11-755 Machine Learning for Signal Processing

Independent Component
Analysis

Class 20. 8 Nov 2012

Instructor: Bhiksha Raj
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A brief review of basic probability

m Uncorrelated: Two random variables X and Y are
uncorrelated iff:

o The average value of the product of the variables equals the
product of their individual averages

m Setup: Each draw produces one instance of X and one
instance of Y

a l.e one instance of (X,Y)

m E[XY] = E[X]E[Y]

m The average value of X is the same regardless of the
value of Y
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Uncorrelatedness

= Which of the above represent uncorrelated RVs?
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A brief review of basic probability

m /Independence: Two random variables X and Y are
independent iff:

o Their joint probability equals the product of their
individual probabilities

m P(X,Y) = P(X)P(Y)

= =» The average value of X is the same regardless
of the value of Y

o E[X|Y] =E[X]
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A brief review of basic probability

m /Independence: Two random variables X and Y are
independent iff:

m The average value of any function X is the same
regardless of the value of Y

= E[f(X)g(Y)] = E[f(X)] E[g(Y)] for all (), g()
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Independence

s Which of the above represent independent RVs?
s Which represent uncorrelated RVs?
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A brief review of basic probability
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m The expected value of an odd function of an RV is
0 if
0 The RV is 0 mean
o The PDF is of the RV is symmetric around O

m E[f(X)] = Oif f(X) is odd symmetric
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A brief review of basic info. theory

cee®  T(all), M(ed), S(hort)...
H(X)=> P(X)[-log P(X)]

m Entropy: The minimum average number of bits to
transmit to convey a symbol

X
4 il M F F M.,

Y H(X,Y) =Y P(X,Y)[-log P(X,Y)]

= Joint entropy: The minimum average number of bits
to convey sets (pairs here) of symbols
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A brief review of basic info. theory

H(X[Y) =2 P(Y)X P(X |Y)[=log P(X [Y)]= >, P(X,Y)[~log P(X | Y)]

m Conditional Entropy: The minimum average
number of bits to transmit to convey a symbol X,
after symbol Y has already been conveyed

0 Averaged over all values of X and Y
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A brief review of basic info. theory

H(X[Y) =2 P(Y)Y P(XIY)[=log P(X |Y)]=>_P(Y)> P(X)[-log P(X)]= H(X)

m Conditional entropy of X = H(X) if X is
independent of Y
H(X,Y)=> P(X,Y)[-log P(X,Y)]=> P(X,Y)[-log P(X)P(Y)]
=—XZY:XE>Y(X,Y)|og P(X)—XZY:P(X;Y)Iog P(Y)=H(X)+H(Y)
m Joint entropy of X and Y is the sum of the
entropies of X and Y if they are independent
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Onward..

8 Nov 2012
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Projection: multiple notes

1
HEAR 1

n lnll....

I bbby

m P=W(W'W)1TWT
m Projected Spectrogram =P * M
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How about the other way?
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So what are we doing herer

H =2

lll

el

L|..l|(lll|ll|lllllll.

s M ~WH is an approximation
m Given W, estimate H to minimize error

H =argmin || M —WH |2=argmin. ZZ(M i —(WH), )2
]

m Must ideally find transcription of given notes
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Going the other way..

— 1T M
H 1 I I 1
I s B — '

N B 0 0

s M ~WH is an approximation
m Given H, estimate W to minimize error

W =argming || M —WH |[Z=arg min ZZ(I\/I i — (WH), )2
O

= Must ideally find the notes corresponding to the
Lranscription
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When both parameters are unknown

W=? approx(M) =7

m Must estimate both H and W to best
approximate M

= |deally, must learn both the notes and their
transcription!
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A least squares solution

W,H =argming 4 | M- WH ||2

m Unconstrained

o For any W,H that minimizes the error, W’=WA, H’=A1H

also minimizes the error for any invertible A

— LI M
H 1 I 1 I 1
L1 1 L
Il

m For our problem, lets consider the “truth”..

