
Homework 3
Conjugate Gradient Descent, Accelerated Gradient Descent

Newton, Quasi Newton and Projected Gradient Descent

CMU 10-725/36-725: Convex Optimization (Fall 2017)

OUT: Sep 29
DUE: Oct 13, 5:00 PM

START HERE: Instructions

• Collaboration policy: Collaboration on solving the homework is allowed, after you have thought
about the problems on your own. It is also OK to get clarification (but not solutions) from books
or online resources, again after you have thought about the problems on your own. There are two
requirements: first, cite your collaborators fully and completely (e.g., “Jane explained to me what is
asked in Question 3.4”). Second, write your solution independently: close the book and all of your
notes, and send collaborators out of the room, so that the solution comes from you only.

• Submitting your work: Assignments should be submitted as PDFs using Gradescope unless explic-
itly stated otherwise. Each derivation/proof should be completed on a separate page. Submissions
can be handwritten, but should be labeled and clearly legible. Else, submissions can be written in
LaTeX. Upon submission, label each question using the template provided by Gradescope. Please refer
to Piazza for detailed instruction for joining Gradescope and submitting your homework.

• Programming: All programming portions of the assignments should be submitted to Gradescope as
well. We will not be using this for autograding, meaning you may use any language which you like to
submit.
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1 Convergence of Accelerated Gradient Descent (25 points) [Yi-
chong]

In this problem we prove the convergence rate of Nesterov’s accelerated gradient descent. Suppose f : Rd → R
is a convex function and∇f is L-Lipschitz. Starting with a starting point x0, the accelerated gradient descent
is defined as

pk = −∇f (xk + βk(xk − xk−1)) + βkpk−1,

xk+1 = xk + αkpk.

We will work with the following setting of parameters: Let θ0 = 0, dθk =
1+
√

1+4θ2k−1

2 , and dβk = θk−1−1
θk

.

Also αk = 1/L for all k.

(a) [4 pts] Let tk = xk + βk(xk − xk−1). Express ∇f(tk) using tk and xk+1.

(b) [6 pts] Show that for any y ∈ Rd we have

f(xk+1)− f(y) ≤ − 1

2L
‖∇f(tk)‖22 +∇f(tk)T (tk − y).

(c) [2 pts] Express tk+1 using xk+1 and xk (and possibly α and β).

(d) [8 pts] Apply (b) to y = xk and y = x∗, where x∗ is the global minimum, and show that

θ2k (f(xk+1)− f(x∗))− θ2k−1 (f(xk)− f(x∗))

≤L
2

(‖θktk − (θk − 1)xk − x∗‖22 − ‖θk+1tk+1 − (θk+1 − 1)xk+1 − x∗‖22).

(e) [5 pts] Show that for every t > 1 we have

f(xt)− f(x∗) ≤ 2L‖t1 − x∗‖22
t2

.

i.e., a quadratic convergence.

2 Newton, Quasi Newton (20 points) [Yifeng]

2.1 Invariance under affine transformation of Newton update

[5 pts]

Let f : Rn → R be convex and twice differentiable, b ∈ Rn and A ∈ Rn×n be invertible. Define g as
g(x) = f(Ax+ b) for all x and let u0 ∈ Rn be arbitrary but fixed. A step of Newton’s method applied to f
at u0 results in

u1 = u0 −
(
∇2f(u0)

)−1∇f(u0). (1)

Show that a step of the Newton’s method applied to g at x0 = A−1(u0 − b) results in x1 = A−1(u1 − b).

This will imply that g(x1) = f(u1), that is, the criterion values match after a Newton step. This will continue
to be true at all iterations, and thus we say that Newton’s method is affine invariant.
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2.2 Quadratic convergence of Newton update

Let f : R → R be convex and three times continuously differentiable with |f ′′′(x)| ≤ C1 bounded and
f ′′(x) ≥ C2 > 0 for all x. Let x∗ be a local minimum. x1, x2, . . . are the points that Newton method iterates
through.

(a) [2 pts] Represent f ′(x) using x, xk, f ′(xk), f ′′(xk), f ′′′(ξ). Here x ∈ R, and ξ is a value between x
and xk. Hint: Try Taylor series with Lagrange remainder.

(b) [3 pts] Substitute x with x∗ in the above representation, show that

|xk+1 − x∗| = O(|xk − x∗|2). (2)

2.3 Derivation of Davidon-Fletcher-Powell (DFP) update

One way to derive the DFP updates is to find B+ closest to B in some norm so that B+ satisfies the secant
equation and is symmetric.

(a) [5 pts] Simple Frobenius norm

Assume y, s ∈ Rn are non-zero vectors and B ∈ Rn×n is a symmetric matrix. Then the solution (you
don’t have to prove it) to the Frobenius norm minimization problem

min
B+

‖B+ −B‖2F
subject to (B+)T = B+

B+s = y

is

B+ = B +
(y −Bs)sT

sT s
+
s(y −Bs)T

sT s
− (y −Bs)T s

(sT s)2
ssT . (3)

Show via a counterexample that B+ may not be positive definite even if B is symmetric positive definite
and yT s > 0.

