11-755 Machine Learning for Signal Processing

Predicting and Estimation from
Time Series
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An automotive example
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Determine automatically, by only listening to a running
automobile, if it is:

o Idling; or

o Travelling at constant velocity; or

o Accelerating; or

o Decelerating

Assume (for illustration) that we only record energy level (SPL)
in the sound

o The SPL is measured once per second
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What we know

An automobile that is at rest can accelerate, or
continue to stay at rest

An accelerating automobile can hit a steady-state
velocity, continue to accelerate, or decelerate

A decelerating automobile can continue to
decelerate, come to rest, cruise, or accelerate

A automobile at a steady-state velocity can stay
in steady state, accelerate or decelerate
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What else we know

P(x|idle) P(x|deceD)P(x| cruise)P(x]|accel)

I\
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The probability distribution of the SPL of the
sound is different in the various conditions
2o As shown in figure

In reality, depends on the car

The distributions for the different conditions
overlap

o Simply knowing the current sound level is not enough
to know the state of the car
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‘The Modell  ox e
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= The state-space model
0 Assuming all transitions from a state are equally probable
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Estimating the state at T = 0-
0.25 025  0.25 0.25

ldling Accelerating Cruising Decelerating

= A T=0, before the first observation, we know
nothing of the state

o Assume all states are equally likely
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The first observation
P(x|idle) P(x|decel)P(x]cruise)P(x|accel)
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At T=0 we observe the sound level x, = 67dB SPL

0 The observation modifies our belief in the state of the
system

P(x,|idle) =0
P(x,|deceleration) = 0.0001
P(x,|acceleration) = 0.7

P(x, | cruising) = 0.5

0 Note, these don’t have to sum to 1

0 In fact, since these are densities, any of them can be > 1
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Estimating state after at observing x

P(state | x,) = C P(state)P(x,|state)
o P(idle | x,) =0

0 P(deceleration | x,) = C 0.000025

a P(cruising | x,) =C0.125

o P(acceleration | x,) = C0.175
Normalizing

o P(idle | x,) =0

o P(deceleration | x,) = 0.000083

a P(cruising | x,) = 0.42

o P(acceleration | x,) =0.57
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Estimating the state at T = 0+
0.57

0.42

8.3 x 10°

0.0

ldling Accelerating  Cruising Decelerating

= At T=0, after the first observation, we must
update our belief about the states

2 The first observation provided some evidence about
the state of the system

o It modifies our belief in the state of the system
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‘ Predicting the state of the system at T=1
C 3
I _[A_JCc D
| 05 05 O 0
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C 0 1/3 1/3 1/3
D 0.25 0.25 0.25 0.25

-5
00 8.3x 10

Idling Accelerating  Cruising Decelerating

= Predicting the probability of idling at T=1
o P(idling]|idling) = 0.5;
2 P(idling | deceleration) =0.25
o P(idling at T=1]| x,) =
P(l+_o|%o) P(I]1) + P(D7_o|%,) P(I|D) = 2.1 x 10
= In general, for any state S
0 P(Soy %) = ST P(St=0 | Xo) P(S7-1157-0)
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‘ Predicting the state at T =1
0.57

0.42

8.3 x 10>

0.0

ldling Accelerating  Cruising Decelerating

~-

PSS | xp) = ZST=O P(St—o | x0) P(S1—11S1-0)
0.33 0.33 0.33

2.1x10 ¢
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Updating after the observation at T=1

P(x|idle) P(x|deceD)P(x| cruise)P(x]|accel)

AAON

At T=1 we observe x,; = 63dB SPL
P(x,lidle) = 0
P(x, | deceleration) = 0.2

P(x,|acceleration) = 0.001

P(x,| cruising) = 0.5
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Update after observing x;

