Predicting and Estimation from Time Series

Class 16. 25 Oct 2012

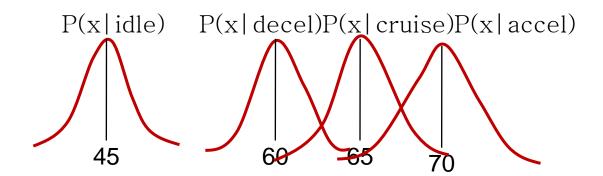
An automotive example

- Determine automatically, by only *listening* to a running automobile, if it is:
 - Idling; or
 - Travelling at constant velocity; or
 - Accelerating; or
 - Decelerating
- Assume (for illustration) that we only record energy level (SPL) in the sound
 - The SPL is measured once per second

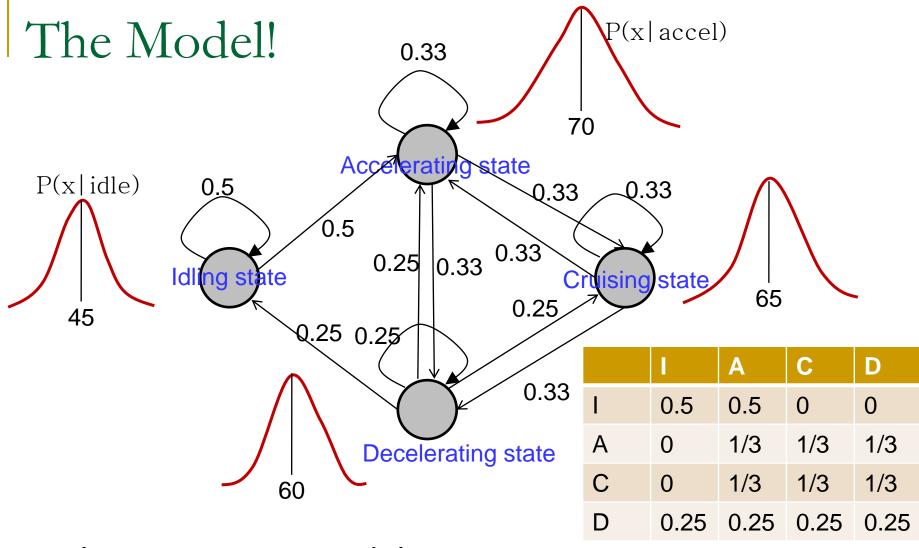
What we know

- An automobile that is at rest can accelerate, or continue to stay at rest
- An accelerating automobile can hit a steady-state velocity, continue to accelerate, or decelerate
- A decelerating automobile can continue to decelerate, come to rest, cruise, or accelerate
- A automobile at a steady-state velocity can stay in steady state, accelerate or decelerate

What else we know

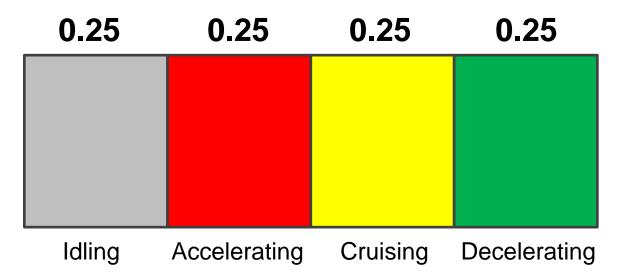


- The probability distribution of the SPL of the sound is different in the various conditions
 - As shown in figure
 - In reality, depends on the car
- The distributions for the different conditions overlap
 - Simply knowing the current sound level is not enough to know the state of the car



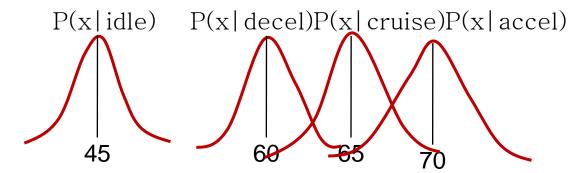
- The state-space model
 - Assuming all transitions from a state are equally probable

Estimating the state at T = 0-



- A T=0, before the first observation, we know nothing of the state
 - Assume all states are equally likely

The first observation

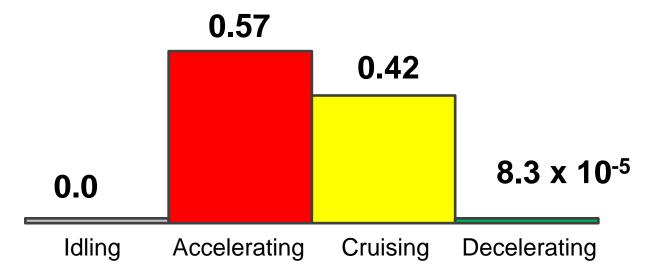


- At T=0 we observe the sound level $x_0 = 67dB SPL$
 - The observation modifies our belief in the state of the system
- $P(x_0 | idle) = 0$
- $P(x_0 | deceleration) = 0.0001$
- $P(x_0 | acceleration) = 0.7$
- $P(x_0 | cruising) = 0.5$
 - Note, these don't have to sum to 1
 - □ In fact, since these are densities, any of them can be > 1

Estimating state after at observing x₀

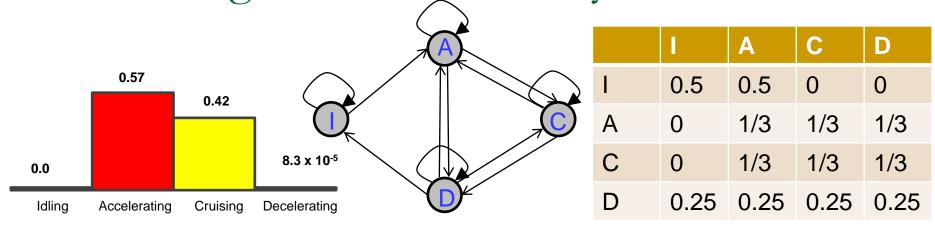
- P(state | x_0) = C P(state)P(x_0 |state)
 - \neg P(idle | x_0) = 0
 - \Box P(deceleration | x_0) = C 0.000025
 - \Box P(cruising | x_0) = C 0.125
 - □ P(acceleration $| x_0 \rangle$ = C 0.175
- Normalizing
 - \neg P(idle | x_0) = 0
 - □ P(deceleration $| x_0 \rangle = 0.000083$
 - Arr P(cruising | x_0) = 0.42
 - □ P(acceleration $| x_0 \rangle = 0.57$