= When one note occurs, the other does not
a hiThj =0 forallil=]

m The rows of H are uncorrelated
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A least squares solution

LI M
H — 1 U 1 I_l
T  — .

I s B 0 0

= Assume: HHT = |
2 Normalizing all rows of H to length 1
= pinv(H) = HT
= Projecting M onto H
a0 W =M pinv(H) = MHT
0 WH=MHTH
W,H =argming 5 [|M-WH |

H=argmin [|[M—-MH"H |2 constraint: Rank(H) = 4
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Finding the notes

H=argmin_ |[M-MH"H |2

m Note H'TH I=|
0 Only HHT =1
2 Could also be rewritten as
H = arg minﬁtrace(l\/l(l —ﬁTﬁ)I\/IT)

H =argmin_, trace(M"M(1 - H"H))
H =argmin tra(:e(CorreIation(I\/lT )( —ﬁTﬁ))

H = arg max trace(CorreIation(l\/IT )ﬁTﬁ)
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Finding the notes

m Constraint: every row of H has length 1

H = arg max. trac:e(CorreIation(MT )ﬁTﬁ)—trace(AﬁTﬁ)

m Differentiating and equatingto O
Correlation(M')H = HA

= Simply requiring the rows of H to be orthonormal

gives us that H is the set of Eigenvectors of the
data in M7
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Equivalences

H = arg max trac:e(()orrelation(I\/IT )ﬁTﬁ)—trace(AﬁTﬁ)

m is identical to

W, H =argming 5 ||M-WH ||} +Z/1i Ih |17 +> A4;hh,

1% j

m Minimize least squares error with the constraint
that the rows of H are length 1 and orthogonal to
one another
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So how does that work?

m There are 12 notes in the segment, hence we try
to estimate 12 notes..
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So how does that work?

m The first three “notes” and their contributions
0 The spectrograms of the notes are statistically uncorrelated
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Finding the notes

= Can find W instead of H
W =argming || M -W'WM |2

m Solving the above, with the constraints that the
columns of W are orthonormal gives you the
eigen vectors of the datain M

W = arg max; trace(WTWCorrelation(l\/l))—trace(AWTW)

Correlation(M)W = AW
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So how does that work?

200 400 500 200 1000 1200 1400

200 400 800 200 1000 1200 1400

m There are 12 notes in the segment, hence we try
to estimate 12 notes..
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Our notes are not orthogonal

|

| L
\lluUll T

m

bl badaly

m Overlapping frequencies

= Note occur concurrently

2 Harmonica continues to resonate to previous note

m More generally, simple orthogonality will not give
us the desired solution
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What e/se can we look for?

[
| [ [ []
1 M

= Assume: The “transcription” of one note does not
depend on what else is playing

0 Or, in a multi-instrument piece, instruments are
playing independently of one another

= Not strictly true, but still..
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Formulating it with Independence

W,H =argmin,, - ||M-WH |2 +A(rows.of .H.are.independent)
W, H F

m Impose statistical independence constraints on
decomposition
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Changing problems for a bit

D

Y
<

m, (t) = W21h1 (t) +W,, hz (t)

h, (1)

m Two people speak simultaneously
m Recorded by two microphones
m Each recorded signal is a mixture of both signals
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Imposing Statistical Constraints
M W H

ANANVAN I Wy Wy, [ | AN/ AV
NNV Ny, g U\/\ﬂ\f\/\N\AM\

\

\

Signal from speaker 1

= M=WH
a0 M = “mixed” signal Signal at mic 1 Signal from speaker 2

2 W ="“notes”

o H="transcription”

Signal at mic 2

= Given only M estimate H

= Ensure that the components of the vectors in the estimated H
are statistically independent

= Multiple approaches..
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Imposing Statistical Constraints

