Independent Component Analysis

Class 20. 8 Nov 2012

Instructor: Bhiksha Raj

A brief review of basic probability

- Uncorrelated: Two random variables X and Y are uncorrelated iff:
 - The average value of the product of the variables equals the product of their individual averages
- Setup: Each draw produces one instance of X and one instance of Y
 - I.e one instance of (X,Y)
- \blacksquare E[XY] = E[X]E[Y]
- The average value of X is the same regardless of the value of Y

Uncorrelatedness

Which of the above represent uncorrelated RVs?

A brief review of basic probability

- Independence: Two random variables X and Y are independent iff:
 - Their joint probability equals the product of their individual probabilities
- P(X,Y) = P(X)P(Y)
- The average value of X is the same regardless of the value of Y
 - \blacksquare E[X|Y] = E[X]

A brief review of basic probability

- Independence: Two random variables X and Y are independent iff:
- The average value of any function X is the same regardless of the value of Y
- = E[f(X)g(Y)] = E[f(X)] E[g(Y)] for all f(), g()

<u>Independence</u>

- Which of the above represent independent RVs?
- Which represent uncorrelated RVs?

A brief review of basic probability

- The expected value of an odd function of an RV is 0 if
 - The RV is 0 mean
 - The PDF is of the RV is symmetric around 0
- E[f(X)] = 0 if f(X) is odd symmetric

A brief review of basic info. theory

 Entropy: The minimum average number of bits to transmit to convey a symbol

 Joint entropy: The minimum average number of bits to convey sets (pairs here) of symbols

A brief review of basic info. theory

- Conditional Entropy: The minimum average number of bits to transmit to convey a symbol X, after symbol Y has already been conveyed
 - Averaged over all values of X and Y

A brief review of basic info. theory

$$H(X | Y) = \sum_{Y} P(Y) \sum_{X} P(X | Y) [-\log P(X | Y)] = \sum_{Y} P(Y) \sum_{X} P(X) [-\log P(X)] = H(X)$$

Conditional entropy of X = H(X) if X is independent of Y

$$H(X,Y) = \sum_{X,Y} P(X,Y)[-\log P(X,Y)] = \sum_{X,Y} P(X,Y)[-\log P(X)P(Y)]$$
$$= -\sum_{X,Y} P(X,Y)\log P(X) - \sum_{X,Y} P(X,Y)\log P(Y) = H(X) + H(Y)$$

Joint entropy of X and Y is the sum of the entropies of X and Y if they are independent

Onward...

Projection: multiple notes

- $P = W (W^TW)^{-1} W^T$
- Projected Spectrogram = P * M

We're actually computing a score

- M ~ WH
- H = pinv(W)M

How about the other way?

$$W = Mpinv(V)$$

$$U = WH$$

So what are we doing here?

 $\mathbf{W} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$?

- M ~ WH is an approximation
- Given **W**, estimate **H** to minimize error

$$\mathbf{H} = \arg\min_{\overline{\mathbf{H}}} \|\mathbf{M} - \mathbf{W}\overline{\mathbf{H}}\|_F^2 = \arg\min_{\overline{\mathbf{H}}} \sum_{i} \sum_{j} (\mathbf{M}_{ij} - (\mathbf{W}\overline{\mathbf{H}})_{ij})^2$$

Must ideally find transcription of given notes

Going the other way..

- M ~ WH is an approximation
- Given **H**, estimate **W** to minimize error

$$\mathbf{W} = \arg\min_{\overline{\mathbf{W}}} \|\mathbf{M} - \overline{\mathbf{W}}\mathbf{H}\|_F^2 = \arg\min_{\overline{\mathbf{H}}} \sum_{i} \sum_{j} (\mathbf{M}_{ij} - (\overline{\mathbf{W}}\mathbf{H})_{ij})^2$$

Must ideally find the *notes* corresponding to the transcription
11755/18797

When both parameters are unknown

- $\hbox{\bf Must estimate both H and W to best } \\ \hbox{approximate M }$
- Ideally, must learn both the notes and their transcription!

