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Administrivia

 Project teams?
 By the end of the month..

 Project proposals?
 Please send proposals to Prasanna,  and cc me.
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Administrivia
 Basics of probability: Will not be covered

 Very nice lecture by Aarthi Singh

 http://www.cs.cmu.edu/~epxing/Class/10701/Lecture/lecture2.pdf

 Another nice lecture by Paris Smaragdis

 http://courses.engr.illinois.edu/cs598ps/CS598PS/Topics_and_Materials.html
 Look for Lecture 2

 Amazing number of resources on the web

 Things to know:

 Basic probability, Bayes rule

 Probability distributions over discrete variables

 Probability density and Cumulative density over continuous variables
 Particularly Gaussian densities

 Moments of a distribution

 What is independence

 Nice to know
 What is maximum likelihood estimation

 MAP estimation
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Representing an Elephant
 It was six men of Indostan, 

To learning much inclined, 
Who went to see the elephant, 
(Though all of them were blind), 
That each by observation 
Might satisfy his mind.

 The first approached the elephant, 
And happening to fall 
Against his broad and sturdy side, 
At once began to bawl: 
"God bless me! But the elephant 
Is very like a wall!“

 The second, feeling of the tusk, 
Cried: "Ho! What have we here, 
So very round and smooth and sharp? 
To me 'tis very clear, 
This wonder of an elephant 
Is very like a spear!“

 The third approached the animal, 
And happening to take 
The squirming trunk within his hands, 
Thus boldly up and spake: 
"I see," quoth he, "the elephant 
Is very like a snake!“

 The fourth reached out an eager hand, 
And felt about the knee. 
"What most this wondrous beast is like 
Is might plain," quoth he; 
"Tis clear enough the elephant 
Is very like a tree."

 The fifth, who chanced to touch the ear, 
Said: "E'en the blindest man 
Can tell what this resembles most: 
Deny the fact who can, 
This marvel of an elephant 
Is very like a fan.“

 The sixth no sooner had begun 
About the beast to grope, 
Than seizing on the swinging tail 
That fell within his scope, 
"I see," quoth he, "the elephant 
Is very like a rope.“

 And so these men of Indostan
Disputed loud and long, 
Each in his own opinion 
Exceeding stiff and strong. 
Though each was partly right, 
All were in the wrong.
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Representation

 Describe these images

 Such that a listener can 
visualize what you are 
describing

 More images
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Still more images

How do you describe them?
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Sounds

 Sounds are just sequences of numbers

 When plotted, they just look like blobs

 Which leads to “natural sounds are blobs”

 Or more precisely, “sounds are sequences of numbers that, when plotted, 
look like blobs”

 Which wont get us anywhere
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Representation

 Representation is description

 But in compact form

 Must describe the salient characteristics of the data

 E.g. a pixel-wise description of the two images here will be 
completely different

 Must allow identification, comparison, storage, 
reconstruction..

A A
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Representing images

 The most common element in the image: background

 Or rather large regions of relatively featureless shading

 Uniform sequences of numbers
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Image =





















Npixel

pixel

pixel

 

.

2 

1 

Representing images using a “plain” image

 Most of the figure is a more-or-less uniform shade

 Dumb approximation – a image is a block of uniform shade

 Will be mostly right!

 How much of the figure is uniform?

 How? Projection

 Represent the images as vectors and compute the projection of the image on the 

“basis”





















1

.

1

1

B =

ageBBBBBWPROJECTION

ageBpinvW

ageBW

TT Im.)(

Im)(

Im

1





13 Sep 2011 10



11-755 / 18-797

Adding more bases

 Lets improve the approximation

 Images have some fast varying regions

 Dramatic changes

 Add a second picture that has very fast changes

 A checkerboard where every other pixel is black and the rest are white
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Adding still more bases

 Regions that change with different speeds
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Getting closer at 625 bases!
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Representation using checkerboards

 A “standard” representation

 Checker boards are the same regardless of what picture you’re trying 
to describe

 As opposed to using “nose shape” to describe faces and “leaf colour” to 
describe trees.

 Any image can be specified as (for example) 
0.8*checkerboard(0) + 0.2*checkerboard(1) + 0.3*checkerboard(2) ..

 The definition is sufficient to reconstruct the image to some degree

 Not perfectly though

13 Sep 2011 13



11-755 / 18-797

What about sounds?