8 Nov 2012

M W H
AW\W\K/\ Wy Wy /\W\/\/\A’\/\/\
MW/\NWVVW — | w, w,| VWA

M =WH

Given only M estimate H
H=W1M = AM

Estimate A such that the components of AM are

statistically independent

o Ais the unmixing matrix

Multiple approaches..
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Statistical Independence
= M=WH H =AM

m Emulating independence

2 Compute W (or A) and H such that H has statistical
characteristics that are observed in statistically
independent variables

m Enforcing independence

o Compute W and H such that the components of M
are independent

8 Nov 2012 11755/18797
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Emulating Independence

H

NN IS AN
NIV N N AVIVARAVAV AN

m The rows of H are uncorrelated
- E[hihj] = E[hi]E[hj]
0 h;and h; are the i and j*" components of any vector in H

m The fourth order moments are independent
J E:hihjhkhl] = E[hi]E[hj]E[hk]E[hl]
o E[hihjhy] = E[h?]E[N]E[h,]
- E:hizhjz] = E[hiZ]E[hjZ]
o Etc.

8 Nov 2012 11755/18797



/.ero Mean

s Usual to assume zero mean Processes
0 Otherwise, some of the math doesn’t work well

s M=WH H=AM

m [f mean(M)=0 => mean(H) =0
o E[H] =AE[M]=A0=0
0 First step of ICA: Set the mean of Mto O

1
Hm = ol (I\/I)Zmi

m.:mi—l[jm VI

a m; are the columns of M

8 Nov 2012 11755/18797
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Emulating Independence..

H Diagonal

H=AM
+ rankl
H’ matrix A=BC

H=BCM

= Independence =2 Uncorrelatedness

m Estimate a C such that CM is uncorrelated

m X=CM
0 E[xx] = EIX]E[X] = &5 [since M is now “centered”]
o XXT =1

= [n reality, we only want this to be a diagonal matrix, but we’ll
make it identity
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Decorrelating

H Diagonal

+ rankl
H’ matrix

m X=CM
L XXT:|

= Eigen decomposition MMT= USUT
m Let C =S YT
o0 WMMTWT = S-12yTysuTus2 = |

8 Nov 2012 11755/18797

H=AM
A=BC
H=BCM
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Decorrelating

H Diagonal

+ rankl
H’ matrix

m X=CM
m XXT=|

= Eigen decomposition MMT= ESET
s LetC=SVET
o WMMTWT = S12ETESETES Y2 = |

m X s called the whitened version of M
o The process of decorrelating M is called whitening
o Cis the whitening matrix

8 Nov 2012 11755/18797
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H=BCM
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Uncorrelated = Independent

= Whitening merely ensures that the resulting shat signals
are uncorrelated, i.e.

E[xx]=01fi!=]

= This does not ensure higher order moments are also
decoupled, e.g. it does not ensure that

E[x27] = EXZE [x]

m This is one of the signatures of independent RVs
m Lets explicitly decouple the fourth order moments
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Decorrelating

H Diagonal

H=AM
+ rankl
H’ matrix A=BC

H=BX

= X=CM
m XXT=|

= Will multiplying X by B re-correlate the components?
= Not if Bis unitary

o BB"=B™B=1
= So we want to find a unitary matrix

o Since the rows of H are uncorrelated

m Because they are independent
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[CA: Freeing Fourth Moments

We have E[x; x;] =0if i !=]
o Already been decorrelated

A=BC, H=BCM, X=CM, -> H=BX
The fourth moments of H have the form:

ELh; hy hhy]

If the rows of H were independent
E[h; hj h.h] =E[h] E[hj] E[hJ E[h]

Solution: Compute B such that the fourth moments of H = BX
are decoupled

2 While ensuring that B is Unitary
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[CA: Freeing Fourth Moments

m Create a matrix of fourth moment terms that would be
diagonal were the rows of H independent and diagonalize it

