



# MITSUBISHI ELECTRIC RESEARCH LABORATORIES Cambridge, Massachusetts

## **Compressive Sensing in Practice**

### **Petros Boufounos**

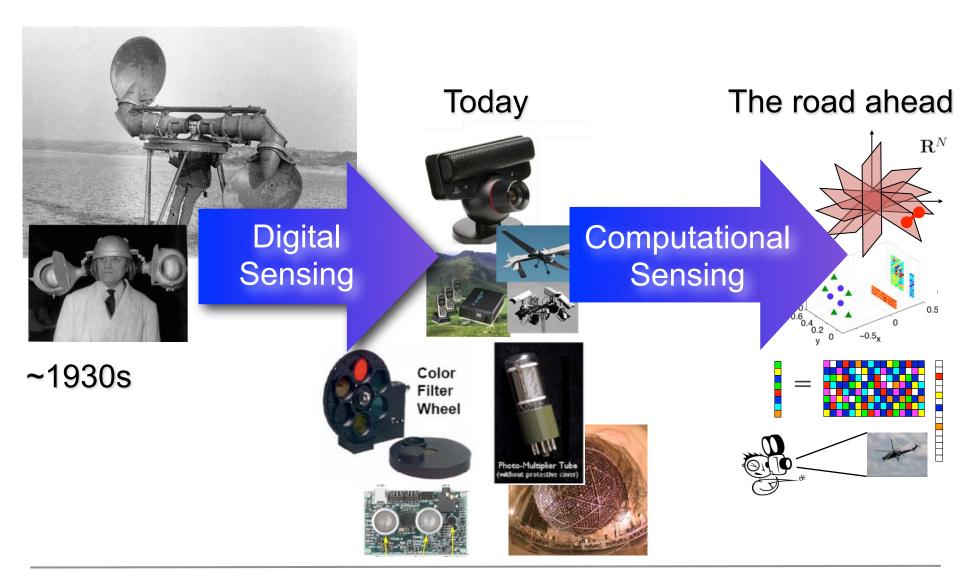
petrosb@merl.com

Oct 18, 2012





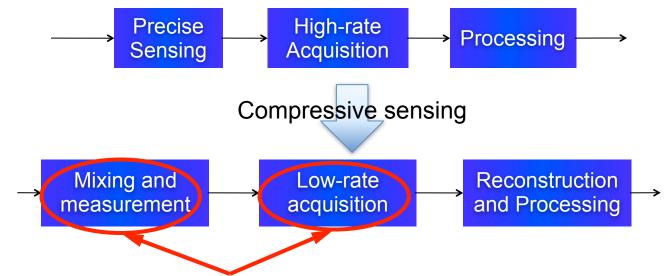
## **Evolution of Sensing**







### **Sensing Pipeline Paradigm Change**



Goal: exploit mixing to simplify sensor or improve sensor specifications (e.g., sensor speed, A/D conversion rate, measured bandwidth/resolution)

- Compressive sensing has significantly improved our sensing capability
- Two fundamental Compressive Sensing research aspects
  - Hardware modifications for efficient acquisition
  - Signal/scene models and reconstruction algorithms



#### MITSUBISHI ELECTRIC RESEARCH LABORATORIES



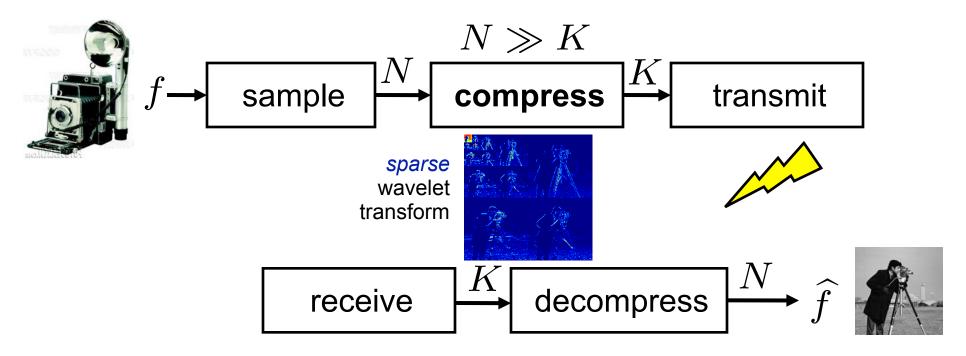
### **CS AT A GLANCE**





## **Sensing by Sampling**

- Long-established paradigm for digital data acquisition
  - sample data (A-to-D converter, digital camera, ...)
  - compress data (signal-dependent, nonlinear)
  - bottleneck to performance of modern acquisition systems

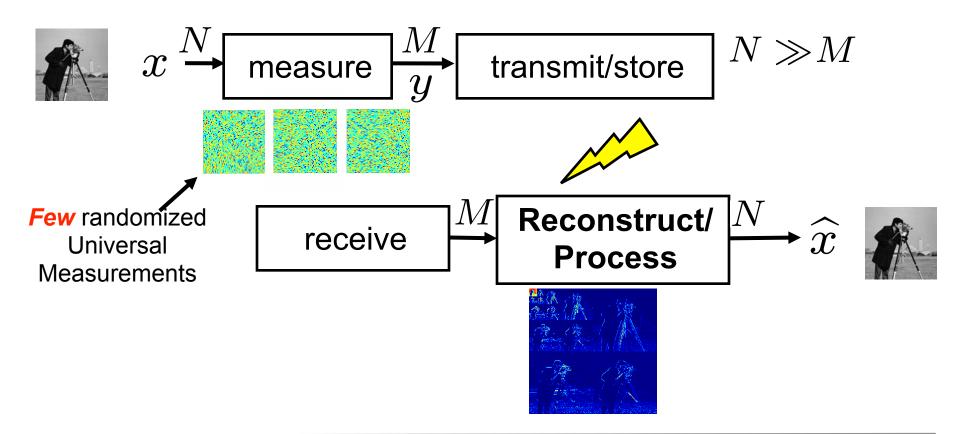






### Compressive Sensing (CS) [Candés, Romberg, Tao; Donoho]

- New signal acquisition method
  - Samples and compresses in one simple step
  - Uses computation to reconstruct signal







## **Signal Structure: Sparsity**

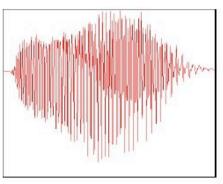
 $N \\ {\sf pixels}$ 

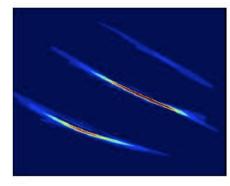




 $K \ll N$  large wavelet coefficients

N wideband signal samples



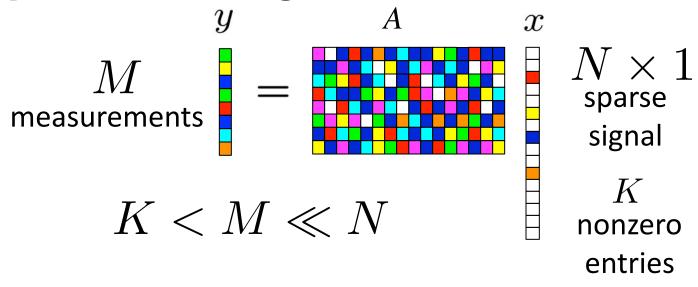


 $K \ll N$  large Gabor coefficients





### Compressed Sensing Measurement Model [Candes et al]



- x is K-sparse or K-compressible
- A random, satisfies a restricted isometry property (RIP)

