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Overview

 Vectors and matrices

 Basic vector/matrix operations

 Various matrix types

 Projections

 More on matrix types

 Matrix determinants

 Matrix inversion

 Eigenanalysis

 Singular value decomposition
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Central Projection

 The positions on the “window” are scaled along the line

 To compute (x,y) position on the window,  we need z (distance 
of window from eye), and (x’,y’,z’)  (location being projected)
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Homogeneous Coordinates

 Represent points by a triplet

 Using yellow window as reference:

 (x,y) = (x,y,1)

 (x‟,y‟) = (x,y,c‟)      c‟ = ‟/

 Locations on line generally represented as (x,y,c)

 x’= x/c’ ,   y’= y/c’
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Homogeneous Coordinates in 3-D

 Points are represented using FOUR coordinates

 (X,Y,Z,c)

 “c” is the “scaling” factor that represents the distance of the actual 

scene

 Actual Cartesian coordinates: 

 Xactual = X/c,  Yactual = Y/c,  Zactual = Z/c
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Homogeneous Coordinates

 In both cases, constant “c” represents distance along the line 

with respect to a reference window

 In 2D the plane in which all points have values (x,y,1)

 Changing the reference plane changes the representation 

 I.e. there may be multiple Homogenous representations 

(x,y,c) that represent the same cartesian point (x‟ y‟)
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Orthogonal/Orthonormal vectors

 Two vectors are orthogonal if they are perpendicular to one another

 A.B = 0

 A vector that is perpendicular to a plane is orthogonal to every vector on the 
plane

 Two vectors are orthonormal if

 They are orthogonal

 The length of each vector is 1.0

 Orthogonal vectors can be made orthonormal by normalizing their lengths to 1.0
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Orthogonal matrices

 Orthogonal Matrix  :  AAT = ATA = I

 The matrix is square

 All row vectors are orthonormal to one another
 Every vector is perpendicular to the hyperplane formed by all other vectors

 All column vectors are also orthonormal to one another

 Observation: In an orthogonal matrix if the length of the row vectors is 
1.0, the length of the column vectors is also 1.0

 Observation: In an orthogonal matrix no more than one row can have 
all entries with the same polarity (+ve or –ve)
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375.0     125.0    5.0

4 Sep 2012 8



11-755/18-797

Orthogonal and Orthonormal Matrices

 Orthogonal matrices will retain the length and relative 
angles between transformed vectors

 Essentially, they are combinations of rotations, reflections and 
permutations

 Rotation matrices and permutation matrices are all orthonormal
matrices

 If the entries of the matrix are not unit length, it cannot 
be orthogonal
 AAT = I  or ATA = I, but not both

 AAT = Diagonal or ATA = Diagonal, but not both

 If all the entries are the same length, we can get AAT = ATA = Diagonal, though

 A non-square matrix cannot be orthogonal
 AAT=I or ATA = I, but not both  
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Matrix Rank and Rank-Deficient Matrices

 Some matrices will eliminate one or more dimensions during 
transformation

 These are rank deficient matrices

 The rank of the matrix is the dimensionality of the transformed version 
of a full-dimensional object

P * Cone = 
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Matrix Rank and Rank-Deficient Matrices

 Some matrices will eliminate one or more dimensions during 
transformation
 These are rank deficient matrices

 The rank of the matrix is the dimensionality of the transformed version 
of a full-dimensional object

Rank = 2 Rank = 1
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Projections are often examples of rank-deficient transforms

 P = W (WTW)-1 WT ; Projected Spectrogram = P*M

 The original spectrogram can never be recovered
 P is rank deficient

 P explains all vectors in the new spectrogram as a mixture of 
only the 4 vectors in W
 There are only a maximum of 4 independent bases

 Rank of P is 4

M = 

W = 
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Non-square Matrices

 Non-square matrices add or subtract axes
 More rows than columns  add axes

 But does not increase the dimensionality of the data

 Fewer rows than columns  reduce axes
 May reduce dimensionality of the data
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Non-square Matrices

 Non-square matrices add or subtract axes
 More rows than columns  add axes

 But does not increase the dimensionality of the data

 Fewer rows than columns  reduce axes
 May reduce dimensionality of the data
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The Rank of  a Matrix

 The matrix rank is the dimensionality of the transformation of a full-
dimensioned object in the original space

 The matrix can never increase dimensions

 Cannot convert a circle to a sphere or a line to a circle

 The rank of a matrix can never be greater than the lower of its two 
dimensions
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The Rank of Matrix

 Projected Spectrogram = P * M
 Every vector in it is a combination of only 4 bases

 The rank of the matrix is the smallest no. of bases required to 
describe the output
 E.g. if note no. 4 in P could be expressed as a combination of notes 1,2 

and 3, it provides no additional information

 Eliminating note no. 4 would give us the same projection

 The rank of P would be 3!