 Square wave equivalents of checker boards
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Projecting sounds
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Why checkerboards are great bases
 We cannot explain one checkerboard 

in terms of another

 The two are orthogonal to one another!

 This means that we can find out the 

contributions of individual bases 

separately

 Joint decompostion with multiple bases 

with give us the same result as 

separate decomposition with each of 

them

 This never holds true if one basis can 

explain another
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Checker boards are not good bases

 Sharp edges

 Can never be used to explain rounded curves
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Sinusoids ARE good bases

 They are orthogonal

 They can represent rounded shapes nicely

 Unfortunately, they cannot represent sharp corners
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What are the frequencies of the sinusoids

 Follow the same format as 

the checkerboard:

 DC

 The entire length of the signal 

is one period

 The entire length of the signal 

is two periods.

 And so on..

 The k-th sinusoid:

 F(n) = sin(2pkn/L)

 L is the length of the signal

 k is the number of periods in L 

samples
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How many frequencies in all?

 A max of L/2 periods are possible

 If we try to go to (L/2 + X) periods, it ends up being identical to having (L/2 – X) 

periods

 With sign inversion

 Example for L = 20

 Red curve = sine with 9 cycles (in a 20 point sequence)

 Y(n) = sin(2p9n/20)

 Green curve = sine with 11 cycles in 20 points

 Y(n) = -sin(2p11n/20)

 The blue lines show the actual samples obtained

 These are the only numbers stored on the computer

 This set is the same for both sinusoids
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How to compose the signal from sinusoids

 The sines form the vectors of the projection matrix

 Pinv() will do the trick as usual
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How to compose the signal from sinusoids
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 Pinv() will do the trick as usual
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Interpretation..

 Each sinusoid’s amplitude is adjusted until it gives 

us the least squared error

 The amplitude is the weight of the sinusoid

 This can be done independently for each sinusoid
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Interpretation..

 Each sinusoid’s amplitude is adjusted until it gives 

us the least squared error

 The amplitude is the weight of the sinusoid

 This can be done independently for each sinusoid
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Sines by themselves are not enough

 Every sine starts at zero

 Can never represent a signal that is non-zero in the first 

sample!

 Every cosine starts at 1

 If the first sample is zero, the signal cannot be represented! 
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The need for phase

 Allow the sinusoids to move!

 How much do the sines shift?

....)/2sin()/2sin()/2sin( 332211  ppp NknwNknwNknwsignal

Sines are shifted:
do not start with
value = 0
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Determining phase

 Least squares fitting: move the sinusoid left / right, and 
at each shift, try all amplitudes
 Find the combination of amplitude and phase that results in the 

lowest squared error

 We can still do this separately for each sinusoid
 The sinusoids are still orthogonal to one another
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Determining phase

 Least squares fitting: move the sinusoid left / right, and 
at each shift, try all amplitudes
 Find the combination of amplitude and phase that results in the 

lowest squared error

 We can still do this separately for each sinusoid
 The sinusoids are still orthogonal to one another
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The problem with phase

 This can no longer be expressed as a simple linear algebraic equation

 The phase is integral to the bases

 I.e. there’s a component of the basis itself that must be estimated!

 Linear algebraic notation can only be used if the bases are fully known

 We can only (pseudo) invert a known matrix
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Complex Exponential to the rescue

 The cosine is the real part of a complex exponential

 The sine is the imaginary part

 A phase term for the sinusoid becomes a multiplicative 
term for the complex exponential!!
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Complex Exponents to handle phase
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Complex exponentials are well behaved

 Like sinusoids, a complex exponential of one 
frequency can never explain one of another

 They are orthogonal

 They represent smooth transitions

 Bonus: They are complex

 Can even model complex data!