Estimating the state at T = 0+

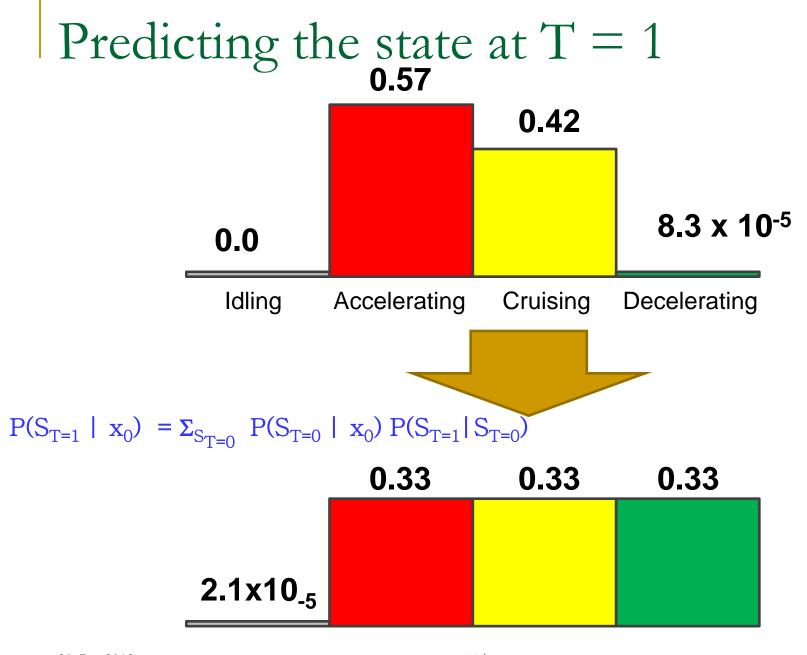


- At T=0, after the first observation, we must update our belief about the states
 - The first observation provided some evidence about the state of the system
 - It modifies our belief in the state of the system

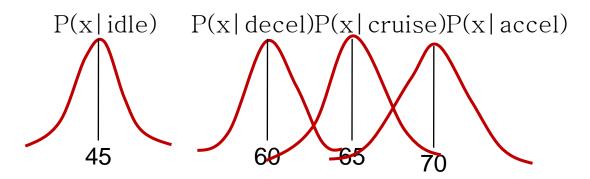
Predicting the state of the system at T=1



- Predicting the probability of idling at T=1
 - \Box P(idling|idling) = 0.5;
 - □ P(idling | deceleration) = 0.25
 - □ P(idling at T=1| x_0) = P($I_{T=0}|x_0$) P(I|I) + P($D_{T=0}|x_0$) P(I|D) = 2.1 x 10⁻⁵
- In general, for any state S



Updating after the observation at T=1



- At T=1 we observe $x_1 = 63dB SPL$
- $P(x_1|idle) = 0$
- $P(x_1 | deceleration) = 0.2$
- $P(x_1 | acceleration) = 0.001$
- $P(x_1 | cruising) = 0.5$

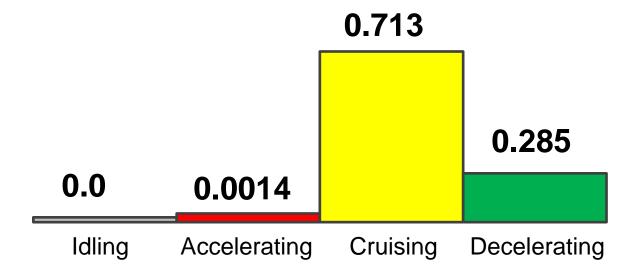
Update after observing x₁

- P(state | $x_{0:1}$) = C P(state | x_0)P(x_1 | state)
 - $Arr P(idle \mid x_{0:1}) = 0$
 - □ P(deceleration | $x_{0.1}$) = C 0.066
 - P(cruising | $x_{0:1}$) = C 0.165
 - □ P(acceleration | $x_{0:1}$) = C 0.00033

Normalizing

- $Arr P(idle \mid x_{0:1}) = 0$
- □ P(deceleration | $x_{0:1}$) = 0.285
- P(cruising | $x_{0:1}$) = 0.713
- P(acceleration | $x_{0:1}$) = 0.0014

Estimating the state at T = 1 +



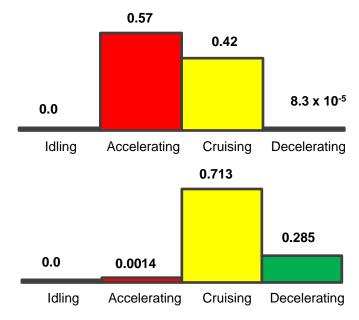
- The updated probability at T=1 incorporates information from both x_0 and x_1
 - □ It is NOT a local decision based on x₁ alone
 - Because of the Markov nature of the process, the state at T=0 affects the state at T=1
 - x₀ provides evidence for the state at T=1

Estimating a Unique state

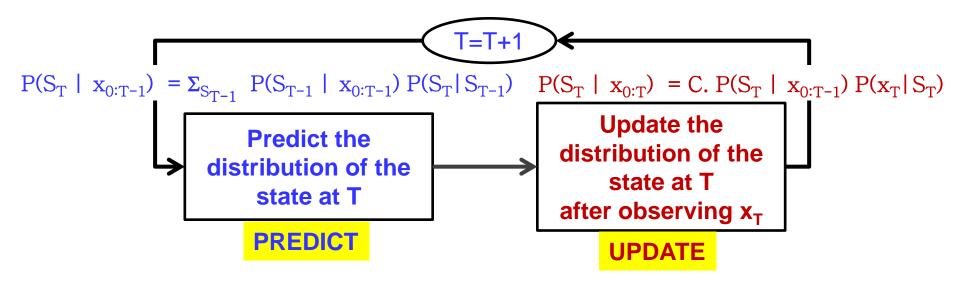
- What we have estimated is a distribution over the states
- If we had to guess a state, we would pick the most likely state from the distributions

State(T=0) = Accelerating

State(T=1) = Cruising

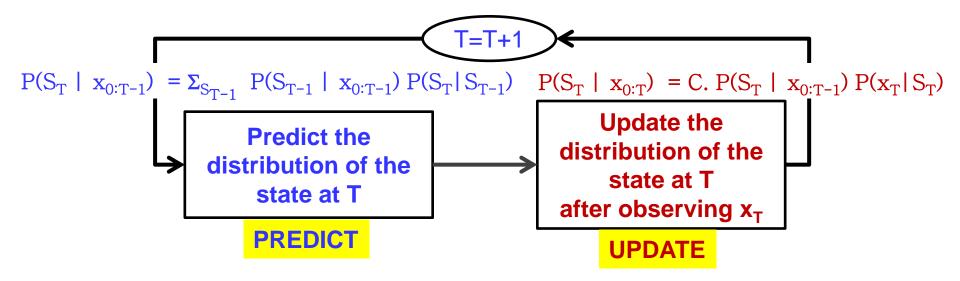


Overall procedure



- At T=0 the predicted state distribution is the initial state probability
- At each time T, the current estimate of the distribution over states considers *all* observations $x_0 \dots x_T$
 - A natural outcome of the Markov nature of the model
- The prediction+update is identical to the forward computation for HMMs to within a normalizing constant