A least squares solution

$$\mathbf{W}, \mathbf{H} = \operatorname{arg\,min}_{\overline{\mathbf{W}}, \overline{\mathbf{H}}} \| \mathbf{M} - \overline{\mathbf{W}} \overline{\mathbf{H}} \|_F^2$$

- Unconstrained
 - □ For any W,H that minimizes the error, $\mathbf{W'}=\mathbf{WA}$, $\mathbf{H'}=\mathbf{A}^{-1}\mathbf{H}$ also minimizes the error for any invertible \mathbf{A}

- For our problem, lets consider the "truth"...
- When one note occurs, the other does not
- The rows of H are uncorrelated

A least squares solution

- Assume: $\mathbf{H}\mathbf{H}^{\mathrm{T}} = \mathbf{I}$
 - Normalizing all rows of H to length 1
- \bullet pinv(**H**) = **H**^T
- Projecting M onto H
 - $\mathbf{W} = \mathbf{M} \operatorname{pinv}(\mathbf{H}) = \mathbf{M}\mathbf{H}^{\mathrm{T}}$
 - $WH = M H^T H$

$$\mathbf{W}, \mathbf{H} = \arg\min_{\overline{\mathbf{W}}, \overline{\mathbf{H}}} \| \mathbf{M} - \overline{\mathbf{W}} \overline{\mathbf{H}} \|_F^2$$

$$\mathbf{H} = \arg\min_{\overline{\mathbf{H}}} ||\mathbf{M} - \mathbf{M}\overline{\mathbf{H}}^T\overline{\mathbf{H}}||_F^2$$
 Constraint: Rank(H) = 4

Finding the notes

$$\mathbf{H} = \arg\min_{\overline{\mathbf{H}}} \| \mathbf{M} - \mathbf{M}\overline{\mathbf{H}}^T \overline{\mathbf{H}} \|_F^2$$

- Note $\mathbf{H}^{\mathrm{T}}\mathbf{H} := \mathbf{I}$
 - lacksquare Only $\mathbf{H}\mathbf{H}^{\mathrm{T}}=\mathbf{I}$
 - Could also be rewritten as

$$\mathbf{H} = \arg\min_{\overline{\mathbf{H}}} trace \Big(\mathbf{M} (\mathbf{I} - \overline{\mathbf{H}}^T \overline{\mathbf{H}}) \mathbf{M}^T \Big)$$

$$\mathbf{H} = \arg\min_{\overline{\mathbf{H}}} trace(\mathbf{M}^T \mathbf{M} (\mathbf{I} - \overline{\mathbf{H}}^T \overline{\mathbf{H}}))$$

$$\mathbf{H} = \arg\min_{\overline{\mathbf{H}}} trace \Big(Correlation(\mathbf{M}^T)(\mathbf{I} - \overline{\mathbf{H}}^T \overline{\mathbf{H}}) \Big)$$

$$\mathbf{H} = \arg\max_{\overline{\mathbf{H}}} trace(Correlation(\mathbf{M}^T)\overline{\mathbf{H}}^T\overline{\mathbf{H}})$$

Finding the notes

Constraint: every row of H has length 1

$$\mathbf{H} = \arg\max_{\overline{\mathbf{H}}} trace\Big(Correlation(\mathbf{M}^T)\overline{\mathbf{H}}^T\overline{\mathbf{H}}\Big) - trace\Big(\Lambda \overline{\mathbf{H}}^T\overline{\mathbf{H}}\Big)$$

Differentiating and equating to 0

$$Correlation(\mathbf{M}^T)\mathbf{H} = \mathbf{H}\Lambda$$

■ Simply requiring the rows of H to be orthonormal gives us that \mathbf{H} is the set of Eigenvectors of the data in \mathbf{M}^{T}