M = 
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Matrix rank is unchanged by transposition

 If an N-dimensional object is compressed to a 
K-dimensional object by a matrix, it will also be 
compressed to a K-dimensional object by the 
transpose of the matrix
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Matrix Determinant

 The determinant is the “volume” of a matrix

 Actually the volume of a parallelepiped formed from its 
row vectors
 Also the volume of the parallelepiped formed from its column 

vectors

 Standard formula for determinant: in text book

(r1)

(r2)
(r1+r2)

(r1)

(r2)
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Matrix Determinant: Another Perspective

 The determinant is the ratio of N-volumes

 If V1 is the volume of an N-dimensional object “O” in N-dimensional 
space

 O is the complete set of points or vertices that specify the object

 If V2 is the volume of the N-dimensional object specified by A*O,  
where A is a matrix that transforms the space

 |A| = V2 / V1

Volume = V1 Volume = V2


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7.09.0       7.0

8.0  8.0       0.1

7.0     0    8.0
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Matrix Determinants

 Matrix determinants are only defined for square matrices

 They characterize volumes in linearly transformed space of the same 
dimensionality as the vectors

 Rank deficient matrices have determinant 0

 Since they compress full-volumed N-dimensional objects into zero-
volume N-dimensional objects

 E.g. a 3-D sphere into a 2-D ellipse:  The ellipse has 0 volume (although it 
does have area)

 Conversely, all matrices of determinant 0 are rank deficient

 Since they compress full-volumed N-dimensional objects into 
zero-volume objects
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Multiplication properties

 Properties of vector/matrix products
 Associative

 Distributive

 NOT commutative!!!

 left multiplications ≠ right multiplications

 Transposition



A  (BC)  (A B) C



A BBA



A (BC) A BA C

  TTT
ABBA 
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Determinant properties

 Associative for square matrices

 Scaling volume sequentially by several matrices is equal to 

scaling once by the product of the matrices

 Volume of sum != sum of Volumes

 Commutative

 The order in which you scale the volume of an object is irrelevant

CBACBA 

BAABBA 

CBCB  )(
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Matrix Inversion

 A matrix transforms an 
N-dimensional object to a 
different N-dimensional 
object

 What transforms the new 
object back to the original?

 The inverse transformation

 The inverse transformation is 
called the matrix inverse
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Matrix Inversion

 The product of a matrix and its inverse is the 
identity matrix

 Transforming an object, and then inverse transforming 
it gives us back the original object

T T-1

T-1*T*D = D   T-1T = I
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Inverting rank-deficient matrices

 Rank deficient matrices “flatten” objects
 In the process, multiple points in the original object get mapped to the same 

point in the transformed  object

 It is not possible to go “back” from the flattened object to the original 
object
 Because of the many-to-one forward mapping

 Rank deficient matrices have no inverse


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001
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Revisiting Projections and Least Squares
 Projection computes a least squared error estimate

 For each vector V in the music spectrogram matrix

 Approximation:  Vapprox = a*note1 + b*note2 + c*note3..

 Error vector E =  V – Vapprox

 Squared error energy for V     e(V) = norm(E)2

 Projection computes Vapprox for all vectors such that Total error is 
minimized

 But WHAT ARE “a” “b” and “c”?
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The Pseudo Inverse (PINV)

 We are approximating spectral vectors V as the 
transformation of the vector [a b c]T

 Note – we’re viewing the collection of bases in T as a 
transformation

 The solution is obtained using the pseudo inverse

 This give us a LEAST SQUARES solution

 If T were square and invertible Pinv(T) = T-1, and V=Vapprox
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Explaining music with one note

 Recap:  P = W (WTW)-1 WT, Projected Spectrogram = P*M

 Approximation:  M = W*X

 The amount of W in each vector = X = PINV(W)*M

 W*Pinv(W)*M = Projected Spectrogram

 W*Pinv(W) = Projection matrix!!

M = 

W = 

X =PINV(W)*M

PINV(W) = (WTW)-1WT
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Explanation with multiple notes

 X =  Pinv(W) * M;   Projected matrix = W*X = W*Pinv(W)*M

M = 

W = 

X=PINV(W)M
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How about the other way?

 WV \approx M              W = M * Pinv(V)       U = WV

M = 

W = ??

V = 

U = 
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Pseudo-inverse (PINV)

 Pinv()  applies to non-square matrices

 Pinv ( Pinv (A))) = A

 A*Pinv(A)= projection matrix!