Comparison to Forward Algorithm



Forward Algorithm:

17

Normalized:

$$P(S_T | x_{0:T}) = [\Sigma_{S'_T} P(x_{0:T}, S'_T)]^{-1} P(x_{0:T}, S_T) = C$$
30 Oct $P(\Sigma_{T}, S_T)$
11-755/18797

Decomposing the forward algorithm

$$P(x_{0:T}, S_T) = P(x_T | S_T) \Sigma_{S_{T-1}} P(x_{0:T-1}, S_{T-1}) P(S_T | S_{T-1})$$

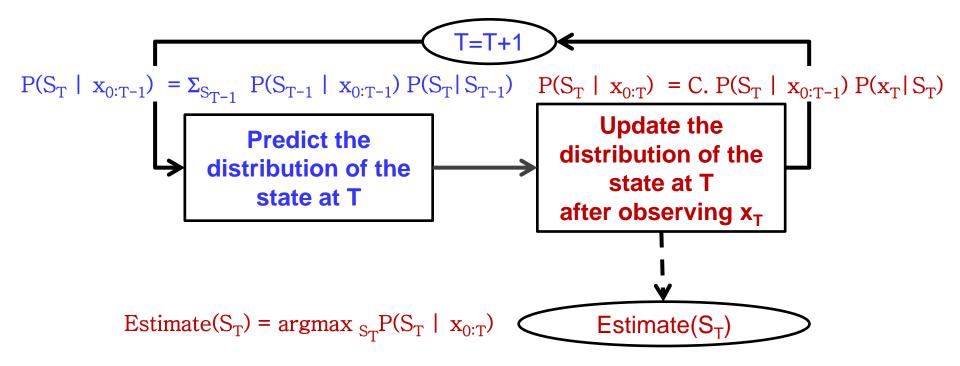
Predict:

 $P(x_{0:T-1},S_T) = \Sigma_{S_{T-1}} P(x_{0:T-1}, S_{T-1}) P(S_T | S_{T-1})$

Update:

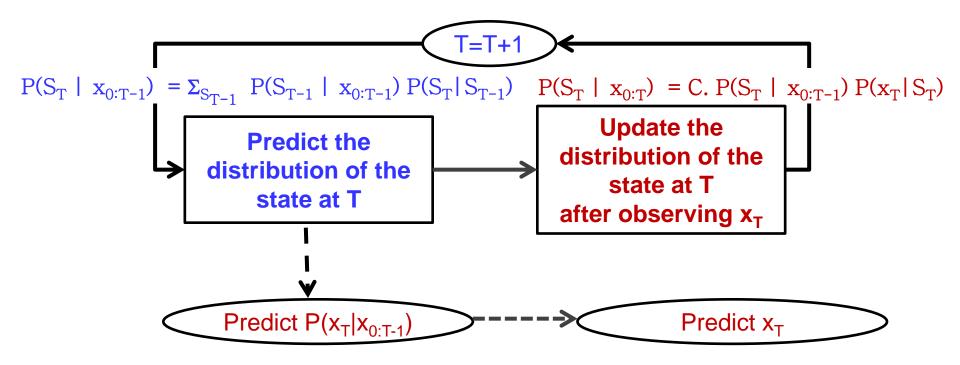
 $P(x_{0:T}, S_T) = P(x_T | S_T) P(x_{0:T-1}, S_T)$

Estimating the *state*



- The state is estimated from the updated distribution
 - The updated distribution is propagated into time, not the state

Predicting the *next observation*



- The probability distribution for the observations at the next time is a mixture:
- The actual observation can be predicted from P(x_T|x_{0:T-1})

Predicting the next observation

MAP estimate:

 $argmax_{x_T} P(x_T | x_{0:T-1})$

MMSE estimate:

■ Expectation $(x_T | x_{0:T-1})$

Difference from Viterbi decoding

- Estimating only the current state at any time
 - Not the state sequence
 - Although we are considering all past observations
- The most likely state at T and T+1 may be such that there is no valid transition between S_T and S_{T+1}

A known state model

- HMM assumes a very coarsely quantized state space
 - Idling / accelerating / cruising / decelerating
- Actual state can be finer
 - Idling, accelerating at various rates, decelerating at various rates, cruising at various speeds
- Solution: Many more states (one for each acceleration /deceleration rate, crusing speed)?
- Solution: A continuous valued state

The real-valued state model

A state equation describing the dynamics of the system

$$S_t = f(S_{t-1}, \mathcal{E}_t)$$

- \Box S_t is the state of the system at time t
- \Box ε_t is a driving function, which is assumed to be random
- The state of the system at any time depends only on the state at the previous time instant and the driving term at the current time
- An observation equation relating state to observation

$$o_t = g(s_t, \gamma_t)$$

- \bigcirc O_t is the observation at time t
- \neg γ_t is the noise affecting the observation (also random)
- The observation at any time depends only on the current state of the system and the noise

Continuous state system

$$S_t = f(S_{t-1}, \mathcal{E}_t)$$

$$o_t = g(s_t, \gamma_t)$$

- The state is a continuous valued parameter that is not directly seen
 - The state is the position of navlab or the star
- The observations are dependent on the state and are the only way of knowing about the state
 - Sensor readings (for navlab) or recorded image (for the telescope)

Statistical Prediction and Estimation

- Given an a priori probability distribution for the state
 - $Arr P_0(s)$: Our belief in the state of the system before we observe any data
 - Probability of state of navlab
 - Probability of state of stars
- Given a sequence of observations $o_0..o_t$
- Estimate state at time t

Prediction and update at t = 0

Prediction

- Initial probability distribution for state
- $P(s_0) = P_0(s_0)$
- Update:
 - \Box Then we observe o_0
 - We must update our belief in the state

$$P(s_0 \mid o_0) = \frac{P(s_0)P(o_0 \mid s)}{P(o_0)} = \frac{P_0(s_0)P(o_0 \mid s_0)}{P(o_0)}$$

 $P(s_0|o_0) = C.P_0(s_0)P(o_0|s_0)$

The observation probability: P(o | s)