Equivalences

$$\mathbf{H} = \arg\max_{\overline{\mathbf{H}}} trace \Big(Correlation(\mathbf{M}^T) \overline{\mathbf{H}}^T \overline{\mathbf{H}} \Big) - trace \Big(\Lambda \overline{\mathbf{H}}^T \overline{\mathbf{H}} \Big)$$

is identical to

$$\mathbf{W}, \mathbf{H} = \arg\min_{\overline{\mathbf{W}}, \overline{\mathbf{H}}} \|\mathbf{M} - \overline{\mathbf{W}} \overline{\mathbf{H}}\|_F^2 + \sum_i \lambda_i \|\overline{\mathbf{h}}_i\|^2 + \sum_{i \neq j} \lambda_{ij} \overline{\mathbf{h}}_i^T \overline{\mathbf{h}}_j$$

 Minimize least squares error with the constraint that the rows of H are length 1 and orthogonal to one another

So how does that work?

There are 12 notes in the segment, hence we try to estimate 12 notes..

So how does that work?

- The first three "notes" and their contributions
 - The spectrograms of the notes are statistically uncorrelated

Finding the notes

Can find W instead of H

$$\mathbf{W} = \arg\min_{\overline{\mathbf{W}}} \| \mathbf{M} - \overline{\mathbf{W}}^T \overline{\mathbf{W}} \mathbf{M} \|_F^2$$

 Solving the above, with the constraints that the columns of W are orthonormal gives you the eigen vectors of the data in M

$$\mathbf{W} = \arg\max_{\overline{\mathbf{W}}} trace(\overline{\mathbf{W}}^T \overline{\mathbf{W}} Correlation(\mathbf{M})) - trace(\Lambda \overline{\mathbf{W}}^T \overline{\mathbf{W}})$$

$$Correlation(\mathbf{M})\mathbf{W} = \Lambda \mathbf{W}$$

So how does that work?

There are 12 notes in the segment, hence we try to estimate 12 notes..

Our notes are not orthogonal

- Overlapping frequencies
- Note occur concurrently
 - Harmonica continues to resonate to previous note
- More generally, simple orthogonality will not give us the desired solution

What else can we look for?

- Assume: The "transcription" of one note does not depend on what else is playing
 - Or, in a multi-instrument piece, instruments are playing independently of one another
- Not strictly true, but still..

Formulating it with Independence

$$\mathbf{W}, \mathbf{H} = \arg\min_{\overline{\mathbf{W}}, \overline{\mathbf{H}}} ||\mathbf{M} - \overline{\mathbf{W}}\overline{\mathbf{H}}||_F^2 + \Lambda(rows.of.H.are.independent)$$

Impose statistical independence constraints on decomposition

Changing problems for a bit

- Two people speak simultaneously
- Recorded by two microphones
- Each recorded signal is a mixture of both signals

Imposing Statistical Constraints

- Given only M estimate H
- Ensure that the components of the vectors in the estimated H
 are statistically independent
- Multiple approaches...

Imposing Statistical Constraints

- **M** = **WH**
- Given only M estimate H
- $H = W^{-1}M = AM$
- Estimate A such that the components of AM are statistically independent
 - □ **A** is the *unmixing* matrix
- Multiple approaches..

Statistical Independence

 $\mathbf{M} = \mathbf{W}\mathbf{H} \qquad \mathbf{H} = \mathbf{A}\mathbf{M}$

- Emulating independence
 - Compute W (or A) and H such that H has statistical characteristics that are observed in statistically independent variables
- Enforcing independence
 - Compute W and H such that the components of M are independent

Emulating Independence

- The rows of H are uncorrelated

 - floor h_i and h_j are the ith and jth components of any vector in H
- The fourth order moments are independent

 - Etc.

Zero Mean

- Usual to assume zero mean processes
 - Otherwise, some of the math doesn't work well
- $\mathbf{M} = \mathbf{W}\mathbf{H} \qquad \mathbf{H} = \mathbf{A}\mathbf{M}$
- If $mean(\mathbf{M}) = 0 \Rightarrow mean(\mathbf{H}) = 0$

 - First step of ICA: Set the mean of M to 0

$$\mu_{\mathbf{m}} = \frac{1}{cols\left(\mathbf{M}\right)} \sum_{i} \mathbf{m}_{i}$$

$$\mathbf{m}_{i} = \mathbf{m}_{i} - \mu_{\mathbf{m}} \qquad \forall i$$

 \mathbf{n}_{i} are the columns of \mathbf{M}

Emulating Independence..