 Projection onto the columns of A

 If A = K x N matrix and K > N, A projects N-D 
vectors into a higher-dimensional K-D space

 Pinv(A) = NxK matrix

 Pinv(A)*A = I  in this case

 Otherwise  A * Pinv(A) = I
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Matrix inversion (division)

 The inverse of matrix multiplication
 Not element-wise division!!

 Provides a way to “undo” a linear transformation
 Inverse of the unit matrix is itself

 Inverse of a diagonal is diagonal

 Inverse of a rotation is a (counter)rotation (its transpose!)

 Inverse of a rank deficient matrix does not exist!
 But pseudoinverse exists

 For square matrices: Pay attention to multiplication side!

 If matrix not square use a matrix pseudoinverse:

 MATLAB syntax: inv(a), pinv(a)


A BC,  A CB1,  BA1 C

CABBCACBA     ,  ,
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Eigenanalysis

 If something can go through a process mostly 
unscathed in character it is an eigen-something

 Sound example:

 A vector that can undergo a matrix multiplication and 
keep pointing the same way is an eigenvector

 Its length can change though

 How much its length changes is expressed by its 
corresponding eigenvalue

 Each eigenvector of a matrix has its eigenvalue

 Finding these “eigenthings” is called eigenanalysis
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EigenVectors and EigenValues

 Vectors that do not change angle upon transformation

 They may change length

 V = eigen vector

 l = eigen value

 Matlab:  [V, L] = eig(M)
 L is a diagonal matrix whose entries are the eigen values

 V is a maxtrix whose columns are the eigen vectors

VMV l









0.17.0
7.05.1M

Black 
vectors
are
eigen 
vectors

4 Sep 2012 34



11-755/18-797

Eigen vector example
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Matrix multiplication revisited

 Matrix transformation “transforms” the space

 Warps the paper so that the normals to the two 
vectors now lie along the axes















2.11.1

07.00.1
A
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A stretching operation

 Draw two lines

 Stretch / shrink the paper along these lines by factors l1

and l2

 The factors could be negative – implies flipping the paper

 The result is a transformation of the space

1.4 0.8
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A stretching operation
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 Draw two lines

 Stretch / shrink the paper along these lines by factors l1

and l2

 The factors could be negative – implies flipping the paper

 The result is a transformation of the space
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Physical interpretation of eigen vector

 The result of the stretching is exactly the same as transformation by a 
matrix

 The axes of stretching/shrinking are the eigenvectors

 The degree of stretching/shrinking are the corresponding eigenvalues

 The EigenVectors and EigenValues convey all the information about 
the matrix
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Physical interpretation of eigen vector
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 The result of the stretching is exactly the same as transformation by a 
matrix

 The axes of stretching/shrinking are the eigenvectors

 The degree of stretching/shrinking are the corresponding eigenvalues

 The EigenVectors and EigenValues convey all the information about 
the matrix
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Eigen Analysis

 Not all square matrices have nice eigen values and 
vectors
 E.g. consider a rotation matrix

 This rotates every vector in the plane
 No vector that remains unchanged

 In these cases the Eigen vectors and values are complex
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Singular Value Decomposition

 Matrix transformations convert circles to ellipses

 Eigen vectors are vectors that do not change direction in the 
process

 There is another key feature of the ellipse to the left that carries 
information about the transform

 Can you identify it?
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Singular Value Decomposition

 The major and minor axes of the transformed ellipse 
define the ellipse

 They are at right angles

 These are transformations of right-angled vectors on 
the original circle!
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Singular Value Decomposition

 U and V are orthonormal matrices

 Columns are orthonormal vectors

 S is a diagonal matrix

 The right singular vectors of V are transformed to the left singular 
vectors in U

 And scaled by the singular values that are the diagonal entries of S
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Singular Value Decomposition

 The left and right singular vectors are not the same

 If A is not a square matrix, the left and right singular vectors will be of 
different dimensions

 The singular values are always real

 The largest singular value is the largest amount by which a 
vector is scaled by A

 Max (|Ax| / |x|) = smax

 The smallest singular value is the smallest amount by which a 
vector is scaled by A

 Min (|Ax| / |x|) = smin

 This can be 0 (for low-rank or non-square matrices)
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The Singular Values

 Square matrices: The product of the singular values is the determinant of  the 
matrix

 This is also the product of the eigen values

 I.e. there are two different sets of axes whose products give you the area of an ellipse

 For any “broad” rectangular matrix A, the largest singular value of any square 
submatrix B cannot be larger than the largest singular value of A