- $o_t = g(s_t, \gamma_t)$
 - □ This is a (possibly many-to-one) stochastic function of state s_t and noise γ_t
 - □ Noise γ_t is random. Assume it is the same dimensionality as o_t
- Let $P_{\gamma}(\gamma_t)$ be the probability distribution of γ_t
- Let $\{\gamma:g(s_t, \gamma)=o_t\}$ be the set of γ that result in o_t

$$P(o_t \mid s_t) = \sum_{\gamma: g(s_t, \gamma) = o_t} \frac{P_{\gamma}(\gamma)}{|J_{g(s_t, \gamma)}(o_t)|}$$

The observation probability

$$P(o|s) = ? o_t = g(s_t, \gamma_t)$$

$$P(o_t | s_t) = \sum_{\gamma: g(s_t, \gamma) = o_t} \frac{P_{\gamma}(\gamma)}{|J_{g(s_t, \gamma)}(o_t)|}$$

The J is a jacobian

$$|J_{g(s_t,\gamma)}(o_t)| = \begin{vmatrix} \frac{\partial o_t(1)}{\partial \gamma(1)} & \dots & \frac{\partial o_t(1)}{\partial \gamma(n)} \\ \vdots & \ddots & \vdots \\ \frac{\partial o_t(n)}{\partial \gamma(1)} & \dots & \frac{\partial o_t(n)}{\partial \gamma(n)} \end{vmatrix}$$

For scalar functions of scalar variables, it is simply a derivative: $|J_{g(s_t,\gamma)}(o_t)| = \left|\frac{\partial o_t}{\partial \gamma}\right|$

Predicting the next state

• Given $P(s_0|o_0)$, what is the probability of the state at t=1

$$P(s_1 \mid o_0) = \int_{\{s_0\}} P(s_1, s_0 \mid o_0) ds_0 = \int_{\{s_0\}} P(s_1 \mid s_0) P(s_0 \mid o_0) ds_0$$

State progression function:

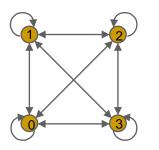
$$S_t = f(S_{t-1}, \mathcal{E}_t)$$

- \square ϵ_t is a driving term with probability distribution $P_{\epsilon}(\epsilon_t)$
- P($s_t|s_{t-1}$) can be computed similarly to P(o|s)
 - \neg P($s_1|s_0$) is an instance of this

And moving on

- P(s₁|o₀) is the predicted state distribution for t=1
- Then we observe o₁
 - We must update the probability distribution for s1
 - $P(s_1|o_{0:1}) = CP(s_1|o_0)P(o_1|s_1)$
- We can continue on

Discrete vs. Continuous state systems



$$\pi = \begin{bmatrix} 0.1 & 0.2 & 0.3 \\ & 1 & 1 & 1 \\ \hline 0 & 1 & 2 & 3 \end{bmatrix}$$

Prediction at time 0:

$$P(s_0) = \pi (s_0)$$

Update after O₀:

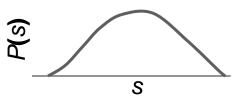
$$P(s_0 \mid O_0) = C \pi (s_0) P(O_0 \mid s_0)$$

Prediction at time 1:

$$P(s_1 \mid O_0) = \sum_{s_0} P(s_0 \mid O_0) P(s_1 \mid s_0)$$

Update after O₁:

$$P(s_1 | O_0, O_1) = C P(s_1 | O_0) P(O_1 | s_1)$$



$$S_{t} = f(S_{t-1}, \mathcal{E}_{t})$$

$$O_{t} = g(S_{t}, \gamma_{t})$$

$$o_t = g(s_t, \gamma_t)$$

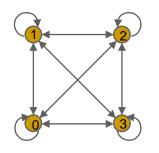
$$P(s_0) = P(s)$$

$$P(s_0 | O_0) = C P(s_0) P(O_0 | s_0)$$

$$P(s_1 \mid O_0) = \int_{-\infty}^{\infty} P(s_0 \mid O_0) P(s_1 \mid s_0) ds_0$$

$$P(s_1 | O_0, O_1) = C P(s_1 | O_0) P(O_1 | s_1)$$

Discrete vs. Continuous State Systems



$$S_t = f(S_{t-1}, \mathcal{E}_t)$$

$$o_t = g(s_t, \gamma_t)$$

Prediction at time to

$$P(s_t \mid O_{0:t-1}) = \sum_{s_{t-1}} P(s_{t-1} \mid O_{0:t-1}) P(s_t \mid s_{t-1})$$

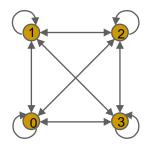
Update after O₁:

$$P(s_t \mid O_{0:t}) = CP(s_t \mid O_{0:t-1})P(O_t \mid s_t) | P(s_t \mid O_{0:t}) = CP(s_t \mid O_{0:t-1})P(O_t \mid s_t)$$

$$P(s_t \mid O_{0:t-1}) = \sum_{s_{t-1}} P(s_{t-1} \mid O_{0:t-1}) P(s_t \mid s_{t-1}) \qquad P(s_t \mid O_{0:t-1}) = \int_{-\infty}^{\infty} P(s_{t-1} \mid O_{0:t-1}) P(s_t \mid s_{t-1}) ds_{t-1}$$

$$P(s_t \mid \mathcal{O}_{0:t}) = CP(s_t \mid \mathcal{O}_{0:t-1})P(\mathcal{O}_t \mid s_t)$$

Discrete vs. Continuous State Systems



Parameters

Initial state prob. π

Transition prob ${T_{ij}} = P(s_t = j \mid s_{t-1} = i)$

Observation prob P(O | s)

$$S_t = f(S_{t-1}, \mathcal{E}_t)$$

$$o_t = g(s_t, \gamma_t)$$

$$P(s_t \mid s_{t-1})$$

$$P(o \mid s)$$

Special case: Linear Gaussian model

$$S_t = A_t S_{t-1} + \mathcal{E}_t$$

$$o_t = B_t s_t + \gamma_t$$

$$P(\varepsilon) = \frac{1}{\sqrt{(2\pi)^d |\Theta_{\varepsilon}|}} \exp\left(-0.5(\varepsilon - \mu_{\varepsilon})^T \Theta_{\varepsilon}^{-1}(\varepsilon - \mu_{\varepsilon})\right)$$

$$P(\gamma) = \frac{1}{\sqrt{(2\pi)^d |\Theta_{\gamma}|}} \exp\left(-0.5(\gamma - \mu_{\gamma})^T \Theta_{\gamma}^{-1}(\gamma - \mu_{\gamma})\right)$$

