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Sensing Pipeline Paradigm Change

• Compressive sensing has significantly improved our sensing capability
• Two fundamental  Compressive Sensing research aspects

– Hardware modifications for efficient acquisition
– Signal/scene models and reconstruction algorithms

Precise 
Sensing

High-rate 
Acquisition Processing

Mixing and 
measurement

Low-rate 
acquisition

Reconstruction 
and Processing

Compressive sensing

Goal: exploit mixing to simplify sensor or improve sensor specifications 
(e.g., sensor speed, A/D conversion rate, measured bandwidth/resolution)
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CS AT A GLANCE
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Sensing by Sampling
• Long-established paradigm for digital data acquisition

– sample data   (A-to-D converter, digital camera, …) 
– compress data               (signal-dependent, nonlinear)
– bottleneck to performance of modern acquisition systems

compress transmit

receive decompress

sample

sparse
wavelet

transform
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• New signal acquisition method
– Samples and compresses in one simple step
– Uses computation to reconstruct signal

Compressive Sensing (CS) [Candés, Romberg, Tao; Donoho]

measure transmit/store

receive Reconstruct/
Process

Few randomized
Universal

Measurements
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Signal Structure: Sparsity

7



• x is K-sparse or K-compressible
• A random, satisfies a restricted isometry property (RIP)

• M=O(KlogN/K)
• A also has small coherence

K

M N × 1

K < M � N
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Compressed Sensing Measurement Model [Candes et al]
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Compressed Sensing Measurement Model [Candes et al]
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• x is K-sparse or K-compressible
• A random, satisfies a restricted isometry property (RIP)

• M=O(KlogN/K)
• A also has small coherence
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RIP/Stable Embedding

• An information preserving projection ! preserves the 
geometry of the set of sparse signals

K-dim subspaces

Restricted Isometry Property

A

A
A

A

A
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CS RECONSTRUCTION
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CS Reconstruction

• Reconstruction using sparse approximation:
– Find sparsest x such that y ! Ax

• Convex optimization approach:
– Minimize l1 norm: e.g.,

• Greedy algorithms approach:
– Minimize ||y - Ax||2 such that x is sparse

– MP, OMP, ROMP, StOMP, CoSaMP, …
– AndrewMP, PYAMP (Pick Your Acronym Matching Pursuit) 

�x = arg min
x
�x�0 s.t. y ≈ Ax

�x = arg min
x
�x�1 s.t. y ≈ Ax

�x = argmin
x

�y −Ax�2 s.t. �x�0 ≤ K
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Why l1 relaxation works

y = Ax

!*'/ x =//$9(9//y ! Ax

l1 “ball”

Sparse solution
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Greedy Pursuits Core Idea

• y highly correlated with A at locations where x is high
• ATy provides a good idea of these locations

– This is why low coherence is important

– ATy referred to as proxy for x. It is also the gradient of ||y-Ax||22.

• General Strategy: 
– Identify locations 
– Invert the system only on those locations

A

µ � max
i �=j

|�ai,aj�|

�x = argmin
x

�y −Ax�2 s.t. �x�0 ≤ K
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SPARSITY-CONSTRAINED FUNCTION MINIMIZATION



x∗ = arg min
x

f (x) s.t. �x�0 ≤ K
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Problem Formulation

• Objective: minimize an arbitrary cost function

• Applications:
– Sparse logistic regression
– Quantized and saturation-consistent Compressed Sensing
– De-noising and Compressed Sensing with non-gaussian noise models

• Questions:
– What algorithms can we use?
– What functions can we minimize?
– What are the conditions on f(x)?
– What guarantees can we provide?



© MERL  Oct 18, 2012

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Commonalities in Sparse Recovery Algorithms
• Most greedy and l1 algorithms have several common steps:

– Maintain a current estimate
– Compute a residual
– Compute a gradient, proxy, correlation, or some other name
– Update estimate based on proxy
– Prune (soft or hard threshold)
– Iterate

• Key step: proxy/correlation AT(y-Ax)
– This is the gradient of f(x)=‖y-Ax‖₂"
– Can we substitute it with the general gradient !f(x)?

A

YES
We can provide strong guarantees!