= A good candidate

o Good because it incorporates the energy in all rows of H

d11 d12 d13
D = d21 dzz d23

0 Where
di = E[ Zy he h; hi]
o oi.e.
D =E[h"h h hT]
= harethe columns of H
m  Assuming his real, else replace transposition with Hermition
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ICA: The D matrix

_d11 d12 d13 . d. = E
- =E[Z, h2h h]=
D=|d, d, d, .| " cols(H)

2. 2"

Sum of squares

of all components
2
>h,

m Average above term across all columns of H

j component

heh; h
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ICA: The D matrix

_d11 d12 d13 --_ d.=E 2
- =E[Z,.h2h h] h-.h.h
D=|d, d, d, .| = cols(H)ZZ |

m If the h, terms were independent
o Foril=j

e Sninh, | ~ebveh Jebin e > ebiEn e
k k#i,k#

o Centered: E[h] =0 < E[Z, h?h; h]=0fori!=]

o Fori=j

E{Zhﬁhihj} - ¢ ]+ E[?] > E?]=0

k k=i

= Thus, if the h; terms were independent, d; =0 if i != ]

m i.e, ifh; wereindependent, D would be a diagonal matrix

o Let us diagonalize D
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Diagonalizing D

m Compose a fourth order matrix from X
o Recall: X=CM, H=BX=BCM
= B is what we’re trying to learn to make H independent

0 Compose D’ = E[X"T x x x']

= Diagonalize D’ via Eigen decmpositin
D’ = UAUT

s B=UT
o That's it!!!!

8 Nov 2012 11755/18797
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B frees the fourth moment

D’ =UAUT ; B=UT
= U is a unitary matrix, i.e. UTU = UUT = | (identity)
s H=BX=UTX

s h=UTx

m The fourth moment matrix of H is
E[hThhh'] = E[xTUUTX UTx xTU]
= E[x"™Xx UTx x"U]
= UT E[x"™x xxT]U
=U'D’ U
=UTUAUTU=A
m The fourth moment matrix of H = UTX is Diagonal!!

8 Nov 2012 11755/18797
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Overall Solution

= H=AM=BCM =BX

s A= BC=U'C

8 Nov 2012
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Independent Component Analysis

m  Goal: to derive a matrix A such that the rows of AM are
independent

m  Procedure:

7.

8.

“Center” M

Compute the autocorrelation matrix Ry, of M

Compute whitening matrix C via Eigen decomposition
Ry = ESET, C=S1?2ET

Compute X = CM

Compute the fourth moment matrix D’ = E[X"xxx]

Diagonalize D’ via Eigen decomposition

D’ = UAUT

Compute A=UTC

s  The fourth moment matrix of H=AM is diagonal

Q

8 Nov 2012

Note that the autocorrelation matrix of H will also be diagonal
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ICA by diagonalizing moment

matrices

m The procedure just outlined, while fully functional, has
shortcomings
2 Only a subset of fourth order moments are considered

0 There are many other ways of constructing fourth-order moment
matrices that would ideally be diagonal

m Diagonalizing the particular fourth-order moment matrix we have chosen is
not guaranteed to diagonalize every other fourth-order moment matrix

= JADE: (Joint Approximate Diagonalization of Eigenmatrices),
J.F. Cardoso

o Jointly diagonalizes several fourth-order moment matrices

o More effective than the procedure shown, but more computationally
expensive
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Enforcing Independence

m Specifically ensure that the components of H are
independent

a H=AM

m Contrast function: A non-linear function that has a
minimum value when the output components are
independent

m Define and minimize a contrast function
F(AM)
m Contrast functions are often only approximations too..
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A note on pre-whitening

= The mixed signal is usually “prewhitened”
o Normalize variance along all directions
o Eliminate second-order dependence

s X=CM

= Eigen decomposition MMT = ESET
m C=S12ET

m Can use first K columns of E only if only Kindependent
sources are expected

0 In microphone array setup —only K < M sources

8 Nov 2012 11755/18797 52



The contrast function

m Contrast function: A non-linear function that has
a minimum value when the output components
are independent