 An analogous rule applies to the smallest singluar value

 This property is utilized in various problems, such as compressive sensing
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Symmetric Matrices

 Matrices that do not change on transposition
 Row and column vectors are identical

 The left and right singular vectors are identical
 U = V

 A = U S UT

 They are identical to the eigen vectors of the matrix














17.0

7.05.1
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Symmetric Matrices

 Matrices that do not change on transposition
 Row and column vectors are identical

 Symmetric matrix: Eigen vectors and Eigen values are 
always real

 Eigen vectors are always orthogonal
 At 90 degrees to one another
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Symmetric Matrices

 Eigen vectors point in the direction of the major 
and minor axes of the ellipsoid resulting from the 
transformation of a spheroid

 The eigen values are the lengths of the axes
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Symmetric matrices

 Eigen vectors Vi are orthonormal

 Vi
TVi = 1

 Vi
TVj = 0, i != j

 Listing all eigen vectors in matrix form V

 VT = V-1

 VT V = I
 V VT= I

 M Vi = lVi

 In matrix form  :  M V  = V 

  is a diagonal matrix with all eigen values

 M = V  VT
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The Correlation and Covariance Matrices

 Consider a set of column vectors represented as a DxN matrix A

 The correlation matrix is

 C = (1/N) AAT

 If the average value (mean) of the vectors in A is 0, C is called the covariance matrix

 covariance = correlation + mean * meanT

 Diagonal elements represent average of the squared value of each dimension

 Off diagonal elements represent how two components are related

 How much knowing one lets us guess the value of the other

A AT

=

C

1/NSia1,i
2

D

1/NSiak,iak,
j
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Correlation / Covariance Matrix

 The correlation / covariance matrix is symmetric

 Has orthonormal eigen vectors and real, non-negative eigen values

 The square root of a correlation or covariance matrix is easily derived 
from the eigen vectors and eigen values

 The eigen values of the square root of the covariance matrix are the 
square roots of the eigen values of the covariance matrix

 These are also the “singular values” of the data set

CVVVSqrtSqrtV

VSqrtVVSqrtVCSqrtCSqrt

VSqrtVCSqrt
VVC

TT

TT

T

T








)().(.

).(.).(.)().(

).(.)(
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Square root of the Covariance Matrix

 The square root of the covariance matrix 
represents the elliptical scatter of the data

 The eigenvectors of the matrix represent the 
major and minor axes

C
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The Correlation Matrix

 Projections along the N eigen vectors with the largest 
eigen values represent the N greatest “energy-carrying” 
components of the matrix

 Conversely, N “bases” that result in the least square 
error are the N best eigen vectors

Any vector V = aV,1 * eigenvec1 + aV,2 *eigenvec2 + ..

SV aV,i = eigenvalue(i)
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An audio example

 The spectrogram has 974 vectors of dimension 1025

 The covariance matrix is size 1025 x 1025

 There are 1025 eigenvectors
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Eigen Reduction

 Compute the Correlation

 Compute Eigen vectors and values

 Create matrix from the 25 Eigen vectors corresponding to 25 highest Eigen 
values

 Compute the weights of the 25 eigenvectors

 To reconstruct the spectrogram – compute the projection on the 25 eigen
vectors 

dim

dim

251

)(

]..[

)(],[

.

lowreducedtedreconstruc

reducedlow

reduced

T

MVM

MVPinvM

VVV

CeigLV

MMC

mspectrograM











 1025x1000

1025x1025

1025x25

25x1000

1025x1000

V = 1025x1025
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Eigenvalues and Eigenvectors

 Left panel: Matrix with 1025 eigen vectors
 Right panel: Corresponding eigen values
 Most eigen values are close to zero

 The corresponding eigenvectors are “unimportant”
)(],[

.

CeigLV

MMC

mspectrograM
T






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Eigenvalues and Eigenvectors

 The vectors in the spectrogram are linear combinations of all 

1025 eigen vectors

 The eigen vectors with low eigen values contribute very little

 The average value of ai is proportional to the square root of the 

eigenvalue

 Ignoring these will not affect the composition of the spectrogram

Vec = a1 *eigenvec1 + a2 * eigenvec2 + a3 * eigenvec3 …
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An audio example

 The same spectrogram projected down to the 25 eigen
vectors with the highest eigen values

 Only the 25-dimensional weights are shown
 The weights with which the 25 eigen vectors must be added to 

compose a least squares approximation to the spectrogram

MVPinvM

VVV

reducedlow

reduced

)(

]..[

dim

251




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An audio example

 The same spectrogram constructed from only the 25 eigen vectors 
with the highest eigen values

 Looks similar
 With 100 eigenvectors, it would be indistinguishable from the original

 Sounds pretty close

 But now sufficient to store 25 numbers per vector (instead of 1024)

dimlowreducedtedreconstruc MVM 
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With only 5 eigenvectors

 The same spectrogram constructed from only 

the 5 eigen vectors with the highest eigen 

values

 Highly recognizable
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Correlation vs. Covariance Matrix

 Correlation:

 The N eigen vectors with the largest eigen values represent the 
N greatest “energy-carrying” components of the matrix

 Conversely, N “bases” that result in the least square error are 
the N best eigen vectors
 Projections onto these eigen vectors retain the most energy in the data.

