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Pink/White pixel : Apple blossom Orange pixel : Orange

Green pixel : leaf



Image Segmentation




Pixels as features




Principle of clustering:
Put things that are closer to each
other (in feature space) into the
same group



Pixels as features




But what is a ‘good’ cluster?

High out of group
> variability

.

Low in-group variability



Compactness: Min(in group variability)

Need a measure that shows how ‘compact’ our clusters
are

Distance based measures



Distance-based Measures

® Total distance between each element in the cluster and

every other element
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Finding clusters: K-means



K-means algorithm

® Minimizes scatter: Distance from centroid




What is a ‘Centroid’

cluster —

iecluster
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K—means

|. Initialize a set of centroids randomly
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Initialize a set of centroids randomly

For each data point x, find the
distance from the centroid for each
cluster

dcluster = dIStanCG(X, mcluster)
Put data point in the cluster of the
closest centroid

e  Cluster for which d
minimum

cluster IS

When all data points are clustered,
recompute centroids

1
mcluster = Z VVi Xi
Zwi iecluster

iecluster

If not converged, go back to 2
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Going back to our first example
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Going back to our first example

6 clusters



Problems with K-means
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Problems with K-means

* |nitial conditions important



Problems with K-means

* What is K?



o K=2

Problems with K-means



Problems with K-means



Is there an optimal clustering
method!?



Optimal method: Exhaustive Enumeration

* Compute distances between every single pair of data
points and cluster on that
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Optimal method: Exhaustive Enumeration

Compute distances between every single pair of data
points and cluster on that

Very very computationally expensive

e If M data points and we want N clusters:
1 < (N .
—» (-1 N —i)"
2D ( | ]( )

Compute goodness for every possible combination



Optimal method: Exhaustive Enume {tlon

/

ant N clusters
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OB

o Comptrte goodness for every possible combination
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. - K-means: Fast but greedy



Going back to our first example




Hierarchical clustering






Hierarchical clustering: Bottom up
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Bottom up clustering

* Initially, every point is its own cluster



Bottom up clustering



Bottom up clustering
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Bottom up clustering
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Bottom up clustering
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Notes about bottom up clustering

* Single Link: Nearest neighbor distance
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Notes about bottom up clustering

* Single Link: Nearest neighbor distance
® ®
® ®
s %" ®oe0
® Complete link: Farthest neighbor distance
[ JP'S o
‘ =
s %0 o0

® Centroid: Distance between centroids



Hierarchical clustering: Top Down



Top down clustering
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Top down clustering
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K-Means for Top—Down clustering

1. Start with one cluster
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K-Means for Top—Down clustering

Start with one cluster

Split each cluster into two:

e Perturb centroid of cluster slightly (by < 5%) to
generate two centroids

Initialize K means with new set of
centroids

Iterate Kmeans until convergence

If the desired number of clusters is
not obtained, return to 2




When is a data point in a cluster?



Distance from cluster

® Euclidean distance from centroid




Distance from cluster

* Distance from the closest point




Distance from cluster

* Distance from the farthest point




Distance from cluster

Probability of data measured on cluster distribution




A closer look at ‘Distance’



K—means

Initialize a set of centroids randomly

For each data point x, find the
distance from the centroid for each

cluster
; W

Put data point in agSter of the
closest centroid

e  Cluster for which d
minimum

cluster cluster)

cluster IS

When all data points are clustered,
recompute centroids

1
mcluster = Z VVi Xi
Zwi iecluster

iecluster

If not converged, go back to 2



A closer look at ‘Distance’

Original algorithm uses L2 norm and weight=|

_ 1
distance (X, M, r) =l X—M Meyyster = in

cluster cluster cluster ” 2 ]
cluster iecluster

This is an instance of generalized EM

The algorithm is not guaranteed to converge for other
distance metrics



Problems with Euclidean distance
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Problems with Euclidean distance



Better way: Map it to different space




The Kernel trick



The Kernel trick

Transform data to higher dimensional space (even
infinite!)
° 7 = DO(X)



The Kernel trick

Transform data to higher dimensional space (even
infinite!)
° 7 = DO(X)

Compute distance in higher dimensional space
° d(Xy, X) = |2} Z,][* = [|P(Xy) — O(X)]]?



The cool part

Distance in low dimensional space:
° [IX)= Xl = (X)- X) T(X)- Xp) = XX, + XX, -2 XX,



The cool part

Distance in low dimensional space:
° |1X= Xl 2 = (X)= X)) T(X)- Xp) = X)X + X%, -2 XX,

Distance in high dimensional space:

* d(Xy, Xp) =[[D(Xy) — D(X,)]?
= D(Xy). D(Xp) + D(Xp). D(X5) -2 D(Xy). D(Xy)

Note: Every term involves dot products!