P(state | xq.;) = C P(state| x,)P(x,[state)
o P(Gdle | x45.) =0

0 P(deceleration | x4;) = C 0.066

o P(cruising | x4,) = C 0.165

o P(acceleration | x.,) = C 0.00033
Normalizing

P(dle | x4.) =0

P(deceleration | x,.;) = 0.285

P(cruising | x4.1) = 0.713

P(acceleration | x,.;) = 0. 0014

Q
Q
Q
Q

30 Oct 2012 11-755/18797 13



Estimating the state at T = 1+
0.713

0.285

0.0 0.0014 -

ldling Accelerating  Cruising Decelerating

The updated probability at T=1 incorporates
information from both x, and x,

a Itis NOT a local decision based on x; alone

0 Because of the Markov nature of the process, the state at
T=0 affects the state at T=1

X, provides evidence for the state at T=1
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Estimating a Unique state

What we have estimated is a distribution over the
states

If we had to guess a state, we would pick the
most likely state from the distributions

0.57

State(T=0) = Accelerating 00

Idling Accelerating  Cruising Decelerating

8.3x 10°

0.713

State(T=1) = Cruising

Idling Accelerating  Cruising Decelerating
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Overall procedure

=T+ < |

P(ST | XOIT—l) = ZST—l P(ST—l | XOIT—l) P(STl ST—l) P(ST | XOIT) = C. P(ST | XOZT—l) P(XTl ST)

Predict the distlrJiE?J?itoenﬂc])?the
distribution of the |
Stateat T
Stateat T .
after observing Xy
PREDICT UPDATE

At T=0 the predicted state distribution is the initial state probability

At each time T, the current estimate of the distribution over states
considers all observations x; ... X;

0 A natural outcome of the Markov nature of the model

The prediction+update is identical to the forward computation for
HMMs to within a normalizing constant
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‘ Comparison to Forward Algorithm

| =T+ < |

PGSt | xir-1) = L P(Sroy | Xgip-1) PGSl So)  PSp | x0.p) = C. P(Sy | xgp-1) P(x7| Sp)

Predict the distlrJiFl;?JflithentZ?the
distribution of the |
Stateat T
Stateat T .
after observing Xy
PREDICT UPDATE

= Forward Algorithm:
Q P(XOZT’ST) = P(XT| ST) ZST—I P(XOZT—].’ ST_]_) P(STl ST_]_)

PREDICT
UPDATE

= Normalized:

0 P(Srlxqp) = [ZS’T P(xp:7,S' 17! P(xp:1,Sp) = C
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‘ Decomposing the forward algorithm

| P(X():T’ST) = P(XTl ST) ZST—l P(XOZT—].’ ST_]_) P(STl ST_l)

= Predict:
u P(XOZT—l’ST) = ZST-I P(XOZT—I’ ST—l) P(STl ST—].)

= Update:
» P(xp1,Sp) = P(xplSp) P(xg.p-1,57)
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Estimating the state

=T+
| =T+ < |

P(ST | XOIT—l) = ZST—l P(ST—l | XOIT—l) P(STl ST—l) P(ST | XOIT) = C. P(ST | XOZT—l) P(XTl ST)

‘ 3 Predict the distlrJiE?JflitC)entg?the
distribution of the |
Stateat T
Stateat T .
after observing Xy

|
A 4

Estimate(S;) = argmax STP(ST | xXg.7) < Estimate(Sy) >

The state is estimated from the updated distribution

0 The updated distribution is propagated into time, not the
state
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Predicting the next observation

| =T+ < |

P(ST | XOIT—l) = ZST—l P(ST—l | XOIT—l) P(STl ST—l) P(ST | XOIT) = C. P(ST | XOZT—l) P(XTl ST)

‘ 3 Predict the distlrJiE?JflitC)entg?the
distribution of the |
Stateat T
Stateat T .
after observing Xy
|

\ 4
< Predict P(X;[Xgry) _D====== > Predictx, >

The probability distribution for the observations at the next
time is a mixture:

0 Pxrlxgr4) = 2sT P(x:]S1) P(St1%g.14)

The actual observation can be predicted from P(x;|X,.7.4)
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Predicting the next observation

MAP estimate:

0 argmax, Ppl xgp)

MMSE estimate:

o Expectation(xq| xp.1-1)

30 Oct 2012 11-755/18797

21



Difference from Viterbi decoding

Estimating only the current state at any time

o Not the state sequence
o Although we are considering all past observations

The most likely state at T and T+1 may be such
that there is no valid transition between S; and

ST+1
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A Enown state model

HMM assumes a very coarsely quantized state space

a Idling / accelerating / cruising / decelerating

Actual state can be finer

o ldling, accelerating at various rates, decelerating at various
rates, cruising at various speeds

Solution: Many more states (one for each
acceleration /deceleration rate, crusing speed)?

Solution: A continuous valued state
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The real-valued state model

A state equation describing the dynamics of the system
Sp = f(St—11gt)

0 S, is the state of the system at time t
0 g isadriving function, which is assumed to be random

The state of the system at any time depends only on the state at
the previous time instant and the driving term at the current
time

An observation equation relating state to observation

0, = g(st ’ 7/t)
0 O, is the observation at time t
0 7, is the noise affecting the observation (also random)

The observation at any time depends only on the current state
of the system and the noise
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‘Continuous state system

S = T (S0, 61)

Ot:g(st’j/t)

= The state is a continuous valued parameter that is not directly
seen

o The state is the position of navlab or the star

= The observations are dependent on the state and are the only
way of knowing about the state

0 Sensor readings (for navlab) or recorded image (for the telescope)



Statistical Prediction and Estimation

Given an a priori probability distribution for the
state

0 Py(s): Our belief in the state of the system before we
observe any data

Probability of state of navlab
Probability of state of stars

Given a sequence of observations o,..0,
Estimate state at time ¢
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Prediction and update at t = 0

Prediction

0 Initial probability distribution for state
a P(sg) = Py(s,)

Update:

o Then we observe o,
0 We must update our belief in the state

P(S |O ): P(SO)P(OO | S) _ PO(SO)P(OO | So)
S P(0,) P(0,)

P(sql0p) = C.Py(sq)P(0g]S,)
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The observation probability: P(o]|s)

Ot:g(st’yt)

o This Is a (possibly many-to-one) stochastic function
of state s, and noise v,

o Noise y, Is random. Assume it Is the same
dimensionality as o,

Let P,(y,) be the probability distribution of y,
Let {y:9(s,, Y)=0,} be the set of y that result in o,

P, (7)
P(o, [s,) = Z 3 ’
7:9(St,7)=0 | 9(s;.7) (Ot) |
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The observation probability
P(ols) =7 0, = 9(S7:)
P
P(Ot | St) — Z 7(7/)

7:9(S¢.7)=0; | 'Jg(st,y) (Ot) |
The J Is a jacobian

a0, (1) ao, (1)
oy@  ar(n)
|‘]g(st,7)(ot)|: : T :
ao(n)  do(n)
oy(2) oy(n)

For scalar functions of scalar variables, it is
simply a derivative: |J,. ,©)- 2%
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Predicting the next state

Given P(s,|0,), What is the probability of the
state at t=1

P(s,105) = [ P(51,5105)ds, = [ P(s, ]55)P(s, | 05)ds,
{so} {so}

State progression function:
Sy = f(St—l’gt)
0 g Is a driving term with probability distribution P (g,

P(s,|s;.;) can be computed similarly to P(o|s)
0 P(s4]Sp) Is an instance of this
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And moving on

P(s,]|0,) Is the predicted state distribution for
t=1

Then we observe o,

o We must update the probabillity distribution for sl

0 P(s4]0¢.1) = CP(s4]0g)P(04]s,)

We can continue on

30 Oct 2012 11-755/18797
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Discrete vs. Continuous state systems

Prediction at time O:
P(sSo) = (Sg)