A has RIP of order 2K with constant  $\delta$  If there exists  $\delta$  s.t. for all 2K-sparse x:

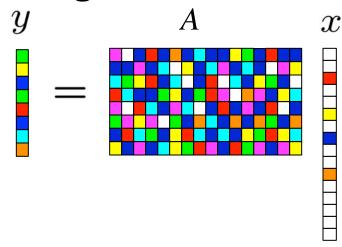
$$(1 - \delta) \|\mathbf{x}\|_2^2 \le \|\mathbf{A}\mathbf{x}\| \le (1 + \delta) \|\mathbf{x}\|_2^2$$

- $M=O(K\log N/K)$
- $m{eta}$  A also has small *coherence*  $\mu riangleq \max_{i 
  eq j} |\langle \mathbf{a}_i, \mathbf{a}_j 
  angle|$





### Compressed Sensing Measurement Model [Candes et al]



- *x* is *K*-sparse or *K*-compressible
- A random, satisfies a restricted isometry property (RIP)

A has RIP of order 2K with constant  $\delta$  If there exists  $\delta$  s.t. for all 2K-sparse x:

$$(1 - \delta) \|\mathbf{x}\|_2^2 \le \|\mathbf{A}\mathbf{x}\| \le (1 + \delta) \|\mathbf{x}\|_2^2$$

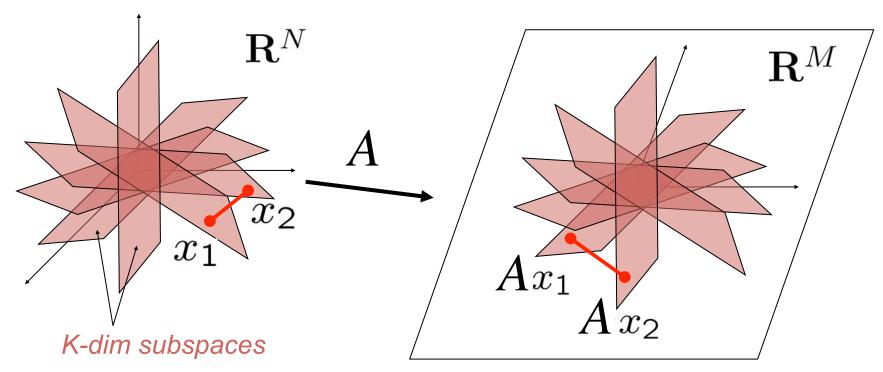
- $M=O(K\log N/K)$
- A also has small coherence  $\mu riangleq \max_{i 
  eq j} |\langle \mathbf{a}_i, \mathbf{a}_j 
  angle|$





### **RIP/Stable Embedding**

• An information preserving projection A preserves the geometry of the set of sparse signals



Restricted Isometry Property

$$(1 - \delta)\|x\|_2^2 \le \|Ax\|_2^2 \le (1 + \delta)\|x\|_2^2$$

#### MITSUBISHI ELECTRIC RESEARCH LABORATORIES



### **CS RECONSTRUCTION**





### **CS** Reconstruction

- Reconstruction using sparse approximation:
  - Find sparsest x such that  $y \approx Ax$

$$\widehat{\mathbf{x}} = \arg\min_{\mathbf{x}} \|\mathbf{x}\|_{\mathbf{0}} \text{s.t. } \mathbf{y} \approx \mathbf{A}\mathbf{x}$$

- Convex optimization approach:
  - Minimize  $l_1$  norm: e.g.,

$$\widehat{\mathbf{x}} = \arg\min_{\mathbf{x}} \|\mathbf{x}\|_{1}^{\mathsf{y}} \text{ s.t. } \mathbf{y} \approx \mathbf{A}\mathbf{x}$$

- Greedy algorithms approach:
  - Minimize  $\|\mathbf{y} \mathbf{A}\mathbf{x}\|_2$  such that  $\mathbf{x}$  is sparse

$$\widehat{\mathbf{x}} = \arg\min_{\mathbf{x}} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2 \text{ s.t. } \|\mathbf{x}\|_0 \le K$$

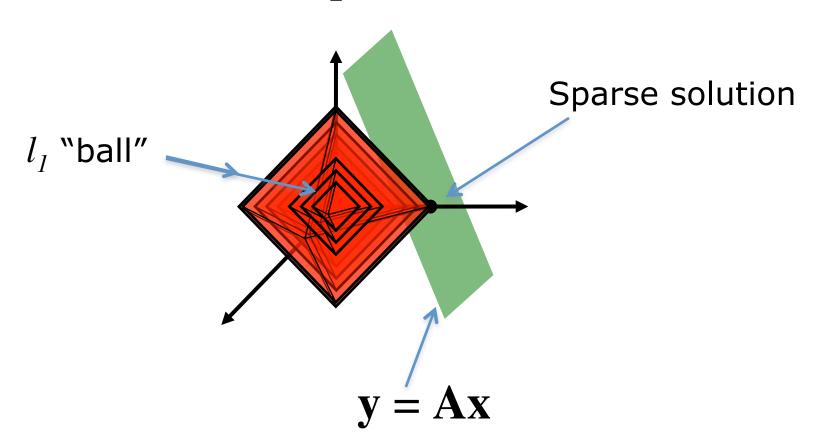
- MP, OMP, ROMP, StOMP, CoSaMP, ...
- AndrewMP, PYAMP (Pick Your Acronym Matching Pursuit)





## Why $l_1$ relaxation works

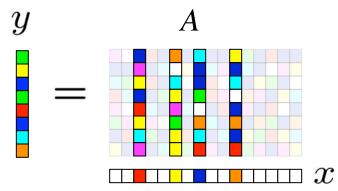
min  $\|\mathbf{x}\|_1$  s.t.  $\mathbf{y} \approx \mathbf{A}\mathbf{x}$ 







### **Greedy Pursuits Core Idea**



- y highly correlated with A at locations where x is high
- A<sup>T</sup>y provides a good idea of these locations
  - This is why low coherence is important

$$\mu \triangleq \max_{i \neq j} |\langle \mathbf{a}_i, \mathbf{a}_j \rangle|$$

-  $A^Ty$  referred to as proxy for x. It is also the gradient of  $||y-Ax||_2^2$ .