 They can also model real data

 exp(j x ) + exp(-j x) is real
 cos(x) + j sin(x)  + cos(x) – j sin(x) = 2cos(x)

13 Sep 2011 36



11-755 / 18-797

Complex Exponential Bases: Algebraic 

Formulation

 Note that SL/2+x = conjugate(SL/2-x) for real s
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Shorthand Notation

 Note that SL/2+x = conjugate(SL/2-x)
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A quick detour

 Real Orthonormal matrix:

 XXT = X XT = I

 But only if all entries are real

 The inverse of X is its own transpose

 Definition: Hermitian

 XH = Complex conjugate of XT

 Conjugate of a number a + ib = a – ib

 Conjugate of exp(ix) = exp(-ix)

 Complex Orthonormal matrix

 XXH = XH X = I

 The inverse of a complex orthonormal matrix is its own Hermitian
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W-1 = WH
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 The complex exponential basis is orthonormal

 Its inverse is its own Hermitian

 W-1 = WH
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Doing it in matrix form

 Because W-1 = WH
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The Discrete Fourier Transform

 The matrix to the right is called the “Fourier 
Matrix”

 The weights (S0, S1. . Etc.) are called the Fourier 
transform
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The Inverse Discrete Fourier Transform

 The matrix to the left is the inverse Fourier matrix

 Multiplying the Fourier transform by this matrix gives us 
the signal right back from its Fourier transform
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The Fourier Matrix

 Left panel: The real part of the Fourier matrix

 For a 32-point signal

 Right panel: The imaginary part of the Fourier matrix
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The FAST Fourier Transform

 The outcome of the transformation with the Fourier matrix is the 

DISCRETE FOURIER TRANSFORM (DFT)

 The FAST Fourier transform is an algorithm that takes advantage of 

the symmetry of the matrix to perform the matrix multiplication really 

fast

 The FFT computes the DFT

 Is much faster if the length of the signal can be expressed as 2N
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Images

 The complex exponential is two dimensional

 Has a separate X frequency and Y frequency

 Would be true even for checker boards!

 The 2-D complex exponential must be unravelled to 
form one component of the Fourier matrix

 For a KxL image, we’d have K*L bases in the matrix
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 Only real components of bases shown
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The Fourier Transform and Perception: 

Sound

 The Fourier transforms 

represents the signal 

analogously to a bank of 

tuning forks

 Our ear has a bank of 

tuning forks

 The output of the Fourier 

transform is perceptually 

very meaningful

+

FT

Inverse FT13 Sep 2011 48
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Symmetric signals

 If a signal is (conjugate) symmetric around L/2, the Fourier coefficients are real!

 A(L/2-k) exp(-j f(L/2-k)) + A(L/2+k) exp(-jf(L/2+k)) is always real if

A(L/2-k) = conjugate(A(L/2+k))

 We can pair up samples around the center all the way; the final summation term is always real

 Overall symmetry properties

 If the signal is real, the FT is (conjugate) symmetric

 If the signal is (conjugate) symmetric, the FT is real

 If the signal is real and symmetric, the FT is real and symmetric

*
*

**
*
*

**

****
* *

*

**
*

*

*

****
*

Contributions from points equidistant from L/2

combine to cancel out imaginary terms
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The Discrete Cosine Transform

 Compose a symmetric signal or image

 Images would be symmetric in two dimensions

 Compute the Fourier transform

 Since the FT is symmetric, sufficient to store only half the coefficients 
(quarter for an image)

 Or as many coefficients as were originally in the signal / image
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DCT

 Not necessary to compute a 2xL sized FFT
 Enough to compute an L-sized cosine transform

 Taking advantage of the symmetry of the problem

 This is the Discrete Cosine Transform
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Representing images

 Most common coding is the DCT

 JPEG: Each 8x8 element of the picture is converted using a DCT

 The DCT coefficients are quantized and stored

 Degree of quantization = degree of compression

 Also used to represent textures etc for pattern recognition and other 
forms of analysis

DCT

Multiply by

DCT matrix
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Representing images..

 DCT of small segments
 8x8
 Each image becomes a matrix of DCT vectors

 DCT of the image
 This is a data agnostic transform representation
 Or data-driven representations..

DCT

Npixels / 64 columns
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Returning to Eigen Computation

 A collection of faces

 All normalized to 100x100 pixels

 What is common among all of them?

 Do we have a common descriptor?
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A least squares typical face

 Can we do better than a blank screen to find the most common portion of faces?

 The first checkerboard; the zeroth frequency component..

 Assumption: There is a “typical” face that captures most of what is common to 

all faces

 Every face can be represented by a scaled version of a typical face

 What is this face?

 Approximate every face f as f = wf V

 Estimate V to minimize the squared error

 How? 

 What is V?

