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Changes for the Better

Evolution of Sensing

Today The road ahead

\1|r

Digital _ - Computational v 'T*
Sensing F Sensing . ; |
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Changes for the Better

Sensing Pipeline Paradigm Change

Precise High-rate

Processing

Sensing Acquisition

Compre@sensing

Mixing and Low-rate Reconstruction

measurement acquisition and Processing

Goal: exploit mixing to simplify sensor or improve sensor specifications
(e.g., sensor speed, A/D conversion rate, measured bandwidth/resolution)

« Compressive sensing has significantly improved our sensing capability
« Two fundamental Compressive Sensing research aspects

— Hardware modifications for efficient acquisition

— Signal/scene models and reconstruction algorithms

© MERL Oct 18, 2012
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Changes for the Better

CS AT A GLANCE
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Changes for the Better

Sensing by Sampling

* Long-established paradigm for digital data acquisition

— sample data (A-to-D converter, digital camera, ...)
— compress data (signal-dependent, nonlinear)
— bottleneck to performance of modern acquisition systems
N > K
N K

sample —{ compress —* transmit

sparse |
wavelet
transform

receive |—| decompress
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Changes for the Better

ComprESSive seHSing (CS) [Candés, Romberg, Tao; Donoho]

* New signal acquisition method
— Samples and compresses in one simple step
— Uses computation to reconstruct signal

M
measure | transmit/store N >M

s

Few randomized _ M Reconstruct/
i receive —>
Universal Process
Measurements
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Signal Structure: Sparsity

pixels

wideband
signal
samples

KKN
large
wavelet
coefficients

K< N
large
Gabor
coefficients
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Changes for the Better

Compressed Sensing Measurement Model [candes et al

Y A T
N x 1

sparse
signal

K

nonzero
entries

e xlis K-sparse or K-compressible
A random, satisfies a restricted isometry property (RIP)
A has RIP of order 2K with constant 0
If there exists O s.t. for all 2K-sparse x:
(1=0)lxl3 < Ax]| < (1 +8)[1x]]3
e M=0(KlogN/K)

e A also has small coherence U = max |<az'7 aj>|
17£]
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Changes for the Better

Compressed Sensing Measurement Model [candes et al

OTITTTITTETTITIT] &

e xis K-sparse or K-compressible
 Arandom, satisfies a restricted isometry property (RIP)
A has RIP of order 2K with constant 0
If there exists O s.t. for all 2K-sparse x:
(1=0)lIx[3 < Al < (1+9)[x[3
e M=0(KlogN/K)

e A also has small coherence U = max |<az'7 aj>|
17£]
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Changes for the Better

RIP/Stable Embedding

- An information preserving projection A preserves the
geometry of the set of sparse signals
S

Az
Az;

K-dim subspaces

Restricted Isometry Property
(1= d)l|l])5 < [lAz[l5 < (1 +6)||=[l3

© MERL Oct 18, 2012



)\Escmc MITSUBISHI ELECTRIC RESEARCH LABORATORIES for a greener tomorvow @

Changes for the Better

CS RECONSTRUCTION
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Changes for the Better

CS Reconstruction

* Reconstruction using sparse approximation:
— Find sparsest x such that y = Ax

X = argmin [x|@s-t. y ~ Ax

« Convex optimization approach:
— Minimize [, norm: e.g.,

X = arg min HXHY s.t.y ~ Ax
X

* Greedy algorithms approach:
— Minimize lly - Axll> such that x is sparse

X = argmin ||y — Ax||s s.t. [|x]jo < K
X

— MP, OMP, ROMP, StOMP, CoSaMP, ...
— AndrewMP, PYAMP (Pick Your Acronym Matching Pursuit)

© MERL Oct 18, 2012
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Changes for the Better

Why /, relaxation works

min || x || , S.t. y= Ax

Sparse solution
[, “ball

© MERL Oct 18, 2012
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Changes for the Better

Greedy Pursuits Core Idea
Yy A

(I TTTETETTTT] 2O

* y highly correlated with A at locations where x is high
* A’y provides a good idea of these locations
— This is why low coherence is important

7AY
p = max |(a;, a;)|
i7]
— ATy referred to as proxy for x. It is also the gradient of ||y-4x]|>2.