$$\widehat{\mathbf{x}} = \arg\min_{\mathbf{x}} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2 \text{ s.t. } \|\mathbf{x}\|_0 \le K$$

- General Strategy:
  - Identify locations
  - Invert the system only on those locations

#### MITSUBISHI ELECTRIC RESEARCH LABORATORIES



#### **SPARSITY-CONSTRAINED FUNCTION MINIMIZATION**





#### **Problem Formulation**

$$\mathbf{x}^* = \arg\min_{\mathbf{x}} f(\mathbf{x}) \text{ s.t. } ||\mathbf{x}||_0 \le K$$

Objective: minimize an arbitrary cost function

#### Applications:

- Sparse logistic regression
- Quantized and saturation-consistent Compressed Sensing
- De-noising and Compressed Sensing with non-gaussian noise models

#### Questions:

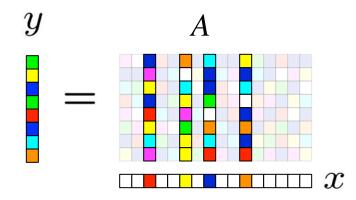
- What algorithms can we use?
- What functions can we minimize?
- What are the **conditions** on f(x)?
- What guarantees can we provide?





## **Commonalities in Sparse Recovery Algorithms**

- Most greedy and  $l_1$  algorithms have several common steps:
  - Maintain a current estimate
  - Compute a residual
  - Compute a gradient, proxy, correlation, or some other name
  - Update estimate based on proxy
  - Prune (soft or hard threshold)
  - Iterate
- Key step: proxy/correlation A<sup>T</sup>(y-Ax)
  - This is the **gradient** of  $f(\mathbf{x}) = \|\mathbf{y} \mathbf{A}\mathbf{x}\|_{2}^{2}$
  - Can we substitute it with the general gradient  $\nabla f(\mathbf{x})$ ?



#### **YES**

We can provide **strong guarantees!**We can generalize the **RIP!** 

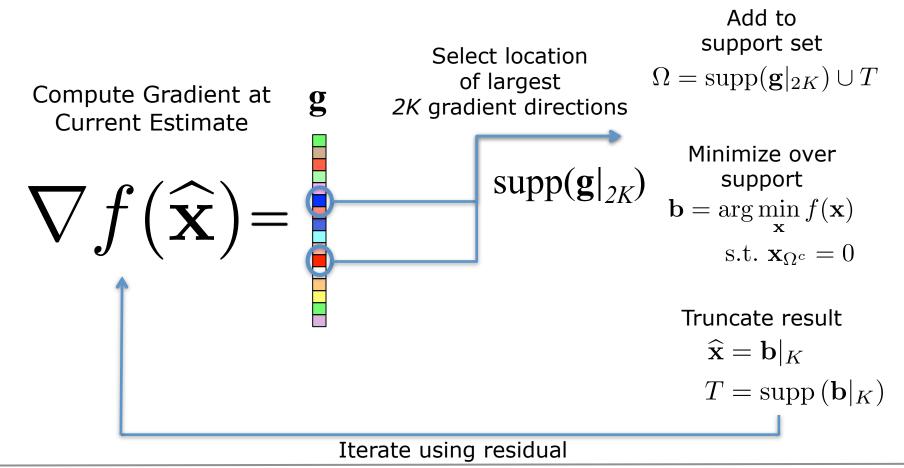




## GraSP (Gradient Subspace Purŝuit) [w/ Bahmani, Raj]

**State Variables:** Signal estimate, **x** support estimate: *T* 

Initialize estimate and support:  $\hat{\mathbf{x}}=0$ ,  $T=\sup(\hat{\mathbf{x}})$ 

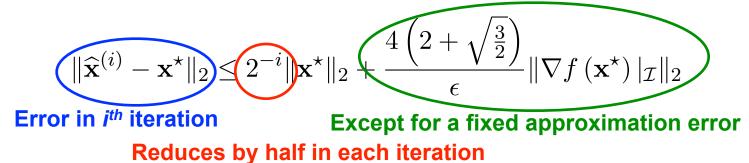






## **GraSP Properties**

Iteration Guarantee:



- Connections to Compressive Sensing
  - CS uses  $f(x) = ||y-Ax||_2^2$
  - General conditions on f(x) (SHP) that reduce to the RIP
  - GraSP reduces to CoSaMP
  - Reconstruction guarantees reduce to classical CS guarantees

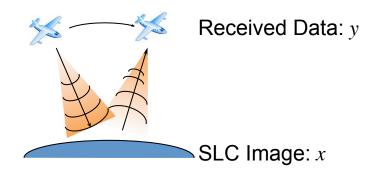


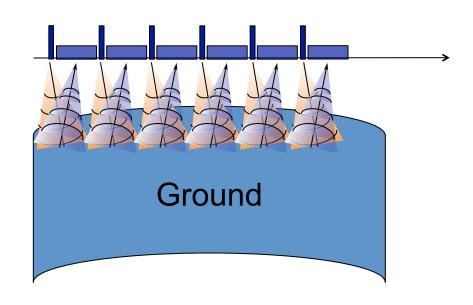
### **SYNTHETIC APERTURE RADAR**





### **SAR Acquisition Model**





## SAR Acquisition Linear Equation: y = A x

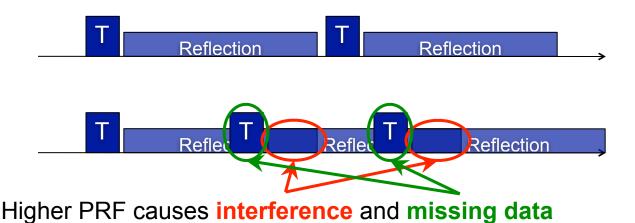
- SAR Acquisition follows linear model
- Acquisition function (A) determined by SAR parameters
  - Pulse shape/rate
  - Doppler bandwidth (beamwidth)
  - Moving platform trajectory
- Image formation: given y determine x.

