Conditional Gradient (Frank-Wolfe) Method

Lecturer: Aarti Singh
Co-instructor: Pradeep Ravikumar

Convex Optimization 10-725/36-725

Outline

Today:
e Conditional gradient method
e Convergence analysis

e Properties and variants

So far ...

Unconstrained optimization

Gradient descent

Conjugate gradient method

Accelerated gradient methods

Newton and Quasi-newton methods

Trust region methods

Proximal gradient descent

So far ...

Unconstrained optimization

Gradient descent

Conjugate gradient method

Accelerated gradient methods

Newton and Quasi-newton methods
e Trust region methods

e Proximal gradient descent

Constrained optimization
e Projected gradient descent
e Conditional gradient (Frank-Wolfe) method - today

Projected gradient descent

Consider the constrained problem
min f(x) subject to z € C
x

where f is convex and smooth, and C is convex.

Recall projected gradient descent: choose an initial (%), and for
k=1,2,3,...

.’E(k) :PC($(k 1) tkvf((k— 1)

where P¢ is the projection operator onto the set C

Projected gradient descent

Consider the constrained problem
min f(x) subject to z € C
x

where f is convex and smooth, and C is convex.

Recall projected gradient descent: choose an initial (%), and for
k=1,2,3,...

2k — Pc(a;(k 1) — .V f(z (k=1))
where P¢ is the projection operator onto the set C

This was a special case of proximal gradient descent.

Gradient, proximal and projected gradient descent were motivated
by a local quadratic expansion of f:

Fl) ~ F@) + V@)~) + 50—)" (5~ 2)

leading to

1
24 = P <argmm V)T (g — D) 4y x<k-1>||%>
Yy

Gradient, proximal and projected gradient descent were motivated
by a local quadratic expansion of f:

Fl) ~ F@) + V@)~) + 50—)" (5~ 2)

leading to

1
24 = P <argmm V)T (g — D) 4y x<k-1>||%>
Yy

Newton method improved the quadratic expansion using Hessian
of f (can do projected Newton too):

Fl) ~ (@) + V7@ 5~ 2) + 5y~)TV @)y~)

Gradient, proximal and projected gradient descent were motivated
by a local quadratic expansion of f:

Fl) ~ F@) + V@)~) + 50—)" (5~ 2)

leading to

1
24 = P <argmm V)T (g — D) 4y x<k-1>||%>
Yy

Newton method improved the quadratic expansion using Hessian
of f (can do projected Newton too):

Fl) ~ (@) + V7@ 5~ 2) + 5y~)TV @)y~)

What about a simpler linear expansion of f (when does it make
sense)?

fy) = @)+ V@) (y— =)

Conditional gradient (Frank-Wolfe) method

Using a simpler linear expansion of f:
Choose an initial () € C and for k = 1,2,3, ...

s ¢ argmin Vf(z*F1)Ts
seC

2®) = (1= yp)a®) s

Note that there is no projection; update is solved directly over the
constraint set C

Conditional gradient (Frank-Wolfe) method

Using a simpler linear expansion of f:
Choose an initial () € C and for k = 1,2,3, ...

s ¢ argmin Vf(z*F1)Ts
seC

M= (1=)% 4 pes

2((k=1)
Note that there is no projection; update is solved directly over the
constraint set C

The default choice for step sizes is v, =2/(k+ 1), k=1,2,3,....
No dependence on Lipschitz constant, condition number, or
backtracking line search parameters.

Conditional gradient (Frank-Wolfe) method

Using a simpler linear expansion of f:
Choose an initial () € C and for k = 1,2,3, ...

s ¢ argmin Vf(z*F1)Ts
seC
2®) = (1= yp)a®) s

Note that there is no projection; update is solved directly over the
constraint set C

The default choice for step sizes is v, =2/(k+ 1), k=1,2,3,....
No dependence on Lipschitz constant, condition number, or
backtracking line search parameters.

For any choice 0 < 4, < 1, we see that 2(¥) € C' by convexity.
(why?)

Conditional gradient (Frank-Wolfe) method

Using a simpler linear expansion of f:
Choose an initial () € C and for k = 1,2,3, ...

s ¢ argmin Vf(z*F1)Ts
seC

2®) = (1=)2 s

Note that there is no projection; update is solved directly over the
constraint set C

Conditional gradient (Frank-Wolfe) method

Using a simpler linear expansion of f:
Choose an initial () € C and for k = 1,2,3, ...

s ¢ argmin Vf(z*F1)Ts
seC

28 = (1 = p)2#D 4 s

Note that there is no projection; update is solved directly over the
constraint set C

Can also think of the update as

2) = 1) oy (1) (k)

i.e., we are moving less and less in the direction of the linearization
minimizer as the algorithm proceeds

(From Jaggi 2011)

Norm constraints
What happens when C' = {z : ||z|| <t} for a norm || - [|? Then

s € argmin Vf(z*")Ts
llsll<t

=—t- <argmax Vf(x(k_l))T5>

lIsll<1

= —t- 0|V f ("),
where || - ||« is the corresponding dual norm.