X = argmin ||y — Ax||2 s.t. ||x]lo < K
X

» General Strategy:
— Identify locations
— Invert the system only on those locations

© MERL Oct 18, 2012
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Changes for the Better

SPARSITY-CONSTRAINED FUNCTION MINIMIZATION
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Changes for the Better

Problem Formulation
sk

x* =argmin f (x) s.t. [|x||[o < K
X
» Objective: minimize an arbitrary cost function

e Applications:
— Sparse logistic regression
— Quantized and saturation-consistent Compressed Sensing
— De-noising and Compressed Sensing with non-gaussian noise models

* Questions:
— What algorithms can we use?
— What functions can we minimize?
— What are the conditions on fx)?
— What guarantees can we provide?

© MERL Oct 18, 2012
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Changes for the Better

Commonalities in Sparse Recovery Algorithms

* Most greedy and [; algorithms have several common steps:

Maintain a current estimate

Compute a residual

Compute a gradient, proxy, correlation, or some other name
Update estimate based on proxy

— Prune (soft or hard threshold) Y _A
— Iterate -
| -
« Key step: proxy/correlation AT(y-Ax) N
— This is the gradient of /(x)=|y-Ax|[: TR TTTECIETTTT O

Can we substitute it with the general gradient Vf(x)?

YES
We can provide strong guarantees!
We can generalize the RIP!

© MERL Oct 18, 2012
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Changes for the Better

GraSP (Gradient Subspace Pursuit) [w/ Bahmani, Raj]
State Variables: Signal estimate, x support estimate: T

Initialize estimate and support: X=0, T=supp(X)

Add to

Select location support set

of largest Q = supp(glax) U T
2K gradient directions
>

Compute Gradient at Y
Current Estimate

Minimize over

SUu support
vf (ﬁ) _ pp(gl2x) b = argmin £(x)
4

S.t. XQe = 0

Truncate result
X = b|x

T = supp (b|x)
|

Iterate using residual

© MERL Oct 18, 2012
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Changes for the Better

GraSP Properties

* |teration Guarantee:

3
*Ha : Qi@ V7 () Lzl

Error in j* iteration Except for a fixed approximation error
Reduces by half in each iteration

« Connections to Compressive Sensing
— CS uses fix)=ly-Ax|;3
— General conditions on fx) (SHP) that reduce to the RIP
— GraSP reduces to CoSaMP

— Reconstruction guarantees reduce to classical CS guarantees
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Changes for the Better

SYNTHETIC APERTURE RADAR
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Changes for the Better

SAR Acquisition Model

J S S R . -

~

i :
i
|

v

i — >4 Received Data: y

" :
pivs,
A

. S C Image: x

SAR Acquisition Linear Equation: y=A x

* SAR Acquisition follows linear model

* Acquisition function (A) determined by SAR parameters
— Pulse shape/rate
— Doppler bandwidth (beamwidth)
— Moving platform trajectory
* Image formation: given y determine x.
© MERL Oct 18, 2012
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Changes for the Better

Classical SAR puilse timing

*  SAR beamwidth (Doppler bandwidth) dictates azimuth resolution
— The higher the bandwidth, the better.

/\;(\

* Higher Doppler bandwidth requires higher PRF

« Reflection duration depends on range length

— Reflection interference limits maximum PRF
— Increasing PRF reduces the range we can image

Reflection Reflection

*eflection

Higher PRF causes interference and missing data v

© MERL Oct 18, 2012
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Changes for the Better

Ground Coverage: Uniform Pulsing, High PRF

=% [
|
\
T— Incomplete
Coverage
— (Center strip
missing)

v o v Multiple pulses,
Single pulse w/ missing data uniformly spaced

© MERL Oct 18, 2012
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Changes for the Better

SAR pulsing and timing [wi Liu]

* |ssue: missing data always in the same range interval
— Produces black spots in the image
— Even robust algorithms cannot fill in with such pattern of missing data