Update after Oy
P(So | Og) = C 7 (S0)P(Og| Sp)

Prediction at time 1:

P(Sl | Oo) - Z P(So | OO)P(Sl | So)

Update after O;:
P(s1 ] 00,0;) =C P(s; | Op) P(O4fs,)

g /\ S; = f(St_l,gt)

S

O, = g(st ’ 7/t)
P(so) = P(s)

P(sol Og) = C P(sg) P(Og Sp)

P(s,|O,) = ]OP(SO | O,)P(s, | Sp)ds,

P(s1| Og,0,) = C P(s4| Op) P(O4] s9)



‘Discrete vs. Continuous State Systems

S, = T (S, &)
0, = g(stiyt)

Prediction at time t "
P(St | OO:t—l) - Z P(St—l | OO:t—l)P(St | St—l) P(St | OO:t-l) = I F)(St_1 | OO:t-l) P(St | St_l)dSt_1

Update after Oy
P(St | OO:t) — CP(St | OO:t-l)P(Ot | St) P(St | OO:t) — CP(St | OO:t-l)P(Ot | St)




‘Discrete vs. Continuous State Systems

S = T (S0, 61)

0, = g(St y / t)
Parameters
Initial state prob. 7 P(S)
Transition prob {T,}=P(s, = j| 5., =) P(s, |S,.,)

Observation prob ~ P(O]s) P(O ‘ S)




Special case: Linear GGaussian model

1

Jery' e, |

1 .,
0, =Bs, +7, P(y \/(2”) o exp(-0.5(y 11, ] ©;1(r— 11,)

exp(-05(s— 1) 0 (e - 1,))

Sy = A\St—l + & Ple) =

A linear state dynamics equation
0 Probability of state driving term ¢ is Gaussian

0 Sometimes viewed as a driving term . and additive zero-
mean noise

A linear observation equation
0 Probability of observation noise v is Gaussian

A,, B, and Gaussian parameters assumed known
o May vary with time
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The 1nitial state probability

1
P,(s) = exp(—0.5(s—5)R*(s—5)'
J@2r)* R ( )

P, (s) = Gaussian(s;5, R)

We also assume the initial state distribution to be
Gaussian

0 Often assumed zero mean
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The observation probability

0, =Bs, +7, P(y) = Gaussian(y; ,uy,@y)
P(0, | s;) =Gaussian(o; 1, + Bs;,©,)

The probabillity of the observation, given the state, is
simply the probability of the noise, with the mean
shifted

o Since the only uncertainty is from the noise

The new mean iIs the mean of the distribution of the
noise + the value of the observation in the absence
of noise
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The updated state probability at T=0
P(Sol OO) = C P(So) HOol SO)

P(s,) =Gaussian(s,;S, R)

P(0, | s,) =Gaussian(o,; ¢, + Bys;, ©.)

P(s, | 0,) = CGaussian(s,; S, R)Gaussian(oy; i, + By, 0,)
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Note 1: product of two Gaussians

The product of two Gaussians is a Gaussian

Gaussian(s; S, R)Gaussian(o; 1+ Bs, ®)
C, exp (—O.S(s —35) ' R(s— §))C2 exp (— 0.5(0—x—Bs)' ®*(0— u— Bs))

C.Gaussian(s; (R*+B'®"B) (R*5+B"®*(0— 1)) (R +B ®_1B)_1)

Not a good estimate --
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The updated state probability at T=0
P(Sol OO) = C P(SQ) HOol SO)

P(s,) =Gaussian(s,;S, R)

P(0, | s,) =Gaussian(o,; ¢, + Bys;, ©.)