= An explicit contrast function

[(H) =Y H (R)—H (H)

m With constraint: H=BX
o Xis “whitened” M

8 Nov 2012 11755/18797
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Iinear Functions

s h =BX
o Individual columns of the H and X matrices

2 X is mixed signal, B is the unmixing matrix

R.(h) =P, (B ) |B|"

H (x) = j P(x) log P(x)dx

H()=H(x)+log|B|

8 Nov 2012 11755/18797
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The contrast function

[(H) = Y H () —H (H)

I(H)= Y H(R,)-H(x)- log| B|

= Ignoring H(X) (Const)
J(H)=Y H(R)-log|W]|

m Minimize the above to obtain B

8 Nov 2012 11755/18797
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An alternate approach

m Recall PCA

= M =WH, the columns of W must be statistically
independent

m Leads to: miny||M-WTWM| |2

2 Error minimization framework to estimate W

m Can we arrive at an error minimization
framework for ICA

m Define an “Error” objective that represents
independence
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An alternate approach

m Definition of Independence —if Xand y are
independent:

0 E[f(x)a(y)] = E[I()]E[9(y)]
2 Must hold for every f() and g()!!

8 Nov 2012 11755/18797

57



An alternate approach

= Define g(H) = g(BX) (component-wise function)

gthy)  9(hy)
a(hyp)  glhy,)

= Defiﬁe f(Hj = f(BX)

f(hy)  T(nz)
f(hy)  f(hy)

8 Nov 2012 11755/18797
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An alternate approach

s P=g(H) f(H)" =g(BX) f(BX)'

P =

= Must ideally be
Qu -

Q:

= Error = ||P-Q||?

8 Nov 2012

F)ll
F)12

F)21
F)22

Qu
Qu

Q2

Pij — Z g(hik) f (hjk)
This is a square matrix
Qi = Zg(hik)z f(hy) 1=}
Qi = Z g(hy) T(hy)
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An alternate approach

= |deal value for Q

Q:

Qu
Qu

Qa1
Qz,

Qij = Zg(hik)Z f(hjl)
Qi = Zg(hik) f(hy)

m If g() and h() are odd symmetric functions

2.g(h;;) =0 for all i

0 Since =%,h; =0 (H is centered)

a0 Q is a Diagonal Matrix!!!

8 Nov 2012
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An alternate approach

m Minimize Error
P =g(BX)f(BX)'
Q = Diagonal

error =||P-Q||2

= Leads to trivial Widrow Hopf type iterative rule:
E = Diag —g(BX)f(BX)'
B=B+ 77EBT

8 Nov 2012 11755/18797
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Update Rules

= Multiple solutions under different assumptions
for g() and f()

s H=BX
s B=B+nAB
= Jutten Herraut : Online update

0 AB;; =1(hyg(h;); --actually assumed a recursive
neural network

= Bell Sejnowski
0 AB =([B']* - g(H)XT)
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Update Rules

= Multiple solutions under different assumptions
for g() and f()

s H=BX
s B=B+nAB

= Natural gradient -- f() = identity function
5 AB = (1 - g(H)HT)W

m Cichoki-Unbehaeven
a0 AB = (I - g(H)f(H)")W
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What are GG() and H()

= Must be odd symmetric functions
= Multiple functions proposed

(x) = X+ tanh(x) X Issuper Gaussian
I = X —tanh(x) X issub Gaussian

= Audio signals in general

5 AB = (1 - HHT-Ktanh(H)HT)W
m Orsimply

5 AB = (1 -Ktanh(H)HT)W

8 Nov 2012 11755/18797
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So how does 1t work?

m Example with instantaneous mixture of two
speakers

= Natural gradient update

= Works very well!
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Another example!