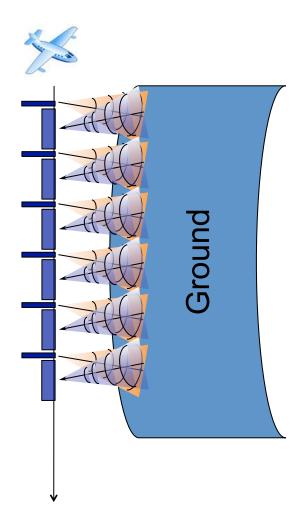




## **Classical SAR pulse timing**

- SAR beamwidth (Doppler bandwidth) dictates azimuth resolution
  - The higher the bandwidth, the better.
- Higher Doppler bandwidth requires higher PRF
- Reflection duration depends on range length
  - Reflection interference limits maximum PRF
  - Increasing PRF reduces the range we can image

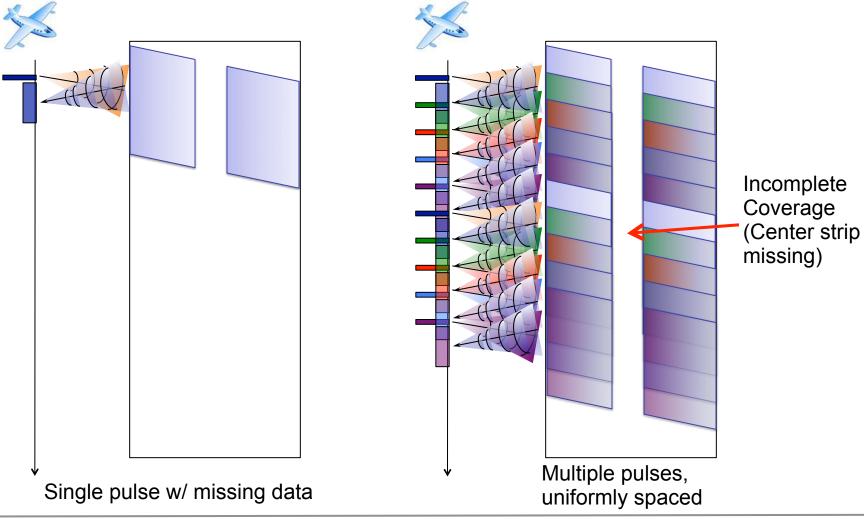








## **Ground Coverage: Uniform Pulsing, High PRF**

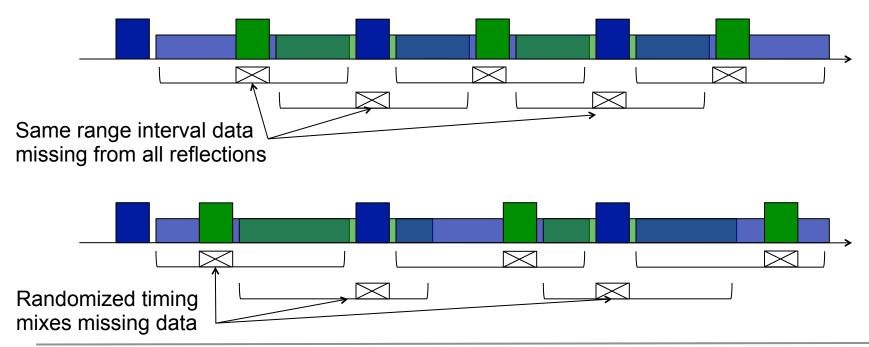






### SAR pulsing and timing [w/ Liu]

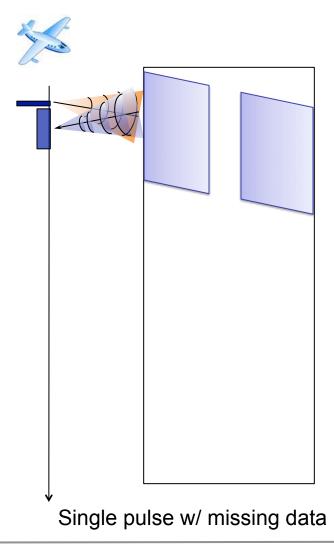
- Issue: missing data always in the same range interval
  - Produces black spots in the image
  - Even robust algorithms cannot fill in with such pattern of missing data
  - Ideally, missing data should be in different interval for every azimuth line
- Solution: Randomized pulsing interval