P(So | Oo) —
Gaussian(so; (R‘1 +B,;©,'B, )_1(R_1§ + B, ©."(0, — ﬂy)), (R_l +B,0,'B, )_1)

P(s, |0,) = Gaussian(so; S, Ifio)
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The state transition probability

s, =AS,_,+¢& P(¢) =Gaussian(e; 1., )

P(s; |'5,) = Gaussian(s,; 4, + As.;, ©,)

The probability of the state at time t, given the
state at time t-1 is simply the probability of
the driving term, with the mean shifted
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Note 2: integral of product of two
(Gaussians

The Integral of the product of two Gaussians
IS a Gaussian

_[Gaussian(x; 1y, ©,)Gaussian(y; Ax+b, 0 )dx =

[CLe(-05(x— 11,)" @1 (x 1,)C, exp(~0.5(y — Ax—b)T ;% (y — Ax—b)ix

— Gaussian(y; Au, +b,0, + A®, A" )
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The predicted state probability at t=1
P(s,|0,) = TP(SO |0,)P(S, | S,)ds,
P(s, |s:) = Gaussian(s; i, + AS,,0.)
P(s, | 0,) = Gaussian(so; S, IQO)
P(s,|0,) = TGaussian(sO;§0, FAQO)Gaussian(sl; u.+ASs,,0 )ds,

P(s, |0,) = Gaussian(sl; AS, + 4., 0, + A&IQOA&T)
Remains Gaussian
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The updated state probability at T=1
Hs | 0p.) = C Hs; log) Koyl s))

P(s,|0,) = Gaussian(sl; AS, + 1,0 +ARA )
P(0, |s;) =Gaussian(o;; 1, + B;s,,©,)

P(s, |0,,) = Gaussian(sl; S, ﬁl)
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The Kalman Filter!

Prediction at T
P(s, | 0y, 1) = Gaussian(s,; AS,, +4,,0, + AR A')
P(s, | 0,,) = Gaussian(s,;5,, R, )
Update at T
P(St | OO:t) —
Gaussian(st (R*+BTO'B,) (R, + B ®7(0, - ,)) (R*+B©'B, )1)
P(s, | 0y,) = Gaussian(st $,, F'it)
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‘Linear (Gaussian Model s, =AS,_, +&

o, = BS, +7,
P(s) /\ ZOW /\ P(O]s) = /\

a priori Transition prob.

State output prob

DDDDDD

All distributions remain Gaussian

P(so) = P(s)

P(sol Op) = C P(sy) P(Og| So)
P(s,105) = [P, 10,)P(s, ] 5,)ds,
P(s,| O, 1)_OO= C P(s,] Op) P(O4] Sy)
P(s,|O,,) = jP(s |0,,)P(s, | s,)ds,

P(s,| Op.n) = C P(s,| Op.1) P(O,] s5)



The Kalman filter

The actual state estimate Is the mean of the
updated distribution

Predicted state at time t
S; = mean[P(St | OO:t—l)] = A\§t—1 + U,

Updated estimate of state at time t

A _ N —1 1 _
s, =mean[P(s, | 0,,)] = (R*+B®'B, ) (R*s, + Bl ©*(0, — 1))
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Stable Estimation

A . - —1 1 _
s, =mean[P(s, |0,.)] = (R +Bl©'B ) (R*5, + B/©}(0, — 1))

The above equation falls if there is no
observation noise

0 @)y =0

o Paradoxical?

o Happens because we do not use the relationship
between o and s effectively

Alternate derivation required
o Conventional Kalman filter formulation
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A matrix inverse identity

A B} " |At+a'B(c-BTA'B)'B'AT —A'B[C-BTAB)"
BT C —(c-B"A'B]'B"A™ (c-B"AB)"

o Work 1t out..
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For any jointly Gaussian RV
=[¥] win] e T

iy N _ 1 ~ _ ~ 1
o {cm #CCry (Cy ~ClCCry ) 'y Cii  ~Cok Gy (€ ~CJ CiCie ) }
_(CYY _C>T<YC>_<>1< va) C>T<YC>_<>1< (CYY _C>T<YC>_<>1<CXY)