- A linear state dynamics equation
 - $lue{}$ Probability of state driving term ϵ is Gaussian
 - $\hfill\Box$ Sometimes viewed as a driving term μ_ϵ and additive zeromean noise
- A linear observation equation
 - \Box Probability of observation noise γ is Gaussian
- \blacksquare A_t , B_t and Gaussian parameters assumed known
 - May vary with time

The initial state probability

$$P_0(s) = \frac{1}{\sqrt{(2\pi)^d |R|}} \exp\left(-0.5(s-\bar{s})R^{-1}(s-\bar{s})^T\right)$$

$$P_0(s) = Gaussian(s; \bar{s}, R)$$

- We also assume the *initial* state distribution to be Gaussian
 - Often assumed zero mean

The observation probability

$$o_t = B_t s_t + \gamma_t$$
 $P(\gamma) = Gaussian(\gamma; \mu_{\gamma}, \Theta_{\gamma})$

$$P(o_t \mid s_t) = Gaussian(o_t; \mu_{\gamma} + B_t s_t, \Theta_{\gamma})$$

- The probability of the observation, given the state, is simply the probability of the noise, with the mean shifted
 - Since the only uncertainty is from the noise
- The new mean is the mean of the distribution of the noise + the value of the observation in the absence of noise

The updated state probability at T=0

$$P(S_0 \mid O_0) = CP(S_0)P(O_0 \mid S_0)$$

$$P(s_0) = Gaussian(s_0; \bar{s}, R)$$

$$P(o_0 \mid s_0) = Gaussian(o_0; \mu_{\gamma} + B_0 s_0, \Theta_{\gamma})$$

$$P(s_0 \mid o_0) = CGaussian(s_0; \bar{s}, R)Gaussian(o_0; \mu_{\gamma} + B_0 s_0, \Theta_{\gamma})$$

Note 1: product of two Gaussians

The product of two Gaussians is a Gaussian

$$Gaussian(s; \bar{s}, R)Gaussian(o; \mu + Bs, \Theta)$$

$$C_1 \exp(-0.5(s-\bar{s})^T R^{-1}(s-\bar{s})) C_2 \exp(-0.5(o-\mu-Bs)^T \Theta^{-1}(o-\mu-Bs))$$

$$C.Gaussian \left(s; \left(R^{-1} + B^T \Theta^{-1} B \right)^{-1} \left(R^{-1} \overline{s} + B^T \Theta^{-1} (o - \mu) \right), \left(R^{-1} + B^T \Theta^{-1} B \right)^{-1} \right)$$

Not a good estimate --

The updated state probability at T=0

$$P(S_0 \mid O_0) = CP(S_0)P(O_0 \mid S_0)$$

$$P(s_0) = Gaussian(s_0; \bar{s}, R)$$

$$P(o_0 \mid s_0) = Gaussian(o_0; \mu_{\gamma} + B_0 s_0, \Theta_{\gamma})$$

$$P(s_0 \mid o_0) =$$

$$Gaussian \left(s_{0}; \left(R^{-1} + B_{0}^{T}\Theta_{\gamma}^{-1}B_{0}\right)^{-1}\left(R^{-1}\overline{s} + B_{0}^{T}\Theta_{\gamma}^{-1}(o_{0} - \mu_{\gamma})\right), \left(R^{-1} + B_{0}^{T}\Theta_{\gamma}^{-1}B_{0}\right)^{-1}\right)$$

$$P(s_0 \mid o_0) = Gaussian(s_0; \hat{s}_0, \hat{R}_0)$$

The state transition probability

$$S_{t} = A_{t}S_{t-1} + \varepsilon_{t}$$

$$P(\varepsilon) = Gaussian(\varepsilon; \mu_{\varepsilon}, \Theta_{\varepsilon})$$

$$P(s_t \mid s_{t-1}) = Gaussian(s_t; \mu_{\varepsilon} + A_t s_{t-1}, \Theta_{\varepsilon})$$

The probability of the state at time t, given the state at time t-1 is simply the probability of the driving term, with the mean shifted

Note 2: integral of product of two Gaussians

The integral of the product of two Gaussians is a Gaussian

$$\int_{-\infty}^{\infty} Gaussian(x; \mu_x, \Theta_x) Gaussian(y; Ax + b, \Theta_y) dx =$$

$$\int_{0}^{\infty} C_1 \exp\left(-0.5(x-\mu_x)^T \Theta_x^{-1} (x-\mu_x)\right) C_2 \exp\left(-0.5(y-Ax-b)^T \Theta_y^{-1} (y-Ax-b)\right) dx$$

$$= Gaussian(y; A\mu_x + b, \Theta_y + A\Theta_x A^T)$$

The predicted state probability at t=1

$$P(s_1 | o_0) = \int_{-\infty}^{\infty} P(s_0 | o_0) P(s_1 | s_0) ds_0$$

$$P(s_1 | s_0) = Gaussian(s_1; \mu_{\varepsilon} + A_1 s_0, \Theta_{\varepsilon})$$

$$P(s_0 | o_0) = Gaussian(s_0; \hat{s}_0, \hat{R}_0)$$

$$P(s_1 \mid o_0) = \int_{-\infty}^{\infty} Gaussian(s_0; \hat{s}_0, \hat{R}_0) Gaussian(s_1; \mu_{\varepsilon} + A_1 s_0, \Theta_{\varepsilon}) ds_0$$

$$P(s_1 \mid o_0) = Gaussian(s_1; A_1 \hat{s}_0 + \mu_{\varepsilon}, \Theta_{\varepsilon} + A_1 \hat{R}_0 A_1^T)$$

Remains Gaussian

The updated state probability at T=1

$$P(S_1 \mid O_{0:1}) = CP(S_1 \mid O_0)P(O_1 \mid S_1)$$

$$P(s_1 \mid o_0) = Gaussian(s_1; A_1 \hat{s}_0 + \mu_{\varepsilon}, \Theta_{\varepsilon} + A_1 \hat{R}_0 A_1^T)$$

$$P(o_1 \mid s_1) = Gaussian(o_1; \mu_{\gamma} + B_1 s_1, \Theta_{\gamma})$$

•

$$P(s_1 | o_{0:1}) = Gaussian(s_1; \hat{s}_1, \hat{R}_1)$$

Prediction at T

$$P(s_{t} \mid o_{0:t-1}) = Gaussian(s_{t}; A_{t}\hat{s}_{t-1} + \mu_{\varepsilon}, \Theta_{\varepsilon} + A_{t}\hat{R}_{t-1}A_{t}^{T})$$

$$P(s_{t} \mid o_{0:t}) = Gaussian(s_{t}; \overline{s}_{t}, R_{t})$$

Update at T

$$P(s_{t} \mid o_{0:t}) = Gaussian(s_{t}; (R_{t}^{-1} + B_{t}^{T}\Theta_{\gamma}^{-1}B_{t})^{-1}(R_{t}^{-1}\overline{s}_{t} + B_{t}^{T}\Theta_{\gamma}^{-1}(o_{t} - \mu_{\gamma})), (R_{t}^{-1} + B_{t}^{T}\Theta_{\gamma}^{-1}B_{t})^{-1})$$

$$P(s_t \mid o_{0:t}) = Gaussian(s_t; \hat{s}_t, \hat{R}_t)$$

Linear Gaussian Model

$$S_t = A_t S_{t-1} + \mathcal{E}_t$$

$$O_t = B_t S_t + \gamma_t$$

$$P(s_t/s_{t-1}) =$$

Transition prob.