— Ideally, missing data should be in different interval for every azimuth line
« Solution: Randomized pulsing interval

l ><] | l > | l > |

Same range interval data
missing from all reflections

L B | \ ><] J \ 1 |

Randomized timing [ | <] | L B ’
mixes missing data ——

© MERL Oct 18, 2012
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Changes for the Better

Ground Coverage: Random Pulsing, High PRF

.
\

v o v Multiple pulses,
Single pulse w/ missing data Non-uniformly spaced

© MERL Oct 18, 2012
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Changes for the Better

Simulation results

Ground tnuth (in dB scale) CSA Imaging result with uniformly-sampied data

0 12000 o
—10
-20
-30
-40
-50
500 1000 1500 2000 2500 e
Range

CSA imaging result wih unilormly-sampied data

0
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g
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I
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CS reconstruction with random puise timing
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10000

3

§ o

4000
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&
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Changes for the Better

Simulation results

Ground truth CSA imaging result with uniformly-sampled data
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Changes for the Better

Simulation results

Ground truth CSA imaging result with uniformly-sampled data
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Changes for the Better

DEPTH SENSING
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Changes for the Better

Depth Sensing

Coherent Active Depth Sensing
* Ultrasonic, mmWave, other modalities
Goal: llluminate the scene and sense reflections

Scene Reflectivity
A)))))e&

" f&\\\ Everything in front of target is zero

0. :
0 -05
Transmitters

Receivers

~ Targef
B Everything behind target invisible (i.e. zero)

Scene is sparse!

© MERL Oct 18, 2012
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Changes for the Better
Depth Sensing
» Coherent Active Depth Sensing
* Ultrasonic, mmWave, other modalities
* Goal: llluminate the scene and sense reflections
N1
1, Discretization
AN) ,
s \\kkk&\\ N, Scene Size: N = N,xXN,xN,
;) & \\\\ (# of gridpoints in scene)
1 ~ Targef
Y | 0.5
37 b il N, Sparsity: K<N,xN,<N
Transmitters Receivers

Scene is sparse!

© MERL Oct 18, 2012
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MITSUBISHI ELECTRIC RESEARCH LABORATORIES
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Modeling

Transmitter s

® )
A

Receiver [

<€

Scene point n

N

Reflectivity of scene point n (signal of interest): X,
Pulse transmitted by transmitter s (freq. domain): P,
Signal received by receiver [ (freq. domain): R,
Distance of transmitter s to scene point x: d,,
Distance of receiver [ to scene point n: d,
Speed of sound: c
Time delay for distance d: dlc

Time delay from s to [ through n:

s,l,n

=(d,,*d,)c

S transmitters, L receivers, N scene points (scene discretized), F transmitted frequencies

Propagation equation:

Rip=Y |3 Pogeriomen | g,
n S

Discretizing in Frequency and converting to matrix form:

C Ry T

r z Pil(,—j;.nT.«-,l,l
s4s,

Z P, F(,—j‘w‘rn.l.l
s 1s,

Zq [)S-f{._j“f‘j'r,-«.l.l

Zs Ps.l({ﬁiwlﬂ.l..l

L Z\ P‘_.FC_J-‘;FT,ML.I

S, Py ped@rTaanN
Z_.,- Pw,f(,‘_j“"f'rn.!.;\'

Zs P 1e7 991 7s LN

ZN PN.F()_JWF'TZ.L..\' i
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Changes for the Better

Modeling Rr.ndomized

Reflectivity of scene point n (signal of interest): X,

Transmitter s Scene point n Pulse transmitted by transmitter s (freq. domain): P,
o D)) Signal received by receiver [ (freq. domain): R,

, (e Distance of transmitter s to scene point n: d,

Receiver / Distance of receiver [ to scene point x: dn,J

< Speed of sound: c
\ Time delay for distance d: dlc

Time delay from s to [ through n: T, * d,)c

S transmitters, L receivers, N scene points (scene discretized), F transmitted frequencies

— AX

Received data Sensing Matrix Scene
(determined by pulse (sparse)
shape)

© MERL Oct 18, 2012
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Changes for the Better