Using the Matrix Inversion ldentity
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For any jointly Gaussian RV

25| =[“X} of {C?‘ CXY}
'UY CXY CYY
~ _ _ —1 _ _ B —1
Cz—l — {Cwl( + Cx>1< va (CYY - C>T<YCX>1<1CXY ) C>T<YCx>l< _Cx>1< ny (C _C>T<y Cx>1< Clxy )
_(CYY _C>T<YC>_<>1< CXY) C>T<YC>_<>1< (CYY _C>T<YC>_<>1<CXY)

(Z—-1,) C;X(Z -, )= Quadratic(X)+
(Y — 4y _CYXC>_<>1< (X _/ux))T (CYY _C>T<YC>_<>1< Cv )_1(Y —Hy _CYXC)_()l( (X = 4y ))

Using the Matrix Inversion ldentity
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For any jointly Gaussian RV

P(X,Y)=Constexp (—O.S(Z —11,) CHZ — g, )):
= const exp (—0.5Quadratic(X) +

_O'S(Y =1, =Gy C (X _,Ux))T (CYY -C5Cs Gy )_1(Y — ty =Cy, Cix (X _ﬂx)))
P(Y | X) =
K exp - 0.5(Y — 1, ~ CuCi (X — 160)) (G —CL C3Coy (Y = 1ty ~Co G (X = 11)))

= Gaussian(Y; (Y — 4, —C, Cik (X — 14))(Coy —CL,CiiCy )
The conditional of Y Is a Gaussian
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Estimating P(s| o)
Dropping subscript t and o,..; for brevity

P(s|o,,_,) =Gaussian(s;s,R) o
: Assuming y Is 0 mean

P exp(-0.5:"0 )

1
0=DBs+y (7)_\/(27z)d|®7|

Consider the joint distribution of 0 and s

0 :[O] O is a linear function of S

Hence O is also Gaussian

P(O) = Gaussian(O; 1, 0,)
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The probability distribution of O

0=Bs+y O=|:O}

P(s) = Gaussian(s; S, R) P(y) = Gaussian(y;0,0,)
P(O) = Gaussian(O; 1,,0,)

e-sor-fg{EHY
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The probability distribution of O

P(O) = Gaussian(O; x4, 0,) Ly = [ng} 0=Bs+y
P(y) = Gaussian(y;0,0 ) P(s) = Gaussian(s; S, R)

O =~ ELO~1)O ) 1=E % % Jlo-Bs) &7—5']

O, = E[(0 - 11,)(0 — 11,)'] = EHB(S —_§g+7/}[(s—§)T B'+7' (s=3)' }

S

o, _E[(B(s S)+7)(s=5)" BT +77) (B(s—5)+)(s— s)}
(s=5)(B(s—5)+7)" (s—5)(s—5)"
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The probability distribution of O

P(O) = Gaussian(O; x4, 0,) Ly = [ng} 0=Bs+y
P(y) = Gaussian(y;0,0 ) P(s) = Gaussian(s; S, R)

o :E[(B(s—@w)«s—g)TBT+yT) (B(s—@)w)(s—gf}
° (s-5)(B(s—5)+7)' (s-8)(s—3)’

o {E[(B(s—g)w)((s—w B +57)] E[(Bis—§)+y)(s—§)T]}
° E|(s—35)(B(s—5)+7)"] E|(s—5)(s—5)"]

T BR
o, | BRB’ +0,
RB R
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The probability distribution of O

0=Bs+y
P(y) = Gaussian(y;0,0,) P(s) = Gaussian(s;S, R)
0=|° i
= < p(o) — GausSIan(O; Ho s ®o)

Ho =

BRB" +©, BR
RB R

I
1

o
7
L
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The probability distribution of O

P(O0y,) = P(0,5] 0y, ,) = Gaussian(O; u,, ©,)