- Independence → Uncorrelatedness
- Estimate a C such that CM is uncorrelated
- $\mathbf{X} = \mathbf{CM}$
 - \blacksquare $E[\mathbf{x}_i \mathbf{x}_j] = E[\mathbf{x}_i]E[\mathbf{x}_j] = \delta_{ij}$ [since M is now "centered"]
 - $\mathbf{X}\mathbf{X}^{\mathrm{T}}=\mathbf{I}$
 - In reality, we only want this to be a diagonal matrix, but we'll make it identity

Decorrelating

- $\mathbf{X} = \mathbf{CM}$
- $\mathbf{X}\mathbf{X}^{\mathrm{T}} = \mathbf{I}$
- Eigen decomposition **MM**^T= **USU**^T
- Let $\mathbf{C} = \mathbf{S}^{-1/2}\mathbf{U}^{\mathrm{T}}$

Decorrelating

- $\mathbf{X} = \mathbf{CM}$
- $XX^T = I$
- Eigen decomposition **MM**^T− **ESE**^T
- Let $C = S^{-1/2}E^T$
- X is called the whitened version of M
 - □ The process of decorrelating **M** is called *whitening*
 - **C** is the *whitening matrix*

<u>Uncorrelated != Independent</u>

 Whitening merely ensures that the resulting shat signals are uncorrelated, i.e.

$$E[\mathbf{x}_i \mathbf{x}_i] = 0 \text{ if i } != j$$

 This does not ensure higher order moments are also decoupled, e.g. it does not ensure that

$$E[\mathbf{x}_i^2 \mathbf{x}_j^2] = E[\mathbf{x}_i^2] E[\mathbf{x}_j^2]$$

- This is one of the signatures of independent RVs
- Lets explicitly decouple the fourth order moments

Decorrelating

- $\mathbf{X} = \mathbf{CM}$
- $\mathbf{X}\mathbf{X}^{\mathrm{T}} = \mathbf{I}$
- Will multiplying **X** by **B** re-correlate the components?
- Not if B is unitary

$$BB^T = B^TB = I$$

- So we want to find a unitary matrix
 - Since the rows of H are uncorrelated
 - Because they are independent

ICA: Freeing Fourth Moments

- We have $E[\mathbf{x}_i \ \mathbf{x}_j] = 0$ if i!= j
 - Already been decorrelated
- \blacksquare A=BC, H=BCM, X=CM, \rightarrow H=BX
- The fourth moments of \mathbf{H} have the form: $\mathrm{E}[\mathbf{h}_i \; \mathbf{h}_j \; \mathbf{h}_k \; \mathbf{h}_l]$
- If the rows of \mathbf{H} were independent $E[\mathbf{h}_i \ \mathbf{h}_j \ \mathbf{h}_k \ \mathbf{h}_l] = E[\mathbf{h}_i] \ E[\mathbf{h}_j] \ E[\mathbf{h}_k] \ E[\mathbf{h}_l]$
- Solution: Compute ${\bf B}$ such that the fourth moments of ${\bf H}={\bf B}{\bf X}$ are decoupled
 - $lue{lue}$ While ensuring that $lue{f B}$ is Unitary

ICA: Freeing Fourth Moments

- Create a matrix of fourth moment terms that would be diagonal were the rows of \mathbf{H} independent and diagonalize it
- A good candidate
 - $lue{}$ Good because it incorporates the energy in all rows of $lue{}$

$$D = \begin{bmatrix} d_{11} & d_{12} & d_{13} & \dots \\ d_{21} & d_{22} & d_{23} & \dots \\ \dots & \dots & \dots \end{bmatrix}$$

Where

$$d_{ij} = E[\Sigma_k \mathbf{h}_k^2 \mathbf{h}_i \mathbf{h}_j]$$

i.e.