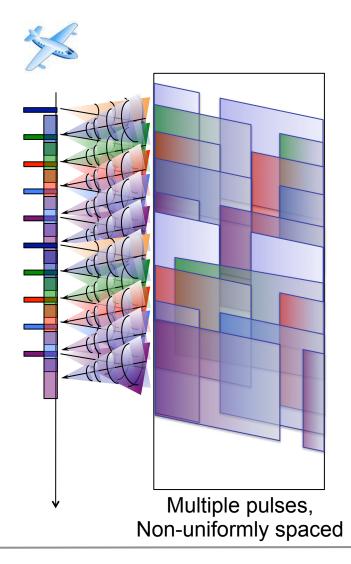






## **Ground Coverage: Random Pulsing, High PRF**

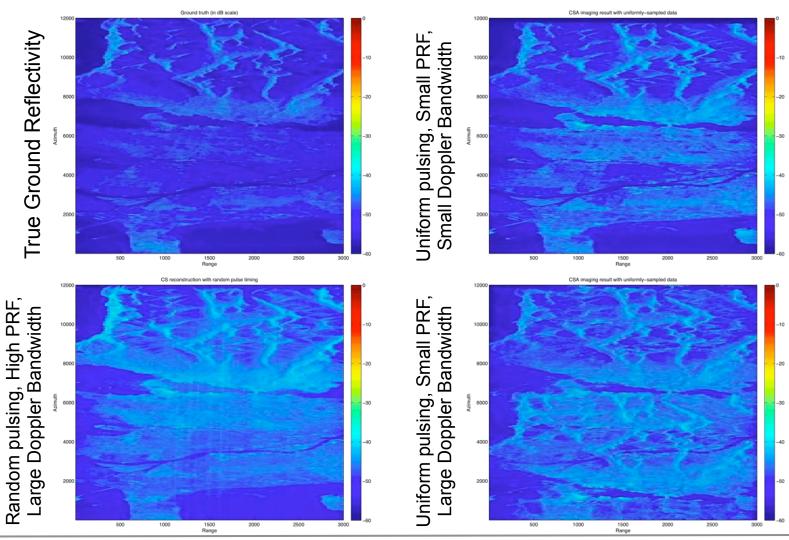








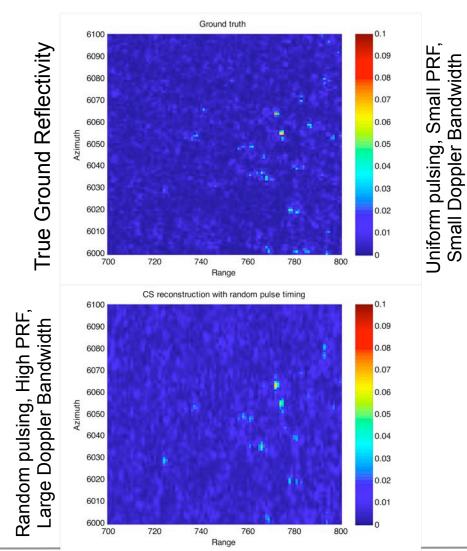
### **Simulation results**

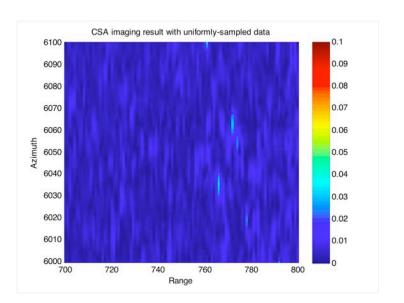






### **Simulation results**

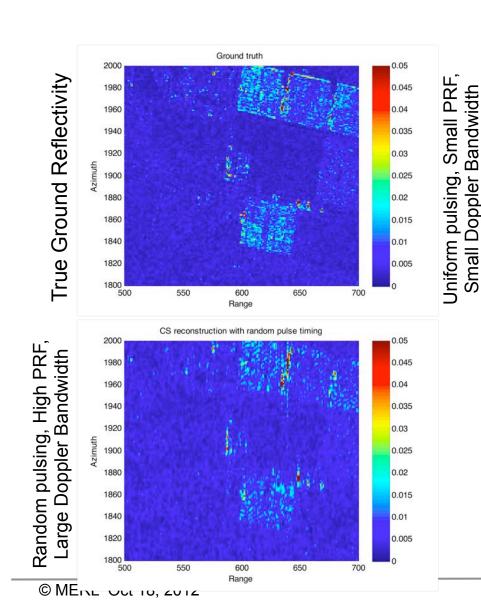


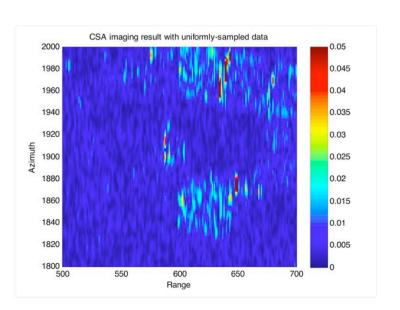






### **Simulation results**







#### MITSUBISHI ELECTRIC RESEARCH LABORATORIES



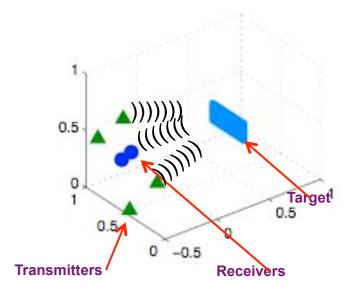
### **DEPTH SENSING**





## **Depth Sensing**

- Coherent Active Depth Sensing
  - Ultrasonic, mmWave, other modalities
- Goal: Illuminate the scene and sense reflections



## **Scene Reflectivity**

Everything in front of target is zero

Everything **behind target** invisible (i.e. **zero**)

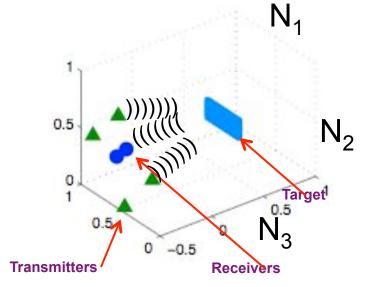
# Scene is sparse!





## **Depth Sensing**

- Coherent Active Depth Sensing
  - Ultrasonic, mmWave, other modalities
- Goal: Illuminate the scene and sense reflections



#### **Discretization**

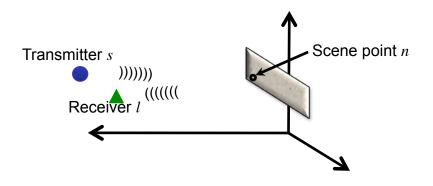
Scene Size:  $N = N_1xN_2xN_3$ (# of gridpoints in scene)

Sparsity:  $K \le N_1 \times N_2 < N$ 

# Scene is sparse!



### **Modeling**



Reflectivity of scene point n (signal of interest):  $x_n$ Pulse transmitted by transmitter s (freq. domain):  $P_{s,f}$ Signal received by receiver l (freq. domain):  $R_{l,f}$ Distance of transmitter s to scene point n:  $d_{s,n}$ Distance of receiver l to scene point n:  $d_{n,l}$ Speed of sound: cTime delay for distance d: cTime delay from s to l through n: c

S transmitters, L receivers, N scene points (scene discretized), F transmitted frequencies

**Propagation equation:** 
$$R_{l,f} = \sum_{n} \left( \sum_{s} P_{s,f} e^{-j\omega_f au_{s,l,m}} \right) x_n$$

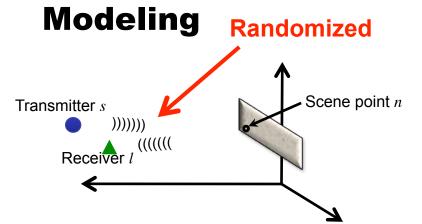
Discretizing in Frequency and converting to matrix form:

$$\mathbf{r} = \begin{bmatrix} R_{1,1} \\ \vdots \\ R_{1,F} \\ \vdots \\ R_{l,f} \\ \vdots \\ R_{L,1} \\ \vdots \\ R_{L,F} \end{bmatrix} \qquad \mathbf{A} = \begin{bmatrix} \sum_s P_{s,1} e^{-j\omega_1\tau_{s,1,1}} & \cdots & \sum_s P_{s,1} e^{-j\omega_1\tau_{s,1,N}} \\ \vdots & \ddots & \vdots \\ \sum_s P_{s,F} e^{-j\omega_F\tau_{s,1,1}} & \cdots & \sum_s P_{s,F} e^{-j\omega_F\tau_{s,1,N}} \\ \vdots & \ddots & \vdots \\ \sum_s P_{s,f} e^{-j\omega_f\tau_{s,l,1}} & \cdots & \sum_s P_{s,f} e^{-j\omega_f\tau_{s,l,N}} \\ \vdots & \ddots & \vdots \\ \sum_s P_{s,1} e^{-j\omega_1\tau_{s,L,1}} & \cdots & \sum_s P_{s,1} e^{-j\omega_1\tau_{s,L,N}} \\ \vdots & \ddots & \vdots \\ \sum_s P_{s,F} e^{-j\omega_F\tau_{s,L,1}} & \cdots & \sum_s P_{s,F} e^{-j\omega_F\tau_{s,L,N}} \end{bmatrix} \qquad \mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix}$$

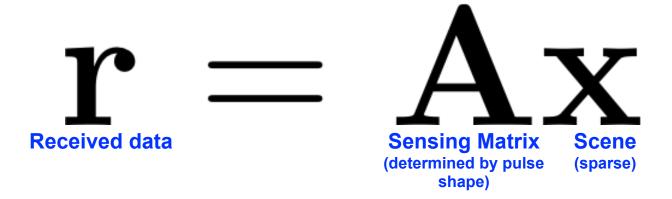


#### MITSUBISHI ELECTRIC RESEARCH LABORATORIES





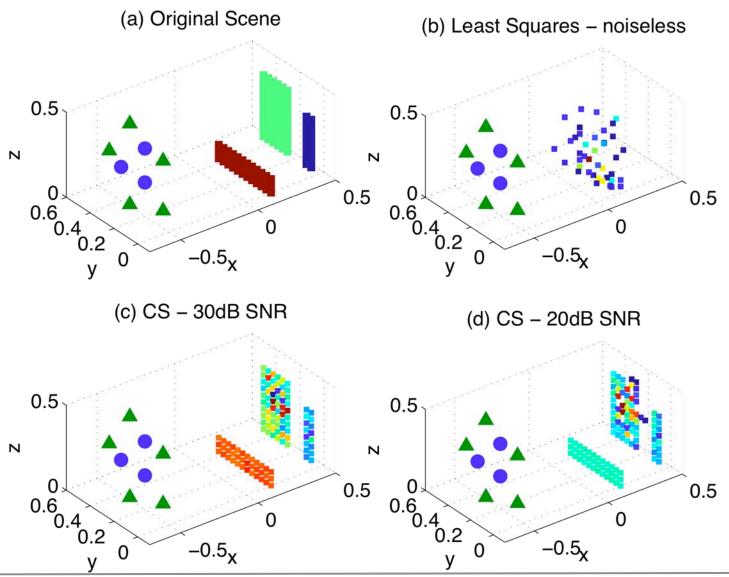
S transmitters, L receivers, N scene points (scene discretized), F transmitted frequencies