-1

'BRB'+©, BR
RB' R

Cexp| —0.5[(0—-Bs) (s-53)

Writing It out in extended form
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Recall: For any jointly Gaussian RV

P(X,Y)=Constexp

P(Y | X) =

[_ 0'5(2 —Hz )T Cz_l(z —Hz )):

= Gaussian(Y;(Y — Uy —CYXC;()l( (X — Hy ))’ (CYY _C>T<YC>_<>1< CXY ))

Applying it to:

P(O0y4)=P(0,5]0y ;) =Gaussian(O; 1, O,)

Cexp| —-0.5/(0—B5) (s—3)[

30 Oct 2012
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RB' R
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Stable Estimation

P(O |0y, ,) =P(0,5]0y,_,) =Gaussian(O; 1 , )
- exp{_ 05f0-Bs) (s _§)]T{BRBT +0, BR} {o— B§B

RB' R S—3

The conditional distribution of s

P(s] 05,) = Gaussian(s; (1 —RB" (BRB" +©,)'B)5+RB" (BRB" +©,)'0,(R—RB" (BRB" +©,)'BR))

Note that we are not computing ©,* in this
formulation
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The Kalman filter

The actual state estimate Is the mean of the
updated distribution

Predicted state at time t
S; = Stpred = mean[P(St | OO:t—l)] = A\§t—1 T U,

Updated estimate of state at time t

(s, | 0;) = Gaussian(s; (1 —RB" (BRB" +©,)*B)5+RB" (BRB" +©,)0,(R—RB" (BRB" +©,) 'BR)

A T T = T T -1
§, = mean[P(s, |001)] = (I -R,B, (B,R,B, +®y) B.)S, + R B, (B.RB, +®7) 0,
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The Kalman filter

Prediction
S = StloreOI = mean[P(s; | 0y, )] = AS.; + 1,

R =0,+AR.A
Update
s, =(| ~RB(BRB/ +®y)_1Bt)§t+RtBtT(BthBtT +0,) "o

R =R -RB/(BRB +0,)"BR
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The Kalman filter
Prediction

S; = A\§t—1 + U,

R =0, +AR A
Update
K,=RB/(BRB/ +0,)"
§, =5, +K,(0,—B5,)

N

R =(1-KB)R
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The Kalman Filter

Very popular for tracking the state of
processes

o Control systems

o Robotic tracking
Simultaneous localization and mapping

o Radars
o Even the stock market..

What are the parameters of the process?
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Kalman filter contd.
Sy = A\St—l T &

o, =Bs; +,

Model parameters A and B must be known

o Often the state equation includes an additional
driving term: s, = AsS,; + G, + ¢

o The parameters of the driving term must be
known

The Initial state distribution must be known
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Detining the parameters

State state must be carefully defined

o E.g. for a robotic vehicle, the state is an extended
vector that includes the current velocity and
acceleration

S = [X, dX, d2X]

State equation: Must incorporate appropriate
constraints

o |If state includes acceleration and velocity, velocity at
next time = current velocity + acc. * time step

o St=AS,; +e
A=[1t0.5t% 01t 001]
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Parameters

Observation equation:
o Critical to have accurate observation equation

o Must provide a valid relationship between state
and observations

Observations typically high-dimensional

o May have higher or lower dimensionality than
state
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Problems
Sy = f(St—l’gt)

0, = g(st’yt)

f() and/or g() may not be nice linear
functions

o Conventional Kalman update rules are no longer
valid

¢ and/or y may not be Gaussian
o Gaussian based update rules no longer valid
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Solutions
Sy = f(St—l’gt)

0, = g(st’yt)

f() and/or g() may not be nice linear
functions

o Conventional Kalman update rules are no longer
valid

o Extended Kalman Filter

¢ and/or y may not be Gaussian
o Gaussian based update rules no longer valid
o Particle Filters
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