Input Mix Output

A & L b o & 2 & =
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Another Example

m Three instruments..

67
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The Notes

ICA Feature
- R
I
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4 L . . L
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m Three instruments..
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ICA for data exploration

m The “bases” in PCA

represent the “building
blocks”

o ldeally notes

I

T,
i
|

I
|
I
ll]lillll|lll|lllllfl'|
DA HATRAAR

|

m Very successfully used

ﬁ'\
\“ |
il
|
Il

il
il

il
I

i

I
|
|

m So can ICA be used to do
the same?

LRI
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ICA vs PCA bases

Motivation for using ICA vs PCA

PCA will indicate orthogonal directions
of maximal variance

= May not align with the data!

ICA finds directions that are
iIndependent

= More likely to “align” with the data

8 Nov 2012 11755/18797
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ol PCA
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Finding useful transforms with ICA

Audio preprocessing example Y - T |
Take a lot of audio snippets /M "”W*'\\‘ ““"““““"“'U ““"’"‘\”;p' i “““”""“ﬂl* ) i — MWV
and concatenate them in a big ww[,wvw”f:"mww.mv:w”."‘ﬁwf%:w«»:\:ﬂﬁw]
matrix, do component ]kﬂr\\'i'ﬂuﬁf:r'\fﬂ'
analysis | 'ﬂf‘f' - k1 —4 A - wﬂ"f
PCA results in the DCT bases Lﬁ,%/\‘ ————— +_"|“'F“‘T_+“\__
m“ulw‘.\ 1 a1 mafpn 1 d \ Mhoe | oo w‘" | A I‘J‘“ﬂ"\ o |
ICA returns time/freq { | \,.',.M 7‘” U ”“«\Lhiﬂ\ﬂ%LjUw”J%l[
localized sinusoids which is a \f“*'\w | JW\ zde ol " . - | A N | e
better wa a;\J‘l“ | W B T A \] J o ‘
y to analyze sounds | | | | ‘ A
| A\ o w | \ I | \
Ditto for images ﬂ.wl"}{a»- - | \\{/'L.ﬂ | f / «J{k | ;‘uﬂv@,«ﬂ A '%”F‘W - \/ | MM}J.».
a ICAreturns localizes edge filters |+ thi’\ 77777 iﬂ!
Vak el it ik et R VAR
L o U ol L
WW\(\ ; '}‘“‘”’“' ’\'Ww ; '“““W : N WW\ : ?'}“ﬂ‘wwﬂ : J}‘M 1 fI—
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Example case: ICA-faces vs. Figenfaces

ICA-faces Eigenfaces

SRTE
FENN BESH
HESN SEEE
11 R LEE
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ICA for Signal Enhncement
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m Very commonly used to enhance EEG signals

m EEG signals are frequently corrupted by
heartbeats and biorhythm signals

= |CA can be used to separate them out
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So how does that work?

m There are 12 notes in the segment, hence we try
to estimate 12 notes..
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PCA solution
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200 400 800 200 1000 1200 1400

m There are 12 notes in the segment, hence we try
to estimate 12 notes..
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So how does this work: ICA solution

m Better..

2 But not much

m But the issues here?
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ICA Issues

m No sense of order
o Unlike PCA

= Get Kindependent directions, but does not have a notion
of the “best” direction

0 So the sources can come in any order

o Permutation invariance

= Does not have sense of scaling
0 Scaling the signal does not affect independence

m Outputs are scaled versions of desired signals in
permuted order

0 Inthe best case
0 In worse case, output are not desired signals at all..
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What else went wrong?

m Assume distribution of signals is symmetric
around mean

2 Note energy here
o Not symmetric — negative values never happen

o Still this didn’t affect the three instruments case..

m Notes are not independent
2 Only one note plays at a time

o If one note plays, other notes are not playing
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Continue in next class..

= NMF
m Factor analysis..
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