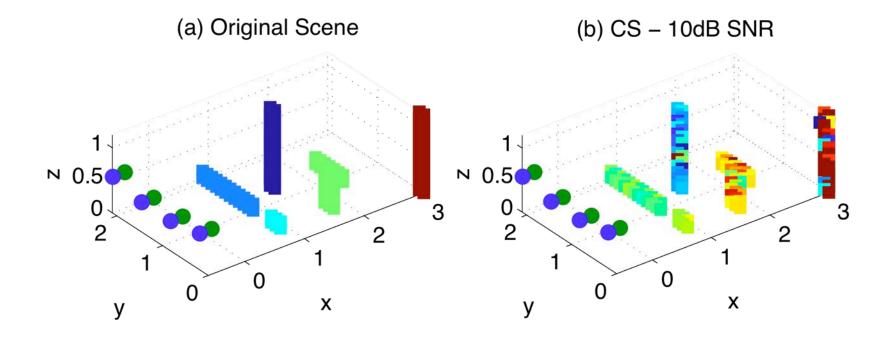
## **Simulation Results: Ultrasonic Array**





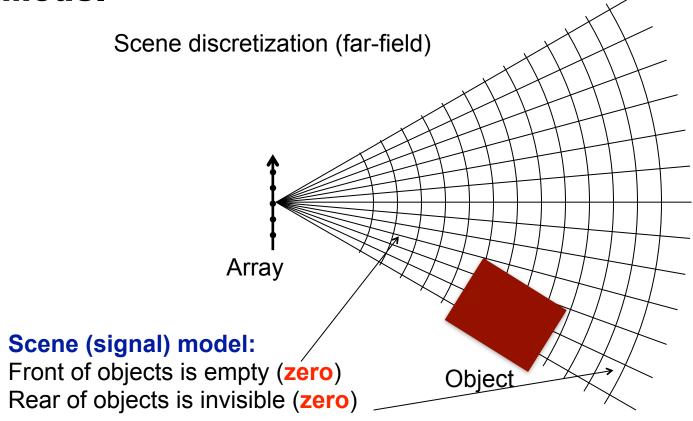


# **Simulation Results: Virtual Array**





## **Signal Model**



Q: Can we exploit the scene model beyond sparsity?

A: YES! Model Based Compressed Sensing [Baraniuk et. al.]





## **Model Based Compressed Sensing**

- Model-based Compressed Sensing [Baraniuk et. al.]
  - Enables model-based reconstruction
  - Modifies existing greedy CS algorithms such as CoSaMP
  - Provides theoretical analysis
- Fundamental operation: Model-based Thresholding
  - Replaces hard thresholding in standard algorithms
  - Enforces model instead of simple sparsity
- Challenge: Determine appropriate thresholding operation





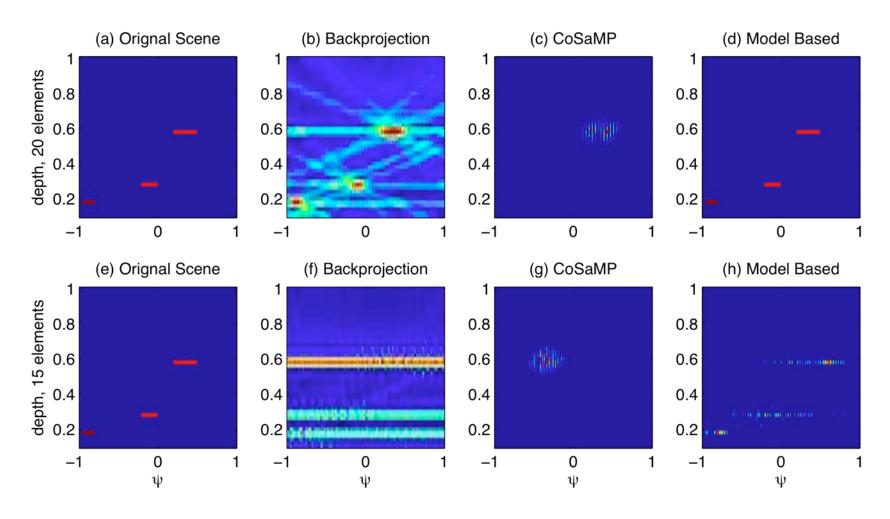
## **Example: mmWave Radar Simulation**

- Operating Frequency: 76-77GHz
  - (Specs from: <a href="http://www.mitsubishielectric.com/bu/automotive/advanced-technology/pdf/vol94-tr5.pdf">http://www.mitsubishielectric.com/bu/automotive/advanced-technology/pdf/vol94-tr5.pdf</a>)
- Simulation in 2D-field (easier to visualize results)
  - Assuming uniform linear array
  - We expect 3D results to be similar
- Compared three approaches
  - Classical backprojection (beamforming)
  - Standard Compressive Sensing
  - Model-based Compressive Sensing