$$D = E[\mathbf{h}^{\mathrm{T}}\mathbf{h} \ \mathbf{h} \ \mathbf{h}^{\mathrm{T}}]$$

- h are the columns of H
- lack Assuming lack h is real, else replace transposition with Hermition

ICA: The D matrix

$$D = \begin{bmatrix} d_{11} & d_{12} & d_{13} & \dots \\ d_{21} & d_{22} & d_{23} & \dots \\ \dots & \dots & \dots \end{bmatrix} \qquad \mathbf{d_{ij}} = \mathbf{E}[\boldsymbol{\Sigma_k h_k^2 h_i h_j}] = \frac{1}{cols(\mathbf{H})} \sum_{m} \sum_{k} h_{mk}^2 h_{mi} h_{mj}$$

$$\mathbf{d_{ij}} = \mathbf{E}[\Sigma_{\mathbf{k}} \mathbf{h_{k}}^{2} \mathbf{h_{i}} \mathbf{h_{j}}] = \frac{1}{cols(\mathbf{H})} \sum_{m} \sum_{k} h_{mk}^{2} h_{mi} h_{mj}$$

Average above term across all columns of H

ICA: The D matrix

$$D = \begin{bmatrix} d_{11} & d_{12} & d_{13} & \dots \\ d_{21} & d_{22} & d_{23} & \dots \\ \dots & \dots & \dots \end{bmatrix} \qquad \mathbf{d_{ij}} = \mathbf{E}[\Sigma_{\mathbf{k}} \mathbf{h_{k}}^2 \mathbf{h_{i}} \mathbf{h_{j}}] = \frac{1}{cols(\mathbf{H})} \sum_{m} \sum_{k} h_{mk}^2 h_{mi} h_{mj}$$

- If the h_i terms were independent
 - □ For i!= j

$$E\left[\sum_{k}\mathbf{h}_{k}^{2}\mathbf{h}_{i}\mathbf{h}_{j}\right] = E\left[\mathbf{h}_{i}^{3}\right]E\left[\mathbf{h}_{j}\right] + E\left[\mathbf{h}_{j}^{3}\right]E\left[\mathbf{h}_{i}\right] + \sum_{k \neq i, k \neq j}E\left[\mathbf{h}_{k}^{2}\right]E\left[\mathbf{h}_{i}\right]E\left[\mathbf{h}_{j}\right]$$

- □ Centered: $E[\mathbf{h}_i] = 0$ \rightarrow $E[\Sigma_k \mathbf{h}_k^2 \mathbf{h}_i \mathbf{h}_j] = 0$ for i!=j
- For i = j

$$E\left[\sum_{k}\mathbf{h}_{k}^{2}\mathbf{h}_{i}\mathbf{h}_{j}\right] = E\left[\mathbf{h}_{i}^{4}\right] + E\left[\mathbf{h}_{i}^{2}\right]\sum_{k\neq i}E\left[\mathbf{h}_{k}^{2}\right] \neq 0$$

- Thus, if the \mathbf{h}_i terms were independent, $d_{ij} = 0$ if i != j
- i.e., if \mathbf{h}_i were independent, D would be a diagonal matrix
 - $lue{}$ Let us diagonalize $oldsymbol{D}$

Diagonalizing D

- Compose a fourth order matrix from X
 - \blacksquare Recall: X = CM, H = BX = BCM
 - **B** is what we're trying to learn to make **H** independent
 - □ Compose $\mathbf{D}' = \mathbf{E}[\mathbf{x}^T \mathbf{x} \mathbf{x} \mathbf{x}^T]$
- Diagonalize **D**′ via Eigen decmpositin

$$\mathbf{D}' = \mathbf{U}\Lambda \mathbf{U}^{\mathrm{T}}$$

- $\mathbf{B} = \mathbf{U}^{\mathrm{T}}$
 - That's it!!!!