$$P(O_t/s_t) =$$

 $P(s_0) = P(s)$

State output prob

$$P(s_0 | O_0) = C P(s_0) P(O_0 | s_0)$$

$$-P(s_1 \mid O_0) = \int_{0}^{\infty} P(s_0 \mid O_0) P(s_1 \mid s_0) ds_0$$

$$P(s_1|O_{0:1}) = C P(s_1|O_0) P(O_1|s_0)$$

$$P(s_2 \mid \mathcal{O}_{0:1}) = \int_{-\infty}^{\infty} P(s_1 \mid \mathcal{O}_{0:1}) P(s_2 \mid s_1) ds_1$$

$$P(s_2|O_{0:2}) = C P(s_2|O_{0:1}) P(O_2|s_2)$$

All distributions remain Gaussian

- The actual state estimate is the mean of the updated distribution
- Predicted state at time t

$$\overline{s}_{t} = mean[P(s_{t} \mid o_{0:t-1})] = A_{t}\hat{s}_{t-1} + \mu_{\varepsilon}$$

Updated estimate of state at time t

$$\hat{s}_{t} = mean[P(s_{t} \mid o_{0:t})] = (R_{t}^{-1} + B_{t}^{T}\Theta_{\gamma}^{-1}B_{t})^{-1}(R_{t}^{-1}\overline{s}_{t} + B_{t}^{T}\Theta_{\gamma}^{-1}(o_{t} - \mu_{\gamma}))$$

Stable Estimation

$$\hat{s}_{t} = mean[P(s_{t} \mid o_{0:t})] = (R_{t}^{-1} + B_{t}^{T}\Theta_{\gamma}^{-1}B_{t})^{-1}(R_{t}^{-1}\overline{s}_{t} + B_{t}^{T}\Theta_{\gamma}^{-1}(o_{t} - \mu_{\gamma}))$$

- The above equation fails if there is no observation noise
 - $\Theta_{\gamma} = 0$
 - Paradoxical?
 - Happens because we do not use the relationship between o and s effectively
- Alternate derivation required
 - Conventional Kalman filter formulation

A matrix inverse identity

$$\begin{bmatrix} A & B \\ B^{T} & C \end{bmatrix}^{-1} = \begin{bmatrix} A^{-1} + A^{-1}B(C - B^{T}A^{-1}B)^{-1}B^{T}A^{-1} & -A^{-1}B(C - B^{T}A^{-1}B)^{-1} \\ -(C - B^{T}A^{-1}B)^{-1}B^{T}A^{-1} & (C - B^{T}A^{-1}B)^{-1} \end{bmatrix}$$

Work it out...

For any jointly Gaussian RV

$$Z = \begin{bmatrix} X \\ Y \end{bmatrix}$$

$$\mu_Z = \begin{bmatrix} \mu_X \\ \mu_Y \end{bmatrix}$$

$$Z = \begin{bmatrix} X \\ Y \end{bmatrix} \qquad \mu_Z = \begin{bmatrix} \mu_X \\ \mu_Y \end{bmatrix} \qquad C_Z = \begin{bmatrix} C_{XX} & C_{XY} \\ C_{XY}^T & C_{YY} \end{bmatrix}$$

$$C_{Z}^{-1} = \begin{bmatrix} C_{XX}^{-1} + C_{XX}^{-1} C_{XY} \left(C_{YY} - C_{XY}^{T} C_{XX}^{-1} C_{XY} \right)^{-1} C_{XY}^{T} C_{XX}^{-1} & -C_{XX}^{-1} C_{XY} \left(C - C_{XY}^{T} C_{XX}^{-1} C_{XY} \right)^{-1} \\ - \left(C_{YY} - C_{XY}^{T} C_{XX}^{-1} C_{XY} \right)^{-1} C_{XY}^{T} C_{XX}^{-1} & \left(C_{YY} - C_{XY}^{T} C_{XX}^{-1} C_{XY} \right)^{-1} \end{bmatrix}$$

Using the Matrix Inversion Identity

For any jointly Gaussian RV

$$Z = \begin{bmatrix} X \\ Y \end{bmatrix} \quad \mu_Z = \begin{bmatrix} \mu_X \\ \mu_Y \end{bmatrix} \quad C_Z = \begin{bmatrix} C_{XX} & C_{XY} \\ C_{XY}^T & C_{YY} \end{bmatrix}$$

$$C_{Z}^{-1} = \begin{bmatrix} C_{XX}^{-1} + C_{XX}^{-1} C_{XY} \left(C_{YY} - C_{XY}^{T} C_{XX}^{-1} C_{XY} \right)^{-1} C_{XY}^{T} C_{XX}^{-1} & -C_{XX}^{-1} C_{XY} \left(C - C_{XY}^{T} C_{XX}^{-1} C_{XY} \right)^{-1} \\ - \left(C_{YY} - C_{XY}^{T} C_{XX}^{-1} C_{XY} \right)^{-1} C_{XY}^{T} C_{XX}^{-1} & \left(C_{YY} - C_{XY}^{T} C_{XX}^{-1} C_{XY} \right)^{-1} \end{bmatrix}$$

$$(Z - \mu_Z)^T C_Z^{-1} (Z - \mu_Z) = Quadratic(X) +$$

$$(Y - \mu_{Y} - C_{YX}C_{XX}^{-1}(X - \mu_{X}))^{T} (C_{YY} - C_{XY}^{T}C_{XX}^{-1}C_{XY})^{-1} (Y - \mu_{Y} - C_{YX}C_{XX}^{-1}(X - \mu_{X}))$$