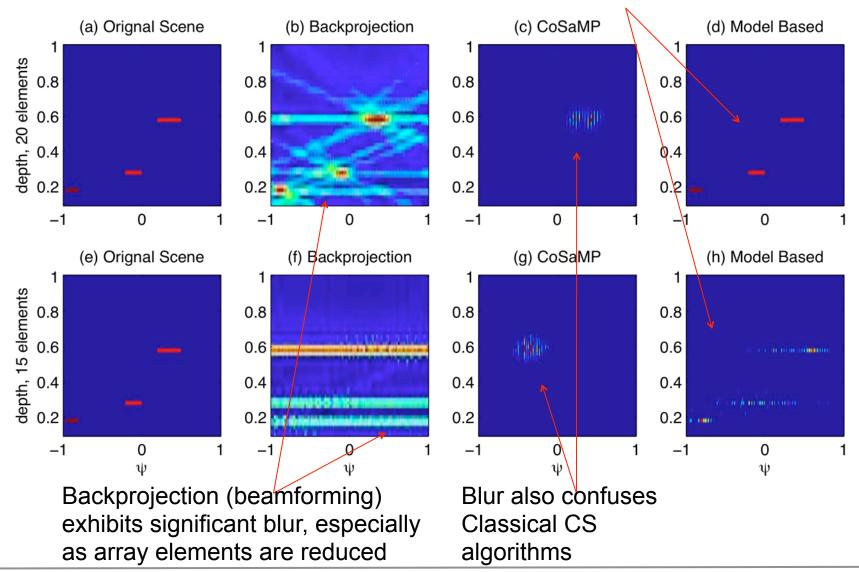
#### Simulation results - mmWave radar





## **Simulation results**

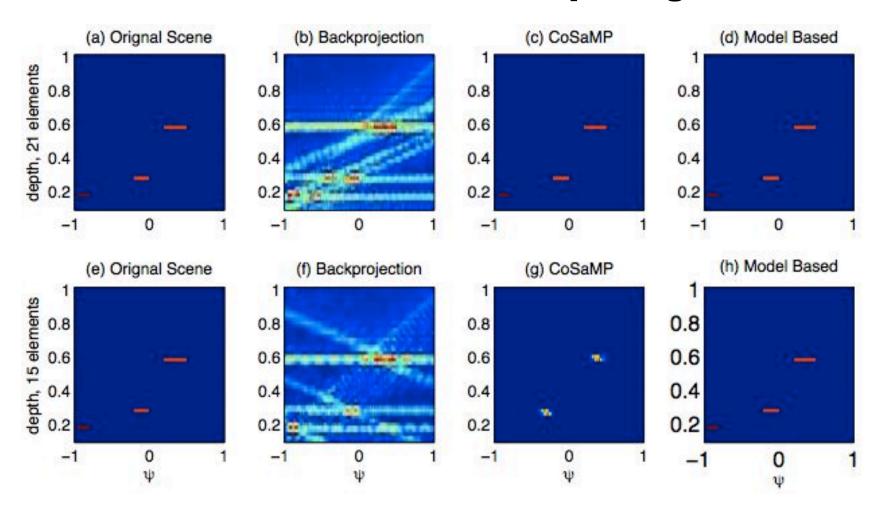
Model enforcement improves reconstruction significantly, even with significant blur







## Simulation results - randomized spacing







## Simulation results - randomized spacing



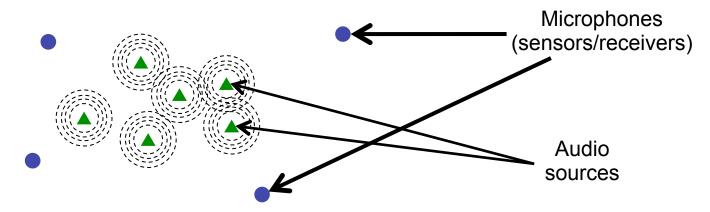


#### **MICROPHONE ARRAYS**



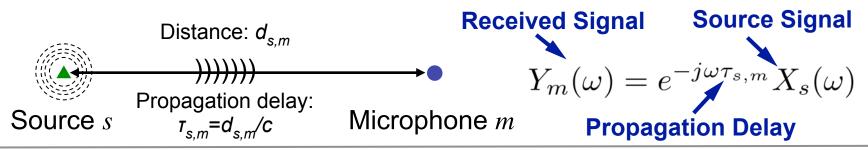


#### Problem at a Glance [w/ Raj, Smaragdis]



- Sources and sensors are wideband (e.g., audio)
- Few sources; source signals not known but broadband
- Sensor location is known

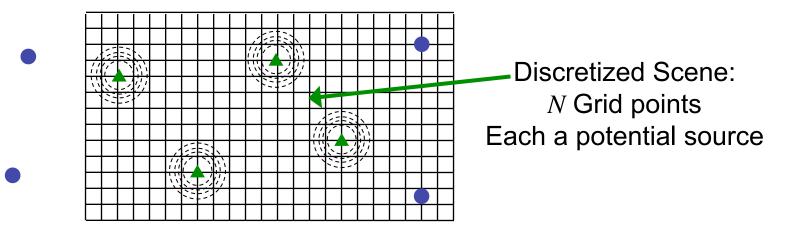
## **Frequency-Domain Transmission Equation:**







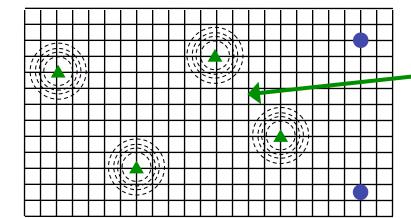
## **System Model**



- Discrete grid of scene and potential source locations
- N Grid points, any could be a source location
- Scene sparsity: S actual sources
- M microphones (sensors); can be in/out/on/off the grid
- Sensor geometry assumed known
- Distances and delays can be calculated



## System Model



Discretized Scene: N Grid points Each a potential source

$$\mathbf{Y}(\omega) = \left[ \begin{array}{c} Y_1(\omega) \\ \vdots \\ Y_M(\omega) \end{array} \right]$$

$$\mathbf{X}(\omega) = \left[ \begin{array}{c} X_1(\omega) \\ \vdots \\ X_N(\omega) \end{array} \right]$$

$$\mathbf{Y}(\omega) = \begin{bmatrix} Y_{1}(\omega) \\ \vdots \\ Y_{M}(\omega) \end{bmatrix} \quad \mathbf{X}(\omega) = \begin{bmatrix} X_{1}(\omega) \\ \vdots \\ X_{N}(\omega) \end{bmatrix}$$

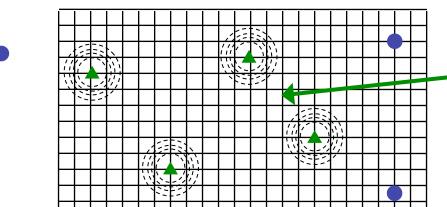
$$\mathbf{A}(\omega) = \begin{bmatrix} e^{-j\omega\tau_{1,1}} & \cdots & e^{-j\omega\tau_{1,N}} \\ \vdots & \ddots & \vdots \\ e^{-j\omega\tau_{M,1}} & \cdots & e^{-j\omega\tau_{M,N}} \end{bmatrix}$$

$$\mathbf{Y}(\omega) = \mathbf{A}(\omega)\mathbf{X}(\omega)$$

$$\mathbf{Y}(\omega) = \mathbf{A}(\omega)\mathbf{X}(\omega)$$



## **System Model**



Discretized Scene:
N Grid points
Each a potential source

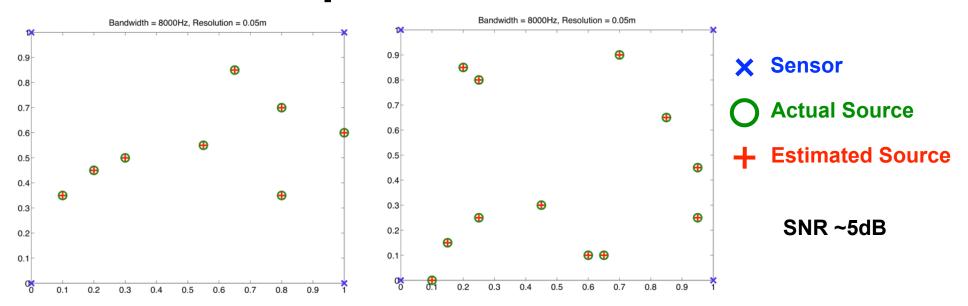
 $\mathbf{X}(\omega)$  is sparse: very few locations contain sources Sparsity pattern depends on source location only  $\mathbf{X}(\omega)$  has the same sparsity pattern for all  $\omega$ 