We can generalize the RIP!
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GraSP (Gradient Subspace Pursuit) [w/ Bahmani, Raj]

∇f(�x)

gCompute Gradient at
Current Estimate

Iterate using residual

Select location 
of largest 

2K gradient directions

supp(g|2K)

State Variables: Signal estimate, x support estimate: T

Initialize estimate and support: x=0, T=supp(x)ˆˆ

ˆ

Ω = supp(g|2K) ∪ T

b = arg min
x

f(x)

s.t. xΩc = 0

Add to 
support set

Truncate result

Minimize over
support

�x = b|K
T = supp (b|K)
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GraSP Properties

• Iteration Guarantee:

• Connections to Compressive Sensing
– CS uses f(x)=‖y-Ax‖₂!  
– General conditions on f(x) (SHP) that reduce to the RIP
– GraSP reduces to CoSaMP
– Reconstruction guarantees reduce to classical CS guarantees

3.3 Main Theorems

Now we can state our main results regarding approximation of

x� = argmin f(x) s.t. �x�0 ≤ s, (7)

using the GraSP algorithm.

Theorem 1. Suppose that f is a twice continuously differentiable function that has µ4s-

SRH with µ4s ≤
�

3
2 . Furthermore, suppose that for some � > 0 we have � ≤ B4s (u) for all

u. Then �x(i)
, the estimate at the i-th iteration, satisfies

��x(i) − x��2 ≤ 2−i�x��2 +
4
�
2 +

�
3
2

�

�
�∇f (x�) |I�2,

where I is the position of the 3s largest entries of ∇f (x�) in magnitude.

Remark 6. Note that this result indicates that ∇f (x�) determines how accurate the es-
timate can be. In particular, if the sparse minimum x� is sufficiently close to an uncon-
strained minimum of f then the estimation error floor is negligible because ∇f (x�) has
small magnitude. This result is analogous to accuracy guarantees for estimation from noisy
measurements in CS (Candès et al., 2006; Needell and Tropp, 2009).

Remark 7. As the derivations required to prove Theorem 1 show the provided accuracy
guarantee holds for any s-sparse x� even if it does not obey (7). Obviously, for arbitrary
choices of x� the ∇f (x�) |I may have a large norm that cannot be bounded properly which
implies large errors. In statistical estimation problems, often the true parameter that de-
scribes the data is chosen as the target parameter x� rather than the minimizer of the
average loss function as in (7). In these problems, the approximation error �∇f (x�) |I�2
has statistical interpretation and can determine the statistical precision of the problem.
This property is easy to verify in linear regression problems. We will also show this for the
logistic loss as an example in §4.

Nonsmooth cost functions should be treated differently, since we do not have the luxury
of working with Hessian matrices for these type of functions. The following theorem provides
guarantees that are similar to those of Theorem 1 for nonsmooth cost functions that satisfy
the SRL condition.

Theorem 2. Suppose that f is a function that is not necessarily smooth, but it satisfies

µ4s-SRL with µ4s ≤ 1+
√

3/2
2 . Furthermore, suppose that for β4s (·) in Definition 3 there

exists some � > 0 such that β4s (x) ≥ � holds for all 4s-sparse vectors x. Then �x(i)
, the

estimate at the i-th iteration, satisfies

��x(i) − x��2 ≤ 2−i�x��2 +
4
�
2 +

�
3
2

�

�
�∇f (x

�) |I�2,

where I is the position of the 3s largest entries of ∇f (x�) in magnitude.

10

Error in ith iteration
Reduces by half in each iteration

Except for a fixed approximation error
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SYNTHETIC APERTURE RADAR
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SAR Acquisition Model

• SAR Acquisition follows linear model
• Acquisition function (A) determined by SAR parameters

– Pulse shape/rate
– Doppler bandwidth (beamwidth)
– Moving platform trajectory

• Image formation: given y determine x.

SLC Image: x

Received Data: y

SAR Acquisition Linear Equation: y = A x

Ground
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Classical SAR pulse timing
• SAR beamwidth (Doppler bandwidth) dictates azimuth resolution

– The higher the bandwidth, the better.

• Higher Doppler bandwidth requires higher PRF

• Reflection duration depends on range length
– Reflection interference limits maximum PRF
– Increasing PRF reduces the range we can image

22

G
ro

un
d

Higher PRF causes interference and missing data

T Reflection T Reflection

T ReflectionT ReflectionT Reflection
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Ground Coverage: Uniform Pulsing, High PRF

23

Single pulse w/ missing data
Multiple pulses, 
uniformly spaced

Incomplete 
Coverage
(Center strip 
missing)
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SAR pulsing and timing [w/ Liu]

• Issue: missing data always in the same range interval
– Produces black spots in the image
– Even robust algorithms cannot fill in with such pattern of missing data
– Ideally, missing data should be in different interval for every azimuth line

• Solution: Randomized pulsing interval

Same range interval data
missing from all reflections

Randomized timing 
mixes missing data
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Ground Coverage: Random Pulsing, High PRF