Kernel function

Kernel function is just
* K(XpXp) = @(Xy). D(X,)

Going back to our distance function in the high
dimensional space:
o d(Xy, Xp) =[P(Xy) — O(X)||?
= D(x,). D(X;) + D(Xp). D(X,) -2 D(x,;). D(X,)
= K(XpXy) + K(X5X) - 2K (X4,X5)

Kernel functions are more efficient than dot products



Typical Kernel Functions

Linear: K(x,y) = X'y + ¢
Polynomial K(X,y) = (ax'y + ¢)"
Gaussian: K(X,y) = exp(-||x-y||*/c?)

Exponential: K(X,y) = exp(-||X-y||/\)

Several others

e Choosing the right Kernel with the right parameters for
your problem is an art



Kernel K-means



Kernel K—means

|. Initialize a set of centroids randomly



Kernel K—means

Initialize a set of centroids randomly

For each data point x, find the o

distance from the centroid for each S g

cluster

. [ e
dcluster — dlstance(x, mcluster) %



Kernel K—means

Initialize a set of centroids randomly

For each data point x, find the

distance from the centroid for each .,»Q

cluster

. @
dcluster — dIStanCG(X, mcluster)

Put data point in the cluster of the
closest centroid

e  Cluster for which d
minimum

cluster IS



Kernel K—means

Initialize a set of centroids randomly

For each data point x, find the

. . ©
distance from the centroid for each 5.
cluster e .
° .0 ‘‘‘‘‘ ......
dcluster = dIStanCG(X, mcluster) .

Put data point in the cluster of the
closest centroid

e  Cluster for which d
minimum

cluster IS



3.

Kernel K—means
2.

Initialize a set of centroids randomly

For each data point x, find the
distance from the centroid for each
cluster

®
d

cluster

= distance(X, My qer)

Put data point in the cluster of the

closest centroid

*  Cluster for which d ., IS
minimum



Kernel K—means
2.

Initialize a set of centroids randomly

For each data point x, find the
distance from the centroid for each
cluster

0© o*
S "
dcluster — dIStanCG(X, mcluster) ".
3. Put data point in the cluster of the
closest centroid
e  Cluster for which d
minimum

cluster IS



3.

Kernel K—means
2.

Initialize a set of centroids randomly

For each data point x, find the
distance from the centroid for each
cluster

®
d

cluster

= distance(x, m

®
cluster)
Put data point in the cluster of the
closest centroid

*  Cluster for which d_ ... is
minimum



Kernel K—means

Initialize a set of centroids randomly

For each data point x, find the
distance from the centroid for each
cluster

d = distance(X, My qer)
Put data point in the cluster of the
closest centroid

e  Cluster for which d
minimum

cluster

cluster IS



Kernel K—means

Initialize a set of centroids randomly

For each data point x, find the
distance from the centroid for each
cluster

dcluster = dIStanCG(X, mcluster)
Put data point in the cluster of the
closest centroid

*  Cluster for which d_ ... is
minimum




Kernel K—means

Initialize a set of centroids randomly

For each data point x, find the
distance from the centroid for each
cluster

d = distance(X, My qer)
Put data point in the cluster of the
closest centroid

e  Cluster for which d
minimum

cluster

cluster IS

When all data points are clustered,
recompute centroids

1
mcluster = Z Wi Xi
Zwi iecluster

iecluster



Kernel K—means

Initialize a set of centroids randomly

For each data point x, find the
distance from the centroid for each
cluster

d = distance(X, My qer)
Put data point in the cluster of the
closest centroid

e  Cluster for which d
minimum

cluster

cluster IS

When all data points are clustered,
recompute centroids

1
mcluster = Z VVi Xi
Zwi iecluster

iecluster

If not converged, go back to 2



Kernel K—means

Initialize a set of centroids randomly

For each data point x, find the
distance from the centroid for each

cluster
; W

Put data point in agSter of the
closest centroid

e  Cluster for which d
minimum

cluster cluster)

cluster IS

When all data points are clustered,
recompute centroids

1
mcluster = Z VVi Xi
Zwi iecluster

iecluster

If not converged, go back to 2



Distance metric
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Distance metric

d(x, cluster) =[] @(X) = Mg ||2=(<D(X)—C ZWiCD(Xi)] (CD(X)—C ZWiCD(Xi)]

iecluster iecluster

:[q)(x)TcD(x)—ZC > wo(x) D(x,)+C* > ZWiW,-CD(Xi)TCD(X,-)J

iecluster iecluster jecluster

=K(x,x)-2C > w;K(x,x)+C* > > w,wK(x;,X;)

iecluster iecluster jecluster



Other clustering methods

Regression based clustering
Find a regression representing each cluster

Associate each point to the cluster with the best
regression

e Related to kernel methods
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