in practice they can be slower to
converge to high accuracy (note: fixed step sizes here, line search
would probably improve convergence)
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Sub-optimality gap

Frank-Wolfe iterations admit a very natural suboptimality gap:

max
s∈C

∇f(x(k−1))T (x(k−1) − s)

This is an upper bound on f(x(k−1))− f?

Proof: by the first-order condition for convexity

f(s) ≥ f(x(k−1)) +∇f(x(k−1))T (s− x(k−1))

Minimizing both sides over all s ∈ C yields

f? ≥ f(x(k−1)) + min
s∈C

∇f(x(k−1))T (s− x(k−1))

Rearranged, this gives the sub-optimality gap above
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Note that

max
s∈C

∇f(x(k−1))T (x(k−1) − s) = ∇f(x(k−1))T (x(k−1) − s(k−1))

so this quantity comes directly from the Frank-Wolfe update.
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Convergence analysis

Following Jaggi (2011), define the curvature constant of f over C:

M = max
x,s,y∈C

y=(1−γ)x+γs

2

γ2

(
f(y)− f(x)−∇f(x)T (y − x)

)

(Above we restrict γ ∈ [0, 1].) Note that M = 0 when f is linear.
The quantity f(y)− f(x)−∇f(x)T (y − x) is called the Bregman
divergence defined by f

Theorem: Conditional gradient method using fixed step sizes
γk = 2/(k + 1), k = 1, 2, 3, . . . satisfies

f(x(k))− f? ≤ 2M

k + 2

Number of iterations needed to have f(x(k))− f? ≤ ε is O(1/ε)
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This matches the known rate for projected gradient descent when
∇f is Lipschitz, but how do the assumptions compare?. In fact, if
∇f is Lipschitz with constant L then M ≤ diam2(C) · L, where

diam(C) = max
x,s∈C

‖x− s‖2

To see this, recall that ∇f Lipschitz with constant L means

f(y)− f(x)−∇f(x)T (y − x) ≤ L

2
‖y − x‖22

Maximizing over all y = (1− γ)x+ γs, and multiplying by 2/γ2,

M ≤ max
x,s,y∈C

y=(1−γ)x+γs

2

γ2
· L
2
‖y − x‖22 = max

x,s∈C
L‖x− s‖22

and the bound follows. Essentially, assuming a bounded curvature
is no stronger than what we assumed for proximal gradient
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Basic inequality

The key inequality used to prove the Frank-Wolfe convergence rate
is:

f(x(k)) ≤ f(x(k−1))− γkg(x(k−1)) +
γ2k
2
M

Here g(x) = maxs∈C ∇f(x)T (x− s) is the sub-optimality gap
discussed earlier. The rate follows from this inequality, using
induction

Proof: write x+ = x(k), x = x(k−1), s = s(k−1), γ = γk. Then

f(x+) = f
(
x+ γ(s− x)

)

≤ f(x) + γ∇f(x)T (s− x) + γ2

2
M

= f(x)− γg(x) + γ2

2
M

Second line used definition of M , and third line the definition of g
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Affine invariance

Important property of Frank-Wolfe: its updates are affine invariant.
Given nonsingular A : Rn → Rn, define x = Ax′, h(x′) = f(Ax′).
Then Frank-Wolfe on h(x′) proceeds as

s′ = argmin
z∈A−1C

∇h(x′)T z

(x′)+ = (1− γ)x′ + γs′

Multiplying by A reveals precisely the same Frank-Wolfe update as
would be performed on f(x). Even convergence analysis is affine
invariant. Note that the curvature constant M of h is

M = max
x′,s′,y′∈A−1C
y′=(1−γ)x′+γs′

2

γ2

(
h(y′)− h(x′)−∇h(x′)T (y′ − x′)

)

matching that of f , because ∇h(x′)T (y′ − x′) = ∇f(x)T (y − x)
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Inexact updates

Jaggi (2011) also analyzes inexact Frank-Wolfe updates. That is,
suppose we choose s(k−1) so that

∇f(x(k−1))T s(k−1) ≤ min
s∈C

∇f(x(k−1))T s+ Mγk
2
· δ

where δ ≥ 0 is our inaccuracy parameter. Then we basically attain
the same rate

Theorem: Conditional gradient method using fixed step sizes
γk = 2/(k+1), k = 1, 2, 3, . . ., and inaccuracy parameter δ ≥ 0,
satisfies

f(x(k))− f? ≤ 2M

k + 2
(1 + δ)

Note: the optimization error at step k is Mγk
2 · δ. Since γk → 0, we

require the errors to vanish
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Some variants

Some variants of the conditional gradient method:

• Line search: instead of fixing γk = 2/(k + 1), k = 1, 2, 3, . . .,
use exact line search for the step sizes

γk = argmin
γ∈[0,1]

f
(
x(k−1) + γ(s(k−1) − x(k−1))

)

at each k = 1, 2, 3, . . .. Or, we could use backtracking

• Fully corrective: directly update according to

x(k) = argmin
y

f(y) subject to y ∈ conv{x(0), s(0), . . . s(k−1)}

Can make much better progress, but is also quite a bit harder
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