Norms: f(x) = ||z||,. Let ¢ be such that 1/p+1/¢ =1, then

|z|l, = max z'x

||2’Hq§1
And

Of (x) = argmax 2z
lIzllg<1

Norm constraints

What happens when C' = {z : ||z|| <t} for a norm || - [|? Then

s € argmin Vf(z*~)Ts
llsll<t

=—t- <argmax Vf(x(k_l))Ts>

!
= —t- 0|V f(@* V).

where || - ||« is the corresponding dual norm.

In other words, if we know how to compute subgradients of the
dual norm, then we can easily perform Frank-Wolfe steps

A key to Frank-Wolfe: this can often be simpler or cheaper than
projection onto C' = {x : ||z|| < t}. Also often simpler or cheaper
than the prox operator for || - ||

10

Example: ¢; regularization

For the ¢1-regularized problem

min f(x) subject to |[z|1 <t
T

we have s(*=1) ¢ —t8||Vf(:1:(k_1))||Oo. Frank-Wolfe update is thus

ip_1 € argmax ‘V flx))‘
i=1,...p

k) = (1- 7k)$(k_1) — Ykt - Sign(g 1f(a1)) “ Gy

This is a kind of coordinate descent. (More on coordinate descent
later.)

Note: this is a lot simpler than projection onto the ¢; ball, though
both require O(n) operations

11

Example: 7, regularization

For the ¢,-regularized problem

min f(z) subject to ||z, <t
T

for 1 < p < oo, we have s*=1) € —19||V f(x*~1)]|,, where p, q
are dual, i.e., 1/p+1/qg = 1. Claim: can choose

sk — . sign(V fi(z*=)) - sz‘(»’ﬂ(k_l))‘q/p’ t=L...n

)

where « is a constant such that ||s(*~1)||, =t (check this), and
then Frank-Wolfe updates are as usual

Note: this is a lot simpler than projection onto the ¢, ball, for
general p. Aside from special cases (p = 1,2, 00), these projections
cannot be directly computed (must be treated as an optimization)

12

Example: trace norm regularization

For the trace-regularized problem

m)}n f(X) subject to [| Xl <t

we have S*=1D ¢ 9|V f(X#=1)||,p. Claim: can choose
S — .7

where u, v are leading left, right singular vectors of Vf(X(k_l))
(check this), and then Frank-Wolfe updates are as usual

Note: this is a lot simpler and more efficient than projection onto

the trace norm ball, which requires a singular value decomposition.

13

Constrained and Lagrange forms

Recall that solution of the constrained problem
mxin f(z) subject to |z| <t
are equivalent to those of the Lagrange problem
min f(x) + Az

as we let the tuning parameters ¢ and A vary over [0, c0]. More on
this later.

We should also compare the Frank-Wolfe updates under || - || to
the proximal operator of || - ||

14

e /1 norm: Frank-Wolfe update scans for maximum of gradient;
proximal operator soft-thresholds the gradient step; both use
O(n) flops

e /, norm: Frank-Wolfe update raises each entry of gradient to
power and sums, in O(n) flops; proximal operator not
generally directly computable

e Trace norm: Frank-Wolfe update computes top left and right
singular vectors of gradient; proximal operator soft-thresholds
the gradient step, requiring a singular value decomposition

Many other regularizers yield efficient Frank-Wolfe updates, e.g.,
special polyhedra or cone constraints, sum-of-norms (group-based)
regularization, atomic norms. See Jaggi (2011)

15

Comparing projected and conditional gradient for constrained lasso
problem, with n = 100, p = 500:

— Projected gradient
—— Conditional gradient

1e+03
I

f-fstar
le+01 1e+02
| |

1e+00
I

le-01

T T T T T T
0 200 400 600 800 1000

k

We will see that Frank-Wolfe methods match convergence rates of
known first-order methods; but in practice they can be slower to
converge to high accuracy (note: fixed step sizes here, line search
would probably improve convergence)

16

Sub-optimality gap

Frank-Wolfe iterations admit a very natural suboptimality gap:

max Vf(zF)T (1) — g)

seC
This is an upper bound on f(z(*~1) — f*
Proof: by the first-order condition for convexity

f(s) > f(x(k—l)) + Vf@(k—l))T(s _ x(k—l))
Minimizing both sides over all s € C' yields

= fE®Y) +min V)T (s - 207Y)

Rearranged, this gives the sub-optimality gap above

17

Note that

max Vf(x (k-1)) (:E(k:—l) —35) = Vf(x(k—l))T(x(k—l) _ S(k_l))

seC

so this quantity comes directly from the Frank-Wolfe update.