 Covariance:

 the N eigen vectors with the largest eigen values represent the N 
greatest “variance-carrying” components of the matrix

 Conversely, N “bases” that retain the maximum possible 
variance are the N best eigen vectors
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Eigenvectors, Eigenvalues and 

Covariances

 The eigenvectors and eigenvalues (singular 

values) derived from the correlation matrix 

are important

 Do we need to actually compute the 

correlation matrix?

 No

 Direct computation using Singular Value 

Decomposition
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SVD vs. Eigen decomposition

 Singluar value decomposition is analogous to the eigen
decomposition of the correlation matrix of the data

 SVD:    D = U S VT

 DDT =  U S VT V S UT = U S2 UT

 The “left” singluar vectors are the eigen vectors of the 
correlation matrix

 Show the directions of greatest importance

 The corresponding singular values are the square roots 
of the eigen values of the correlation matrix

 Show the importance of the eigen vector
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Thin SVD, compact SVD, reduced SVD

 Thin SVD:  Only compute the first N columns of U

 All that is required if N < M

 Compact SVD: Only the left and right singular vectors corresponding to 
non-zero singular values are computed

. .

=

A U VT
NxM

NxN

NxM

MxM
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Why bother with eigens/SVD

 Can provide a unique insight into data

 Strong statistical grounding 

 Can display complex interactions 
between the data

 Can uncover irrelevant parts of the 
data we can throw out

 Can provide basis functions

 A set of elements to compactly 
describe our data

 Indispensable for performing 
compression and classification

 Used over and over and still perform 
amazingly well

Eigenfaces

Using a linear transform of 

the above “eigenvectors” we 

can compose various faces
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Making vectors and matrices in MATLAB

 Make a row vector: 

a = [1 2 3]

 Make a column vector: 

a = [1;2;3]

 Make a matrix: 

A = [1 2 3;4 5 6]

 Combine vectors

A = [b c] or A = [b;c]

 Make a random vector/matrix: 

r = rand(m,n)

 Make an identity matrix: 

I = eye(n)

 Make a sequence of numbers

c = 1:10 or c = 1:0.5:10 or c = 100:-2:50

 Make a ramp

c = linspace( 0, 1, 100)
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Indexing

 To get the i-th element of a vector
a(i)

 To get the i-th j-th element of a matrix
A(i,j)

 To get from the i-th to the j-th element
a(i:j)

 To get a sub-matrix
A(i:j,k:l)

 To get segments
a([i:j k:l m])
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Arithmetic operations

 Addition/subtraction

C = A + B or C = A - B

 Vector/Matrix multiplication

C = A * B

 Operant sizes must match!

 Element-wise operations

 Multiplication/division

C = A .* B or C = A ./ B

 Exponentiation

C = A.^B

 Elementary functions

C = sin(A) or C = sqrt(A), …
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Linear algebra operations

 Transposition

C = A’

 If A is complex also conjugates use C = A.’ to avoid that

 Vector norm

norm(x) (also works on matrices)

 Matrix inversion

C = inv(A) if A is square

C = pinv(A) if A is not square

 A might not be invertible, you„ll get a warning if so

 Eigenanalysis

[u,d] = eig(A)

 u is a matrix containing the eigenvectors

 d is a diagonal matrix containing the eigenvalues

 Singular Value Decomposition

[u,s,v] = svd(A) or [u,s,v] = svd(A,0)

 “thin” versus regular SVD

 s is diagonal and contains the singular values
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Plotting functions

 1-d plots
plot(x)

 if x is a vector will plot all its elements

 If x is a matrix will plot all its column 
vectors

bar(x)

 Ditto but makes a bar plot

 2-d plots
imagesc(x)

 plots a matrix as an image

surf(x)

 makes a surface plot
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Getting help with functions

 The help function
 Type help followed by a function name

 Things to try
help help

help +

help eig

help svd

help plot

help bar

help imagesc

help surf

help ops

help matfun

 Also check out the tutorials and the mathworks site
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