The typical face
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A collection of least squares typical faces

 Assumption: There are a set of K “typical” faces that captures most of all faces

 Approximate every face f as f = wf,1 V1+ wf,2 V2 + wf,3 V3 +.. + wf,k Vk

 V2 is used to “correct” errors resulting from using only V1

 So the total energy in wf,2 (S wf,2
2) must be lesser than the total energy in wf,1 (S wf,1

2) 

 V3 corrects errors remaining after correction with V2

 The total energy in wf,3 must be lesser than that even in wf,2

 And so on..

 V = [V1 V2 V3]

 Estimate V to minimize the squared error

 How? 

 What is V?
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A recollection

M = 

W = 

V=PINV(W)*M

?U = 
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How about the other way?

 W = M * Pinv(V)

M = 

W = ??

V = 

U = 
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How about the other way?

 W V \approx = M

M = 

W = ??

V = 

U = 

?
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Eigen Faces!

 Here W, V and U are ALL unknown and must be determined

 Such that the squared error between U and M is minimum

 Eigen analysis allows you to find W and V such that U = WV has the least 
squared error with respect to the original data M

 If the original data are a collection of faces, the columns of W represent the 
space of eigen faces.

M = Data Matrix

U = Approximation

V

W
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Eigen faces

 Lay all faces side by side in vector form to form a matrix
 In my example: 300 faces. So the matrix is 10000 x 300

 Multiply the matrix by its transpose
 The correlation matrix is 10000x10000

M = Data Matrix

M
T

=
 T

ra
n
s
p
o

s
e
d

D
a
ta

 M
a
tr

ix

Correlation=

10000x300

300x10000

10000x10000

17 Sep 2012 61



11755/18797

Eigen faces

 Compute the eigen vectors
 Only 300 of the 10000 eigen values are non-zero

 Why?

 Retain eigen vectors with high eigen values (>0)
 Could use a higher threshold

[U,S] = eig(correlation)
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Eigen Faces

 The eigen vector with the highest eigen value is the first typical 

face

 The vector with the second highest eigen value is the second 

typical face.

 Etc.
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Representing a face

 The weights with which the eigen faces must be 
combined to compose the face are used to 
represent the face!

= w1 +  w2 +  w3

Representation                               =     [w1 w2 w3 …. ]T
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


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The Energy Compaction Property

 The first K Eigen faces (for any K) represent the best possible 

way to represent the data

 In an L2 sense

 Sf Sk wf,k
2 cannot be lesser for an other set of “typical” faces

 Almost by definition

 This was the requirement posed in our “least squares” estimation.
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SVD instead of Eigen

 Do we need to compute a 10000 x 10000 correlation matrix and then 

perform Eigen analysis?

 Will take a very long time on your laptop

 SVD

 Only need to perform “Thin” SVD. Very fast

 U = 10000 x 300

 The columns of U are the eigen faces!

 The Us corresponding to the “zero” eigen values are not computed

 S = 300 x 300

 V = 300 x 300

M = Data Matrix

10000x300

U=10000x300
S=300x300 V=300x300

=
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NORMALIZING OUT 

VARIATIONS
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Images: Accounting for variations

 What are the obvious differences in the 

above images

 How can we capture these differences

 Hint – image histograms..
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Images -- Variations

 Pixel histograms: what are the differences
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Normalizing Image Characteristics

 Normalize the pictures

 Eliminate lighting/contrast variations

 All pictures must have “similar” lighting

 How?

 Lighting and contrast are represented in the image histograms:
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Histogram Equalization

 Normalize histograms of images

 Maximize the contrast

 Contrast is defined as the “flatness” of the histogram

 For maximal contrast, every greyscale must happen as frequently as every other 

greyscale

 Maximizing the contrast: Flattening the histogram

 Doing it for every image ensures that every image has the same constrast

 I.e. exactly the same histogram of pixel values

 Which should be flat

0 255
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Histogram Equalization

 Modify pixel values such that histogram becomes “flat”.

 For each pixel
 New pixel value = f(old pixel value)

 What is f()?