B frees the fourth moment

$$\mathbf{D}' = \mathbf{U}\Lambda\mathbf{U}^{\mathrm{T}}$$
; $\mathbf{B} = \mathbf{U}^{\mathrm{T}}$

- U is a unitary matrix, i.e. $U^TU = UU^T = I$ (identity)
- $b = \mathbf{U}^{\mathrm{T}} \mathbf{x}$
- The fourth moment matrix of H is

$$E[\mathbf{h}^{T} \mathbf{h} \mathbf{h} \mathbf{h} \mathbf{h}^{T}] = E[\mathbf{x}^{T} \mathbf{U} \mathbf{U}^{T} \mathbf{x} \mathbf{U}^{T} \mathbf{x} \mathbf{x}^{T} \mathbf{U}]$$

$$= E[\mathbf{x}^{T} \mathbf{x} \mathbf{U}^{T} \mathbf{x} \mathbf{x}^{T} \mathbf{U}]$$

$$- \mathbf{U}^{T} E[\mathbf{x}^{T} \mathbf{x} \mathbf{x} \mathbf{x}^{T}] \mathbf{U}$$

$$= \mathbf{U}^{T} \mathbf{D}' \mathbf{U}$$

$$= \mathbf{U}^{T} \mathbf{U} \wedge \mathbf{U}^{T} \mathbf{U} = \Lambda$$

■ The fourth moment matrix of $\mathbf{H} = \mathbf{U}^T \mathbf{X}$ is Diagonal!!

Overall Solution

- $\bullet A = BC = U^{T}C$

Independent Component Analysis

- Goal: to derive a matrix A such that the rows of AM are independent
- Procedure:
 - 1. "Center" M
 - 2. Compute the autocorrelation matrix R_{MM} of ${f M}$
 - Compute whitening matrix \mathbf{C} via Eigen decomposition $R_{XX} = \mathbf{E}\mathbf{S}\mathbf{E}^{\mathrm{T}}, \quad \mathbf{C} = \mathbf{S}^{-1/2}\mathbf{E}^{\mathrm{T}}$
 - 4. Compute X = CM
 - 5. Compute the fourth moment matrix $D' = E[\mathbf{x}^T \mathbf{x} \mathbf{x} \mathbf{x}^T]$
 - Diagonalize D' via Eigen decomposition
 - 7. $D' = U\Lambda U^T$
 - 8. Compute $\mathbf{A} = \mathbf{U}^{\mathrm{T}} \mathbf{C}$
- The fourth moment matrix of H=AM is diagonal
 - Note that the autocorrelation matrix of H will also be diagonal

ICA by diagonalizing moment matrices

- The procedure just outlined, while fully functional, has shortcomings
 - Only a subset of fourth order moments are considered
 - There are many other ways of constructing fourth-order moment matrices that would ideally be diagonal
 - Diagonalizing the particular fourth-order moment matrix we have chosen is not guaranteed to diagonalize every other fourth-order moment matrix
- JADE: (Joint Approximate Diagonalization of Eigenmatrices),
 J.F. Cardoso
 - Jointly diagonalizes several fourth-order moment matrices
 - More effective than the procedure shown, but more computationally expensive

Enforcing Independence

- Specifically ensure that the components of H are independent
 - \Box $\mathbf{H} = \mathbf{A}\mathbf{M}$
- Contrast function: A non-linear function that has a minimum value when the output components are independent
- Define and minimize a contrast function
 - F(AM)
- Contrast functions are often only approximations too..

A note on pre-whitening

- The mixed signal is usually "prewhitened"
 - Normalize variance along all directions
 - Eliminate second-order dependence
- $\mathbf{X} = \mathbf{CM}$
 - $\mathbf{E}[\mathbf{x}_i \mathbf{x}_i] = \mathbf{E}[\mathbf{x}_i] \mathbf{E}[\mathbf{x}_i] = \delta_{ij}$ for centered signals
- Eigen decomposition $\mathbf{M}\mathbf{M}^{\mathrm{T}} = \mathbf{E}\mathbf{S}\mathbf{E}^{\mathrm{T}}$
- $C = S^{-1/2}E^{T}$
- Can use first K columns of E only if only K independent sources are expected
 - □ In microphone array setup only K < M sources