Using the Matrix Inversion Identity

For any jointly Gaussian RV

$$P(X,Y) = Const \exp(-0.5(Z - \mu_Z)^T C_Z^{-1}(Z - \mu_Z)) =$$

 $= const \exp(-0.5Quadratic(X) +$

$$-0.5(Y - \mu_{Y} - C_{YX}C_{XX}^{-1}(X - \mu_{X}))^{T}(C_{YY} - C_{XY}^{T}C_{XX}^{-1}C_{XY})^{-1}(Y - \mu_{Y} - C_{YX}C_{XX}^{-1}(X - \mu_{X}))$$

$$P(Y \mid X) =$$

$$K \exp \left(-0.5 \left(Y - \mu_{Y} - C_{YX} C_{XX}^{-1} \left(X - \mu_{X}\right)\right)^{T} \left(C_{YY} - C_{XY}^{T} C_{XX}^{-1} C_{XY}\right)^{-1} \left(Y - \mu_{Y} - C_{YX} C_{XX}^{-1} \left(X - \mu_{X}\right)\right)\right)$$

$$= Gaussian(Y; (Y - \mu_{Y} - C_{YX}C_{XX}^{-1}(X - \mu_{X})), (C_{YY} - C_{XY}^{T}C_{XX}^{-1}C_{XY}))$$

The conditional of Y is a Gaussian

Estimating P(s | o)

Dropping subscript t and o_{0:t-1} for brevity

$$P(s \mid o_{0:t-1}) = Gaussian(s; \overline{s}, R)$$

Assuming γ is 0 mean

$$o = Bs + \gamma$$

$$P(\gamma) = \frac{1}{\sqrt{(2\pi)^d |\Theta_{\gamma}|}} \exp\left(-0.5\varepsilon^T \Theta_{\gamma}^{-1} \varepsilon\right)$$

Consider the joint distribution of o and s

$$O = \begin{bmatrix} o \\ s \end{bmatrix}$$

- $O = \begin{bmatrix} o \\ S \end{bmatrix}$ • O is a linear function of S Hence O is also Gaussian

$$P(O) = Gaussian(O; \mu_O, \Theta_O)$$

$$o = Bs + \gamma$$

$$O = \begin{bmatrix} o \\ S \end{bmatrix}$$

$$P(s) = Gaussian(s; \bar{s}, R)$$

$$P(\gamma) = Gaussian(\gamma; 0, \Theta_{\gamma})$$

$$P(O) = Gaussian(O; \mu_O, \Theta_O)$$

$$\mu_{O} = E[O] = E\begin{bmatrix} O \\ S \end{bmatrix} = \begin{bmatrix} E[O] \\ E[S] \end{bmatrix} = \begin{bmatrix} B\overline{S} \\ \overline{S} \end{bmatrix}$$

$$\mu_O = \begin{bmatrix} B\overline{s} \\ \overline{s} \end{bmatrix}$$

$$P(O) = Gaussian(O; \mu_O, \Theta_O)$$

$$\mu_O = \begin{bmatrix} B\overline{s} \\ \overline{s} \end{bmatrix} \quad o = Bs + \gamma$$

$$P(\gamma) = Gaussian(\gamma; 0, \Theta_{\gamma})$$

$$P(s) = Gaussian(s; \bar{s}, R)$$

$$\Theta_O = E[(O - \mu_O)(O - \mu_O)^T] = E\left[\begin{bmatrix} o - B\overline{s} \\ s - \overline{s} \end{bmatrix} \left[(o - B\overline{s})^T \quad s^T - \overline{s}^T \right] \right]$$

$$\Theta_O = E[(O - \mu_O)(O - \mu_O)^T] = E\left[\begin{bmatrix}B(s - \overline{s}) + \gamma\\ s - \overline{s}\end{bmatrix}[(s - \overline{s})^T B^T + \gamma^T \quad (s - \overline{s})^T\right]$$

$$\Theta_O = E \begin{bmatrix} (B(s-\overline{s}) + \gamma)((s-\overline{s})^T B^T + \gamma^T) & (B(s-\overline{s}) + \gamma)(s-\overline{s})^T \\ (s-\overline{s})(B(s-\overline{s}) + \gamma)^T & (s-\overline{s})(s-\overline{s})^T \end{bmatrix}$$

$$P(O) = Gaussian(O; \mu_O, \Theta_O)$$

$$\mu_O = \begin{bmatrix} B\bar{s} \\ \bar{s} \end{bmatrix} \quad o = Bs + \gamma$$

$$o = Bs + \gamma$$

$$P(\gamma) = Gaussian(\gamma; 0, \Theta_{\gamma})$$

$$P(s) = Gaussian(s; \bar{s}, R)$$

$$\Theta_O = E \begin{bmatrix} (B(s-\overline{s}) + \gamma)((s-\overline{s})^T B^T + \gamma^T) & (B(s-\overline{s}) + \gamma)(s-\overline{s})^T \\ (s-\overline{s})(B(s-\overline{s}) + \gamma)^T & (s-\overline{s})(s-\overline{s})^T \end{bmatrix}$$

$$\Theta_O = \begin{bmatrix} E[(B(s-\bar{s})+\gamma)((s-\bar{s})^TB^T+\gamma^T)] & E[(B(s-\bar{s})+\gamma)(s-\bar{s})^T] \\ E[(s-\bar{s})(B(s-\bar{s})+\gamma)^T] & E[(s-\bar{s})(s-\bar{s})^T] \end{bmatrix}$$

$$\Theta_O = \begin{bmatrix} BRB^T + \Theta_{\gamma} & BR \\ RB^T & R \end{bmatrix}$$

$$o = Bs + \gamma$$

$$P(\gamma) = Gaussian(\gamma; 0, \Theta_{\gamma})$$

$$P(s) = Gaussian(s; \bar{s}, R)$$

$$O = \begin{bmatrix} o \\ s \end{bmatrix}$$

$$P(O) = Gaussian(O; \mu_O, \Theta_O)$$

$$\Theta_O = \begin{bmatrix} BRB^T + \Theta_{\gamma} & BR \\ RB^T & R \end{bmatrix}$$

$$\mu_O = \begin{bmatrix} B\overline{s} \\ \overline{s} \end{bmatrix}$$

$$P(O | o_{0:t-1}) = P(o, s | o_{0:t-1}) = Gaussian(O; \mu_O, \Theta_O)$$

$$C\exp\left(-0.5\left[(o-B\overline{s})\right]\left(s-\overline{s}\right)\right]^{T}\begin{bmatrix}BRB^{T}+\Theta_{\gamma} & BR\\RB^{T} & R\end{bmatrix}^{-1}\begin{bmatrix}o-B\overline{s}\\s-\overline{s}\end{bmatrix}\right)$$