18

Convergence analysis

Following Jaggi (2011), define the curvature constant of f over C:

2
M= max 5 (f) -) - V@) - 0)
y=(1—v)z+7s

(Above we restrict v € [0,1].) Note that M = 0 when f is linear.
The quantity f(y) — f(z) — Vf(z)T(y —) is called the Bregman
divergence defined by f

Theorem: Conditional gradient method using fixed step sizes
v =2/(k+1), k=1,2,3,... satisfies

2M

(k)y _ pr o 2
f() f§k+2

Number of iterations needed to have f(z(*)) — f* < eis O(1/¢)

19

This matches the known rate for projected gradient descent when
V f is Lipschitz, but how do the assumptions compare?. In fact, if
V£ is Lipschitz with constant L then M < diam?(C) - L, where

diam(C) = max |z — s||2

To see this, recall that V f Lipschitz with constant L means

L
< Z

_ 2
< Sy - I3

fy) = f@) = V@) (y—2)

Maximizing over all y = (1 —)z + ~vs, and multiplying by 2/+2,

2
M < max — -
z,s,ycC v

y=(1—7)z+~s

L
S lly - x| = max Lz - s|l3

and the bound follows. Essentially, assuming a bounded curvature
is no stronger than what we assumed for proximal gradient

20

Basic inequality

The key inequality used to prove the Frank-Wolfe convergence rate
is:

2
f@®) < F@D) =gtV + Em

Here g(z) = max,ec Vf(z)? (z — s) is the sub-optimality gap
discussed earlier. The rate follows from this inequality, using
induction

Proof: write 2T = 2%, 2 = z(b=1) s = s(b=1) ~ =~ Then
f@h) = f(z+(s — 1))
2
< f(@) + V@) (s = x) + 5 M
2

= f(2) = g(a) + 3 M

Second line used definition of M, and third line the definition of g
21

Affine invariance

Important property of Frank-Wolfe: its updates are affine invariant.

Given nonsingular A : R™ — R", define z = A2/, h(z') = f(Ax').
Then Frank-Wolfe on h(z’) proceeds as

s’ = argmin Vh(z')? 2
2€A-1C

()t = (1 —7)a’ + s

Multiplying by A reveals precisely the same Frank-Wolfe update as
would be performed on f(x). Even convergence analysis is affine
invariant. Note that the curvature constant M of h is

2
M = max ~ — (h(y') — h(z") = Vh(zT(y — x'))
/s’y eA"1C Y
y'=(1—7)z'+vs’

matching that of f, because Vh(z)T (v — 2') = Vf(2)T (y — x)

22

Inexact updates

Jaggi (2011) also analyzes inexact Frank-Wolfe updates. That is,
suppose we choose s(*~1) so that

V f (DT =D < min ¥ p(at-0yTs 4 Mk

1)
seC 2

where § > 0 is our inaccuracy parameter. Then we basically attain
the same rate

Theorem: Conditional gradient method using fixed step sizes
v =2/(k+1), k=1,2,3,..., and inaccuracy parameter § > 0,

satisfies
2M

Ry — v < 22 (146
P - < S 140)
Note: the optimization error at step k is % -d. Since v — 0, we

require the errors to vanish

23

Some variants

Some variants of the conditional gradient method:

e Line search: instead of fixing v, =2/(k+1), k=1,2,3,...,
use exact line search for the step sizes

Ve = argmin f(l‘(k_l) + 7(3("5—1) _ x(k—l)))
~v€[0,1]

ateach k =1,2,3,.... Or, we could use backtracking

e Fully corrective: directly update according to

) = argmin f(y) subject to y € conv{a:(o), sO . s(kfl)}
y

Can make much better progress, but is also quite a bit harder

24

References

K. Clarkson (2010), “Coresets, sparse greedy approximation,
and the Frank-Wolfe algorithm”

J. Giesen and M. Jaggi and S. Laue, S. (2012),
“Approximating parametrized convex optimization problems”

M. Jaggi (2011), “Sparse convex optimization methods for
machine learning”

M. Jaggi (2011), “Revisiting Frank-Wolfe: projection-free
sparse convex optimization”

M. Frank and P. Wolfe (1956), “An algorithm for quadratic
programming”

25