The contrast function

- Contrast function: A non-linear function that has a minimum value when the output components are independent
- An explicit contrast function

$$I(\mathbf{H}) = \sum_{i} H(\overline{\mathbf{h}}_{i}) - H(\overline{\mathbf{H}})$$

- With constraint : H = BX
 - X is "whitened" M

Linear Functions

- \bullet h = Bx
 - Individual columns of the H and X matrices
 - \mathbf{x} is mixed signal, \mathbf{B} is the *unmixing* matrix

$$P_{\mathbf{h}}(\mathbf{h}) = P_{\mathbf{x}}(\mathbf{B}^{-1}\mathbf{h}) |\mathbf{B}|^{-1}$$

$$H(\mathbf{x}) = \int P(\mathbf{x}) \log P(\mathbf{x}) d\mathbf{x}$$

$$H(\mathbf{h}) = H(\mathbf{x}) + \log |\mathbf{B}|$$

The contrast function

$$I(\mathbf{H}) = \sum_{i} H(\overline{\mathbf{h}}_{i}) - H(\overline{\mathbf{H}})$$
$$I(\mathbf{H}) = \sum_{i} H(\overline{\mathbf{h}}_{i}) - H(\mathbf{x}) - \log |\mathbf{B}|$$

■ Ignoring $H(\mathbf{x})$ (Const)

$$J(\mathbf{H}) = \sum_{i} H(\overline{\mathbf{h}}_{i}) - \log |\mathbf{W}|$$

Minimize the above to obtain B

- Recall PCA
- M = WH, the columns of W must be statistically independent
- Leads to: $\min_{\mathbf{W}} ||\mathbf{M} \mathbf{W}^T \mathbf{W} \mathbf{M}||^2$
 - Error minimization framework to estimate W
- Can we arrive at an error minimization framework for ICA
- Define an "Error" objective that represents independence

- Definition of Independence if x and y are independent:

 - Must hold for every f() and g()!!

■ Define g(H) = g(BX) (component-wise function)

```
g(h_{11}) g(h_{21}) ... g(h_{12}) g(h_{22}) ...
```

■ Define f(H) = f(BX)

```
f(h_{11}) f(h_{21}) ...
f(h_{12}) f(h_{22})
...
```

 $P = g(H) f(H)^{T} = g(BX) f(BX)^{T}$

$$\mathbf{P} = \begin{bmatrix} P_{11} & P_{21} & \cdots \\ P_{12} & P_{22} & \cdots \\ \vdots & \vdots & \vdots \end{bmatrix}$$

$$P_{ij} = \sum_{k} g(h_{ik}) f(h_{jk})$$
This is a square mate

$$P_{ij} = \sum_{k} g(h_{ik}) f(h_{jk})$$

This is a square matrix

Must ideally be

$$\mathbf{Q} = \begin{pmatrix} Q_{11} & Q_{21} & \cdots \\ Q_{12} & Q_{22} \\ \vdots & \vdots \\ \vdots & \vdots \end{pmatrix}$$

$$\mathbf{Q} = \begin{bmatrix} Q_{11} & Q_{21} & \cdots \\ Q_{12} & Q_{22} \\ \vdots & \vdots \\ Q_{ii} = \sum_{k} g(h_{ik}) \sum_{l} f(h_{jl}) & i \neq j \\ Q_{ii} = \sum_{l} g(h_{ik}) f(h_{il}) \end{bmatrix}$$

• Error = $\|\mathbf{P} - \mathbf{Q}\|_{\mathbf{F}}^2$

Ideal value for Q

$$\mathbf{Q} = \begin{bmatrix} Q_{11} & Q_{21} & \cdots \\ Q_{12} & Q_{22} \\ \vdots & \vdots \\ \vdots & \vdots \\ Q_{1n} & Q_{2n} \end{bmatrix}$$

$$\mathbf{Q} = \begin{bmatrix} Q_{11} & Q_{21} & \dots \\ Q_{12} & Q_{22} \\ \vdots & \vdots \\ Q_{ii} & Q_{ii} = \sum_{k} g(h_{ik}) \sum_{l} f(h_{jl}) & i \neq j \\ Q_{ii} = \sum_{k} g(h_{ik}) f(h_{il}) \end{bmatrix}$$

- If g() and h() are odd symmetric functions $\Sigma_{i}g(h_{ii})=0$ for all i
 - □ Since = $\Sigma_i h_{ii} = 0$ (**H** is centered)
 - Q is a Diagonal Matrix!!!