Hint: observe that B+ can be written as

B+ =

(
I − ss>

s>s

)
B

(
I − ss>

s>s

)
+
ys>

s>s
+
sy>

s>s
− y>s

(s>s)2
ss>.

(b) [5 pts] Weighted Frobenius norm

Assume y, s ∈ Rn are such that yT s > 0 and B ∈ Rn×n is a symmetric matrix. Let W ∈ Rn×n be a
non-singular matrix such that WWT s = y. Show that the solution to the weighted Frobenius norm
minimization problem

min
B+

‖W−1(B+ −B)W−T ‖2F
subject to (B+)T = B+

B+s = y

is the DFP update

B+ = B +
(y −Bs)yT

yT s
+
y(y −Bs)T

yT s
− (y −Bs)T s

(yT s)2
yyT .

Hint: use Eq. (3) and a suitable change of variables.
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3 Conjugate Gradient Descent (20 points) [Hao]

[10pts] Linear Search methods Show that the Polak-Ribiere formula given by βPRk = (gk+1−gk)T gk+1

gTk gk

can be reduced to the Fletcher-Reeves formula βFRk =
gTk+1gk+1

gTk gk
(Course Slides P36), when applied to a

quadratic function, with exact line searches. Please note that gk = 5f(xk).

[10pts] Quadratic: Show that if f(x) is a strictly convex quadratic, then the function h(σ) = f(x0 +
σ0p0 + ...+ σk−1pk−1) is also a strictly convex quadratic in the variable σ = (σ0, σ1, ..., σk−1)T .

4 Group Lasso by Proximal Gradient Descent (25 points) [Hongyang]

Suppose predictors (columns of the design matrix X ∈ Rn×(p+1)) in a regression problem split up into J
groups:

X =
[
1 X(1) X(2) . . . X(J)

]
,

where 1 = (1 1 · · · 1) ∈ Rn and X(j) ∈ Rn×pj such that p1 + ... + pJ = p. To achieve sparsity over
non-overlapping groups rather than individual predictors, we may write β = (β0, β(1), . . . , β(J)), where β0 is
an intercept term and each β(j) is an appropriate coefficient block of β corresponding to X(j), and solve the
group lasso problem:

min
β∈Rp+1

g(β) + λ

J∑
j=1

wj‖β(j)‖2, (4)

where g(β) is a goodness of fit to data term, and λ is the group Lasso regularization term encouraging
sparsity over groups. A common choice for weights on groups wj is

√
pj , where pj is number of predictors

that belong to the jth group, to adjust for the group sizes.

(a) (5 pts) Derive the proximal operator proxh,t(x) := argminβ h(β) + 1
2t‖β − x‖

2
2 for the nonsmooth com-

ponent h(β) = λ
∑J
j=1 wj‖β(j)‖2.

Hint: The proximal operator proxf,t(x) for f(z) = ‖z‖2 is given by

proxf,t(x) =

{
‖x‖2−t
‖x‖2 x, ‖x‖2 ≥ t,

0, ‖x‖2 < t.

(b) (20 pts) In this problem, we will use logistic group lasso to classify a person’s age group from his movie
ratings. The movie ratings can be categorized into groups according to a movie’s genre (e.g. all ratings
for action movies can be grouped together). Our data does not contain ratings for movies from multiple
genre (i.e. has no overlapping groups). We will use proximal gradient descent to solve the group lasso
problem.

We formulate the problem as a binary classification with output label y ∈ {0, 1}, corresponding to
whether a person’s age is under 40, and input features X ∈ Rn×p. We model each yi|xi with the
probabilistic model

log

(
pβ(yi = 1|xi)

1− pβ(y = 1|xi)

)
= (Xβ)i,

i = 1, . . . , n. The logistic group lasso estimator is given by solving the minimization problem in (4) with

g(β) = −
n∑
i=1

yi(Xβ)i +

n∑
i=1

log(1 + exp{(Xβ)i}),

the negative log-likelihood under the logistic probability model.
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(i) Derive the gradient of g in this case.

(ii) Implement proximal gradient descent to solve the logistic group lasso problem. Fit the model
parameters on the training data (moviesTrain.mat available on the class website). The features
have already been arranged into groups and you can find information about the labels of each group
in moviesGroups.mat. Use regularization parameter λ = 5 for 1000 iterations with fixed step size
t = 10−4.

Now, implement accelerated proximal gradient descent with fixed step size. Use the same λ, t, and
number of iterations as before.

For each of the two methods, plot f (k) − f? versus k, where f (k) denotes the objective value at
iteration k, and now the optimal objective value is f? = 336.207 on a semi-log scale (i.e. where the
y-axis is in log scale).

(iii) Finally, we will use the accelerated proximal gradient descent from part (ii) to make predictions
on the test set, available in moviesTest.mat. What is the classification error?
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