 Easy way to compute this function: map cumulative 
counts
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Cumulative Count Function

 The histogram (count) of a pixel value X is the number of 
pixels in the image that have value X
 E.g. in the above image, the count of pixel value 180 is about 110

 The cumulative count at pixel value X is the total number 
of pixels that have values in the range 0 <= x <= X
 CCF(X) =  H(1) + H(2) + .. H(X) 
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Cumulative Count Function

 The cumulative count function of a uniform 
histogram is a line

 We must modify the pixel values of the image 
so that its cumulative count is a line
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Mapping CCFs

 CCF(f(x)) -> a*f(x)   [or a*(f(x)+1) if pixels can take value 0]
 x = pixel value

 f() is the function that converts the old pixel value to a new 
(normalized) pixel value

 a = (total no. of pixels in image) / (total no. of pixel levels)
 The no. of pixel levels is 256 in our examples

 Total no. of pixels is 10000 in a 100x100 image

Move x axis levels around until the plot to the left

looks like the plot to the right
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Mapping CCFs

 For each pixel value x:
 Find the location on the red line that has the closet Y value 

to the observed CCF at x 
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Mapping CCFs

 For each pixel value x:
 Find the location on the red line that has the closet Y value 

to the observed CCF at x 

x1

x2

f(x1) = x2

x3

x4

f(x3) = x4

Etc.
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Mapping CCFs

 For each pixel in the image to the left

 The pixel has a value x

 Find the CCF at that pixel value CCF(x)

 Find x’ such that CCF(x’) in the function to the right equals 

CCF(x)

 x’ such that CCF_flat(x’) = CCF(x)

 Modify the pixel value to x’

Move x axis levels around until the plot to the left

looks like the plot to the right
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Doing it Formulaically

 CCFmin is the smallest non-zero value of CCF(x)

 The value of the CCF at the smallest observed pixel value

 Npixels is the total no. of pixels in the image

 10000 for a 100x100 image

 Max.pixel.value is the highest pixel value

 255 for 8-bit pixel representations


















 valuepixelMax

CCFNpixels

CCFxCCF
roundxf ..

)(
)(

min

min
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Or even simpler

 Matlab:

 Newimage = histeq(oldimage)
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Histogram Equalization

 Left column: Original image

 Right column: Equalized image

 All images now have similar contrast levels
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Eigenfaces after Equalization

 Left panel : Without HEQ

 Right panel: With HEQ

 Eigen faces are more face like..

 Need not always be the case
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Detecting Faces in Images
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Detecting Faces in Images

 Finding face like patterns
 How do we find if a picture has faces in it

 Where are the faces?

 A simple solution:
 Define a “typical face”

 Find the “typical face” in the image
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Finding faces in an image

 Picture is larger than the “typical face”

 E.g. typical face is 100x100, picture is 600x800

 First convert to greyscale

 R + G + B

 Not very useful to work in color
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Finding faces in an image

 Goal .. To find out if and where images that 

look like the “typical” face occur in the picture
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Finding faces in an image

 Try to “match” the typical face to each 

location in the picture
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Finding faces in an image
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Finding faces in an image

 Try to “match” the typical face to each location in 
the picture

 The “typical face” will explain some spots on the 
image much better than others

 These are the spots at which we probably have a face!
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How to “match”

 What exactly is the “match”

 What is the match “score”

 The DOT Product

 Express the typical face as a vector

 Express the region of the image being evaluated as a vector
 But first histogram equalize the region

 Just the section being evaluated, without considering the rest of the image

 Compute the dot product of the typical face vector and the “region” 
vector
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What do we get

 The right panel shows the dot product a various 
loctions

 Redder is higher

 The locations of peaks indicate locations of faces!

17 Sep 2012 98



11755/18797

What do we get

 The right panel shows the dot product a various loctions
 Redder is higher

 The locations of peaks indicate locations of faces!

 Correctly detects all three faces
 Likes George’s face most

 He looks most like the typical face

 Also finds a face where there is none!
 A false alarm
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Scaling and Rotation Problems

 Scaling

 Not all faces are the same size

 Some people have bigger faces

 The size of the face on the image 
changes with perspective

 Our “typical face” only represents 
one of these sizes

 Rotation

 The head need not always be 
upright!

 Our typical face image was upright
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Solution

 Create many “typical faces”
 One for each scaling factor
 One for each rotation

 How will we do this?

 Match them all

 Does this work
 Kind of .. Not well enough at all
 We need more sophisticated models
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Face Detection: A Quick Historical Perspective

 Many more complex methods
 Use edge detectors and search for face like patterns
 Find “feature” detectors (noses, ears..) and employ them in complex 

neural networks..

 The Viola Jones method
 Boosted cascaded classifiers

 Next in the program..
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