Minimize Error

$$\mathbf{P} = \mathbf{g}(\mathbf{B}\mathbf{X})\mathbf{f}(\mathbf{B}\mathbf{X})^{\mathrm{T}}$$
$$\mathbf{Q} = Diagonal$$

$$error = ||\mathbf{P} - \mathbf{Q}||_F^2$$

Leads to trivial Widrow Hopf type iterative rule:

$$\mathbf{E} = Diag - \mathbf{g}(\mathbf{B}\mathbf{X})\mathbf{f}(\mathbf{B}\mathbf{X})^{\mathrm{T}}$$

$$\mathbf{B} = \mathbf{B} + \eta \mathbf{E} \mathbf{B}^{\mathrm{T}}$$

Update Rules

- Multiple solutions under different assumptions for g() and f()
- \blacksquare H = BX
- $B = B + \eta \Delta B$
- Jutten Herraut : Online update
 - $\Delta B_{ij} = f(\mathbf{h}_i)g(\mathbf{h}_j)$; -- actually assumed a recursive neural network
- Bell Sejnowski

Update Rules

- Multiple solutions under different assumptions for g() and f()
- \blacksquare H = BX
- $B = B + \eta \Delta B$
- Natural gradient -- f() = identity function
- Cichoki-Unbehaeven

What are G() and H()

- Must be odd symmetric functions
- Multiple functions proposed

$$g(x) = \begin{cases} x + \tanh(x) & \text{x is super Gaussian} \\ x - \tanh(x) & \text{x is sub Gaussian} \end{cases}$$

- Audio signals in general
- Or simply

So how does it work?

- Example with instantaneous mixture of two speakers
- Natural gradient update
- Works very well!

Another example!

Another Example

■ Three instruments..

The Notes

■ Three instruments..

ICA for data exploration

- The "bases" in PCA represent the "building blocks"
 - Ideally notes
- Very successfully used
- So can ICA be used to do the same?

ICA vs PCA bases

- Motivation for using ICA vs PCA
- PCA will indicate orthogonal directions of maximal variance
 - May not align with the data!
- ICA finds directions that are independent
 - More likely to "align" with the data

Non-Gaussian data

Finding useful transforms with ICA

- Audio preprocessing example
- Take a lot of audio snippets and concatenate them in a big matrix, do component analysis
- PCA results in the DCT bases
- ICA returns time/freq localized sinusoids which is a better way to analyze sounds
- Ditto for images
 - ICA returns localizes edge filters

Example case: ICA-faces vs. Eigenfaces

ICA-faces

Eigenfaces

ICA for Signal Enhncement

- Very commonly used to enhance EEG signals
- EEG signals are frequently corrupted by heartbeats and biorhythm signals
- ICA can be used to separate them out

So how does that work?

There are 12 notes in the segment, hence we try to estimate 12 notes..

PCA solution

There are 12 notes in the segment, hence we try to estimate 12 notes..

So how does this work: ICA solution

- Better..
 - But not much
- But the issues here?

ICA Issues

- No sense of order
 - Unlike PCA
- Get K independent directions, but does not have a notion of the "best" direction
 - So the sources can come in any order
 - Permutation invariance
- Does not have sense of scaling
 - Scaling the signal does not affect independence
- Outputs are scaled versions of desired signals in permuted order
 - In the best case
 - In worse case, output are not desired signals at all...

What else went wrong?

- Assume distribution of signals is symmetric around mean
 - Note energy here
 - Not symmetric negative values never happen
 - Still this didn't affect the three instruments case..

- Notes are not independent
 - Only one note plays at a time
 - If one note plays, other notes are not playing

Continue in next class..

- NMF
- Factor analysis..