Writing it out in extended form

Recall: For any jointly Gaussian RV

$$P(X,Y) = Const \exp(-0.5(Z - \mu_Z)^T C_Z^{-1}(Z - \mu_Z)) =$$

$$P(Y \mid X) =$$

$$= Gaussian(Y; (Y - \mu_{Y} - C_{YX}C_{XX}^{-1}(X - \mu_{X})), (C_{YY} - C_{XY}^{T}C_{XX}^{-1}C_{XY}))$$

Applying it to:

$$P(O | o_{0:t-1}) = P(o, s | o_{0:t-1}) = Gaussian(O; \mu_O, \Theta_O)$$

$$C \exp \left(-0.5 \left[(o - B\overline{s}) \quad (s - \overline{s}) \right]^T \begin{bmatrix} BRB^T + \Theta_{\gamma} & BR \\ RB^T & R \end{bmatrix}^{-1} \begin{bmatrix} o - B\overline{s} \\ s - \overline{s} \end{bmatrix} \right)$$

Stable Estimation

$$P(O \mid o_{0:t-1}) = P(o, s \mid o_{0:t-1}) = Gaussian(O; \mu_Y, \Theta_O)$$

$$C \exp \left[-0.5 \left[(o - B\overline{s}) \right] (s - \overline{s}) \right]^T \begin{bmatrix} BRB^T + \Theta_{\gamma} & BR \\ RB^T & R \end{bmatrix}^{-1} \begin{bmatrix} o - B\overline{s} \\ s - \overline{s} \end{bmatrix} \right]$$

The conditional distribution of s

$$P(s \mid o_{0:t}) = Gaussian(s; (I - RB^T (BRB^T + \Theta_{\gamma})^{-1}B)\overline{s} + RB^T (BRB^T + \Theta_{\gamma})^{-1}o, (R - RB^T (BRB^T + \Theta_{\gamma})^{-1}BR))$$

Note that we are not computing Θ_{γ}^{-1} in this formulation

- The actual state estimate is the mean of the updated distribution
- Predicted state at time t

$$\bar{s}_t = s_t^{pred} = mean[P(s_t \mid o_{0:t-1})] = A_t \hat{s}_{t-1} + \mu_{\varepsilon}$$

Updated estimate of state at time t

$$P(s_{t} \mid o_{0:t}) = Gaussian(s; (I - RB^{T}(BRB^{T} + \Theta_{\gamma})^{-1}B)\bar{s} + RB^{T}(BRB^{T} + \Theta_{\gamma})^{-1}o, (R - RB^{T}(BRB^{T} + \Theta_{\gamma})^{-1}BR)$$

$$\hat{s}_{t} = mean[P(s_{t} \mid o_{0t})] = (I - R_{t}B_{t}^{T}(B_{t}R_{t}B_{t}^{T} + \Theta_{\gamma})^{-1}B_{t})\bar{s}_{t} + R_{t}B_{t}^{T}(B_{t}R_{t}B_{t}^{T} + \Theta_{\gamma})^{-1}o_{t}$$

Prediction

$$\bar{s}_{t} = s_{t}^{pred} = mean[P(s_{t} \mid o_{0:t-1})] = A_{t}\hat{s}_{t-1} + \mu_{\varepsilon}$$

$$R_{t} = \Theta_{\varepsilon} + A_{t} \hat{R}_{t-1} A_{t}^{T}$$

Update

$$\hat{\boldsymbol{s}}_{t} = \left(\boldsymbol{I} - \boldsymbol{R}_{t} \boldsymbol{B}_{t}^{T} \left(\boldsymbol{B}_{t} \boldsymbol{R}_{t} \boldsymbol{B}_{t}^{T} + \boldsymbol{\Theta}_{\gamma}\right)^{-1} \boldsymbol{B}_{t}\right) \boldsymbol{\bar{s}}_{t} + \boldsymbol{R}_{t} \boldsymbol{B}_{t}^{T} \left(\boldsymbol{B}_{t} \boldsymbol{R}_{t} \boldsymbol{B}_{t}^{T} + \boldsymbol{\Theta}_{\gamma}\right)^{-1} \boldsymbol{o}_{t}$$

$$\hat{R}_{t} = R_{t} - R_{t}B_{t}^{T} (B_{t}R_{t}B_{t}^{T} + \Theta_{\gamma})^{-1}B_{t}R_{t}$$

Prediction

$$\bar{s}_{t} = A_{t}\hat{s}_{t-1} + \mu_{\varepsilon}$$

$$R_{t} = \Theta_{\varepsilon} + A_{t} \hat{R}_{t-1} A_{t}^{T}$$

Update

$$K_{t} = R_{t}B_{t}^{T} \left(B_{t}R_{t}B_{t}^{T} + \Theta_{\gamma}\right)^{-1}$$

$$\hat{S}_t = \overline{S}_t + K_t \left(O_t - B_t \overline{S}_t \right)$$

$$\hat{R}_{t} = (I - K_{t}B_{t})R_{t}$$

- Very popular for tracking the state of processes
 - Control systems
 - Robotic tracking
 - Simultaneous localization and mapping
 - Radars
 - Even the stock market...

What are the parameters of the process?

Kalman filter contd.

$$S_{t} = A_{t}S_{t-1} + \mathcal{E}_{t}$$

$$O_{t} = B_{t}S_{t} + \gamma_{t}$$

- Model parameters A and B must be known
 - □ Often the state equation includes an *additional* driving term: $s_t = A_t s_{t-1} + G_t u_t + ε_t$
 - The parameters of the driving term must be known
- The initial state distribution must be known

Defining the parameters

- State state must be carefully defined
 - E.g. for a robotic vehicle, the state is an extended vector that includes the current velocity and acceleration
 - $S = [X, dX, d^2X]$
- State equation: Must incorporate appropriate constraints
 - If state includes acceleration and velocity, velocity at next time = current velocity + acc. * time step
 - - $A = [1 t 0.5t^2; 0 1 t; 0 0 1]$

Parameters

- Observation equation:
 - Critical to have accurate observation equation
 - Must provide a valid relationship between state and observations

- Observations typically high-dimensional
 - May have higher or lower dimensionality than state

Problems

$$S_t = f(S_{t-1}, \mathcal{E}_t)$$

$$o_t = g(s_t, \gamma_t)$$

- f() and/or g() may not be nice linear functions
 - Conventional Kalman update rules are no longer valid

- ε and/or γ may not be Gaussian
 - Gaussian based update rules no longer valid

Solutions

$$S_t = f(S_{t-1}, \mathcal{E}_t)$$

$$o_t = g(s_t, \gamma_t)$$

- f() and/or g() may not be nice linear functions
 - Conventional Kalman update rules are no longer valid
 - Extended Kalman Filter
- ε and/or γ may not be Gaussian
 - Gaussian based update rules no longer valid
 - Particle Filters