**Solution: Joint Sparsity Models** 





## **Simulation Examples**



#### Main features:

Can localize more sources than microphones (S > M)Reconstruction for S > M not as straightforward (working on it) Working on theoretical guarantees Very good performance in practice

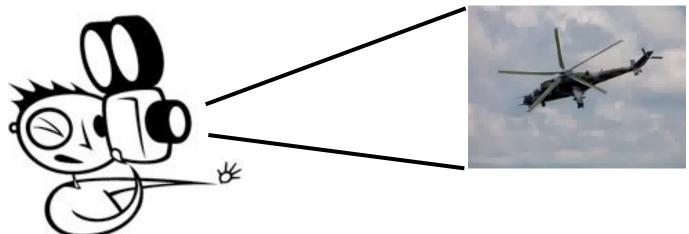


## **HIGH SPEED VIDEO ACQUISITION**



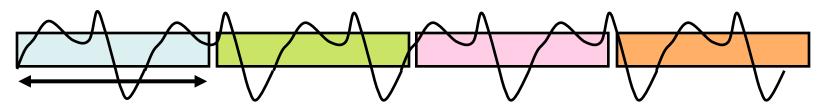


# **Time Aliasing in Video Acquisition**

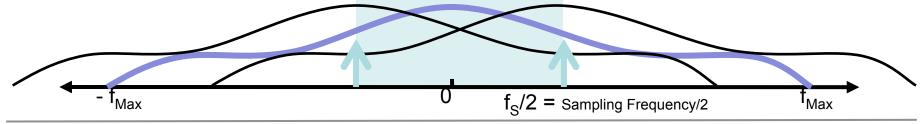


Each frame integrates light (signal) over time and samples

**High frequency** information is **lost**.



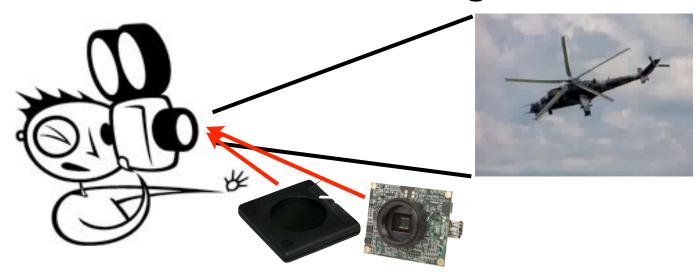
 $T_{Frame}$ = Frame Duration = 40ms



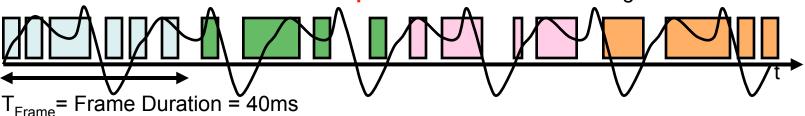




#### Time Domain Coded Strobing [w/ Asif, Reddy, Veeraraghavan]



Solution: use a coded aperture to modulate the integration



Camera acquisition (i.e., sampling/recording) still at slow rate

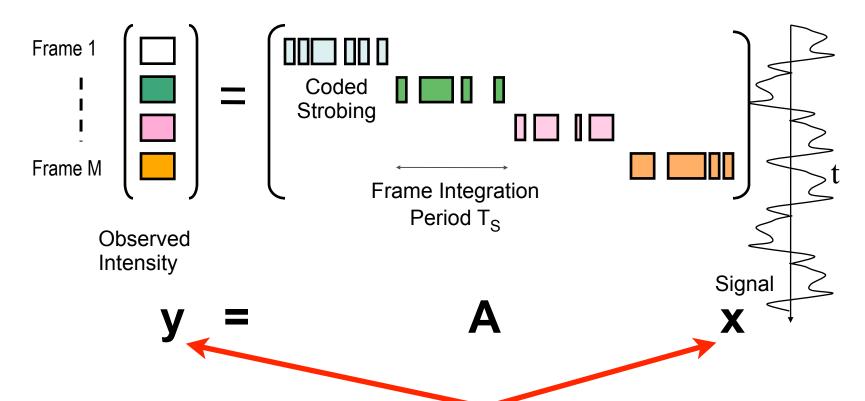
Math model similar to random demodulator (0/1 instead of +/-1)

Incoherent with **frequency-sparse signals** 





#### **Observation Model**



Represents 1-pixel location of the video Same **A** for all pixels

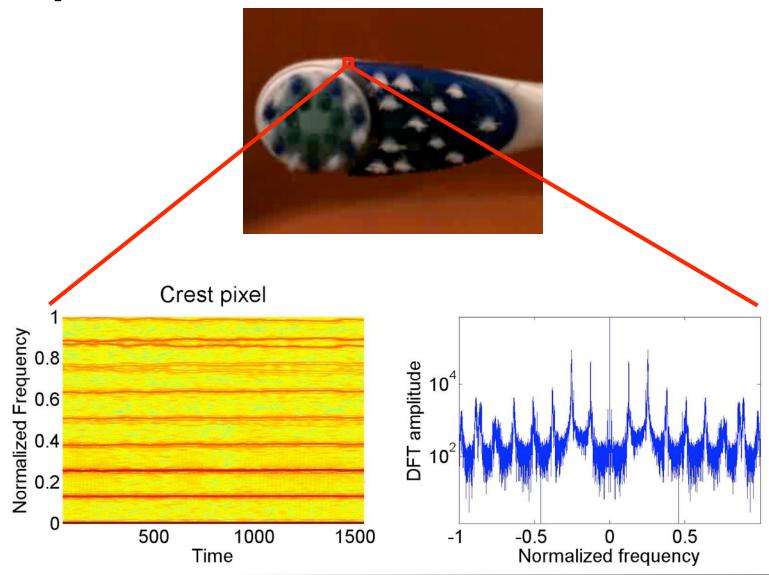
Assume video is locally periodic (sparse in frequency)

Nearby pixels have similar sparsity pattern





## **Example: Crest Toothbrush Video**







#### Reconstructed Video



5x Undersampling



10x Undersampling



15x Undersampling



20x Undersampling

# **Questions/Comments?**

http://boufounos.com petrosb@merl.com http://dsp.rice.edu/cs http://nuit-blanche.blogspot.com/