Simulation Results: Ultrasonic Array

(2) Original Scene (b) Least Squares — noiseless

s "
.f‘.-.
S

|
ki

0.5

© MERL Oct 18, 2012



)\E:%’Ei%" MITSUBISHI ELECTRIC RESEARCH LABORATORIES @

Changes for the Better

Simulation Results: Virtual Array

(a) Original Scene (b) CS - 10dB SNR

© MERL Oct 18, 2012
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Changes for the Better

Signal Model
Scene discretization (far-field) ““‘

Scene (signal) model:
Front of objects is empty (zero)
Rear of objects is invisible (zero)

Q: Can we exploit the scene model beyond sparsity?

A: YES! Model Based Compressed Sensing [Baraniuk et. al.]

© MERL Oct 18, 2012
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Model Based Compressed Sensing

 Model-based Compressed Sensing [Baraniuk et. al.]
— Enables model-based reconstruction
— Modifies existing greedy CS algorithms such as CoSaMP

— Provides theoretical analysis
* Fundamental operation: Model-based Thresholding
— Replaces hard thresholding in standard algorithms

— Enforces model instead of simple sparsity

« Challenge: Determine appropriate thresholding operation

© MERL Oct 18, 2012
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Changes for the Better

Example: mmWave Radar Simulation

« Operating Frequency: 76-77GHz

— (Specs from: http://www.mitsubishielectric.com/bu/automotive/
advanced_technology/pdf/vol94 tr5.pdf)

« Simulation in 2D-field (easier to visualize results)
— Assuming uniform linear array
— We expect 3D results to be similar

« Compared three approaches
— Classical backprojection (beamforming)
— Standard Compressive Sensing
— Model-based Compressive Sensing

© MERL Oct 18, 2012
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Changes for the Better

Simulation results - mmWave radar

(a) Orignal Scene (b) Backprojection (c) CoSaMP (d) Model Based
&
C
[0}
£
Q9
()
o
Al
<
a
[}
©
-1 0 1 -1 0 1 -1 0 1 - 0 1
(e) Orignal Scene (g) CoSaMP (h) Model Based

depth, 15 elements

-1 0 1
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Changes for the Better

. ; Model enforcement improves reconstruction
Simulation resulits significantly, even with significant blur

(a) Orignal Scene (b) Backprojection (c) CoSaMP (d) Model Based

depth, 20 elements

-
|
-_—

-1 0

(e) Orignal Scene (h) Model Based

2
g 0.8 0.8
£
[}
© 0.6 0.6
0
=04 0.4
a3
3 0.2 0.2
-1 0 1 -1
{
Backprojection (beamforming) Blur also confuses
exhibits significant blur, especially  Classical CS
as array elements are reduced algorithms
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Changes for the Better

Simulation results - randomized spacing

(a) Orignal Scene (b) Backprojection (c) CoSaMP (d) Model Based
a 1
<
g 0.8
D
@ 0.6
&
£ 04
&
o 0.2
-1 0 1 -1 0 1 -1 0 1 -1 0 1
(e) Orignal Scene (g) CoSaMP (h) Model Based

depth, 15 elements
o o o
E=N (7] @ —

e
o
no

I
el

-1 0 1 0 1
v
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Changes for the Better

Simulation results - randomized spacing
(a) Orignal Scene (b) Backprojection (c) CoSaMP (d) Model Based
1
0.8
0.6
04

0.2
-1 0

depth, 21 elements

-1 0

—A
—

(h) Model Based

(e) Orignal Scene

—

depth, 15 elements
o o o o
ST S S«

|
foi?
o
-—h

CoSaMP performance
improves, but not perfect
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MICROPHONE ARRAYS
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Changes for the Better

Problem at a Glance [w/ Raj, Smaragdis]

Microphones
® PAERN B o< (sensors/receivers)

Audio
sources

* Sources and sensors are wideband (e.g., audio)
* Few sources; source signals not known but broadband
« Sensor location is known

Frequency-Domain Transmission Equation:

Received Signal Source Signal

Distance: d , N
N P P —jwT
7777777 Y., (Cd) — e JWTs,m X, (Cd)
Propagation delay: . /
Source s Tg m=0s /C Microphone m Propagation Delay

© MERL Oct 18, 2012
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Changes for the Better

System Model

R ®
* & A NS _Discretized Scene:
b — N Grid points
(Zj:(\lj,:,‘;‘; Each a potential source
® L
*

Discrete grid of scene and potential source locations

e N Grid points, any could be a source location

* Scene sparsity: S actual sources

e M microphones (sensors); can be in/out/on/off the grid
« Sensor geometry assumed known

- Distances and delays can be calculated

© MERL Oct 18, 2012
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System Model

e JIwWT1,1

e_jWTM,l

—Discretized Scene:

N Grid points
Each a potential source

© MERL Oct 18, 2012
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Changes for the Better

System Model

= R ®
° s X S __Discretized Scene:
T — N Grid points
({:(\Kj,;)‘; Each a potential source
® L T
*

e e oS R BT
G niy

Sparsity pattern depends 6n ce location
X(w) has the same sparsity pattern for all v

Solution: Joint Sparsity Models

© MERL Oct 18, 2012
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Changes for the Better

Simulation Examples

Bandwidth = 8000Hz, Resolution = 0.05m Bandwidth = 8000Hz, Resolution = 0.05m

3 X = X

9 | 0.9' 3] 1
" @ ® X Sensor
08! ‘ 08! ® ‘
07 ® o o | (O Actual Source
06! <] 0.6/ 1

@ .
_ . 05! |
0s o © o | =+ Estimated Source
0.4/ . 0.4/ ‘
® ®
0l , 0.3/ o e o |
0.2l | 02 ‘ SNR ~5dB
@

0.1/ | 0.1/ ® e

® 01 02 03 04 05 06 07 08 09 1 G 8B 02 05 o4 05 o6 o7 o8 o9 3

Main features:

Can localize more sources than microphones (S > M)
Reconstruction for § > M not as straightforward (working on it)
Working on theoretical guarantees
Very good performance in practice
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Changes for the Better

HIGH SPEED VIDEO ACQUISITION

© MERL Oct 18, 2012
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Changes for the Better

Time Aliasing in Video Acquisition

Each frame integrates light (signal) over time and samples
High frequency information is lost.
~_N\ ~_N\
AANTAD ANV S WA WA
- v V V4 V4 V4 V
= Frame Duration = 40ms

T

Frame

- fMax fS/2 = Sampling Frequency/2 Max
© MERL Oct 18, 2012
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Changes for the Better

Time Domain Coded Stl'Obil‘lg [w/ Asif, Reddy, Veeraraghavan]

Solution: use a coded aperture to modulate the integration

0\Iz0- zﬂ\ 0

JDMJD

<
T

Erame= Frame Duratlon = 40ms

Alls
v

VAN

Camera acquisition (i.e., sampling/recording) still at slow rate

Math model similar to random demodulator (0/1 instead of +/-1)

Incoherent with frequency-sparse signals

© MERL Oct 18, 2012
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Changes for the Better

Observation Model

3 4
Frame 1 ( 01000 h ;
B | = | Coves pEmO D <
| - Strobing
i 00 [ =
Frame M ["] ~
\ J - Frame Integration J ;t
Period T 5
Observed
Intensity Sianal i
igna
_ <
y = A X
\

Represents 1-pixel location of the video
Same A for all pixels
Assume video is locally periodic (sparse in frequency)
Nearby pixels have similar sparsity pattern
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Changes for the Better

Example: Crest Toothbrush Video

Crest pixel

1
g i
o 0.8 @
3 2
= 06 =
o &
N04. =
© —— L
g 0.2 =
s

v 500 1000 1500 1 0.5 0 05

Time Normalized frequency
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Changes for the Better

Reconstructed Video

y

9x Undersampling 10x Undersampling

s s

15x Undersampling 20x Undersampling

Questions/Comments?

http://boufounos.com http://dsp.rice.edu/cs
petrosb@merl.com http://nuit-blanche.blogspot.com/
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