25

Single pulse w/ missing data
Multiple pulses, 

Non-uniformly spaced
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Simulation results
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Simulation results
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DEPTH SENSING
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Depth Sensing

• Coherent Active Depth Sensing
• Ultrasonic, mmWave, other modalities

• Goal: Illuminate the scene and sense reflections

Transmitters Receivers

Target

)))))))
Scene Reflectivity

Everything in front of target is zero 

Everything behind target invisible (i.e. zero)

((((((
(

))))
)))

Scene is sparse!
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Depth Sensing

• Coherent Active Depth Sensing
• Ultrasonic, mmWave, other modalities

• Goal: Illuminate the scene and sense reflections

Transmitters Receivers

Target

)))))))
((((((

(

))))
)))

Scene is sparse!

Discretization

Scene Size:        N = N1xN2xN3

 (# of gridpoints in scene)

Sparsity:             K"N1xN2<N

N1

N2

N3
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Modeling

5

)))))))

)))))))

Transmitter s

Receiver l

Scene point n
Reflectivity of scene point n (signal of interest): xn

Pulse transmitted by transmitter s (freq. domain): Ps,f

Signal received by receiver l (freq. domain): Rl,f

Distance of transmitter s to scene point n: ds,n
Distance of receiver l to scene point n: dn,l

Speed of sound: c
Time delay for distance d: d/c
Time delay from s to l through n:  !s,l,n=(ds,n + dn,l)/c

Propagation equation:

Discretizing in Frequency and converting to matrix form:

S transmitters, L receivers, N scene points (scene discretized), F transmitted frequencies
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Modeling

6

)))))))

)))))))

Transmitter s

Receiver l

Scene point n
Reflectivity of scene point n (signal of interest): xn

Pulse transmitted by transmitter s (freq. domain): Ps,f

Signal received by receiver l (freq. domain): Rl,f

Distance of transmitter s to scene point n: ds,n
Distance of receiver l to scene point n: dn,l

Speed of sound: c
Time delay for distance d: d/c
Time delay from s to l through n:  !s,l,n=(ds,n + dn,l)/c

Received data Sensing Matrix
(determined by pulse 

shape)

Scene
(sparse)

S transmitters, L receivers, N scene points (scene discretized), F transmitted frequencies

Randomized



© MERL  Oct 18, 2012

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

Simulation Results: Ultrasonic Array

18
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Simulation Results: Virtual Array

19
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Signal Model

Array

Scene discretization (far-field)

Object
Scene (signal) model: 
Front of objects is empty (zero)
Rear of objects is invisible (zero)

Q: Can we exploit the scene model beyond sparsity?
A: YES! Model Based Compressed Sensing [Baraniuk et. al.]
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Model Based Compressed Sensing

• Model-based Compressed Sensing [Baraniuk et. al.]
– Enables model-based reconstruction
– Modifies existing greedy CS algorithms such as CoSaMP
– Provides theoretical analysis

• Fundamental operation: Model-based Thresholding
– Replaces hard thresholding in standard algorithms
– Enforces model instead of simple sparsity

• Challenge: Determine appropriate thresholding operation
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Example: mmWave Radar Simulation
• Operating Frequency: 76-77GHz 

– (Specs from: http://www.mitsubishielectric.com/bu/automotive/
advanced_technology/pdf/vol94_tr5.pdf)

• Simulation in 2D-field (easier to visualize results)
– Assuming uniform linear array
– We expect 3D results to be similar

• Compared three approaches
– Classical backprojection (beamforming)
– Standard Compressive Sensing
– Model-based Compressive Sensing
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Simulation results – mmWave radar
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Simulation results

Backprojection (beamforming) 
exhibits significant blur, especially 
as array elements are reduced

Blur also confuses 
Classical CS 
algorithms

Model enforcement improves reconstruction 
significantly, even with significant blur
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Simulation results – randomized spacing
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Simulation results – randomized spacing

CoSaMP performance 
improves, but not perfect



© MERL  Oct 18, 2012

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

MICROPHONE ARRAYS
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Problem at a Glance [w/ Raj, Smaragdis]

• Sources and sensors are wideband (e.g., audio)
• Few sources; source signals not known but broadband
• Sensor location is known

Microphones
(sensors/receivers)

Audio
sources

Source s Microphone m

Distance: ds,m

)))))))
Propagation delay: 

!s,m=ds,m/c

Received Signal

Propagation Delay

Source Signal

Frequency-Domain Transmission Equation:
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System Model

• Discrete grid of scene and potential source locations
• N Grid points, any could be a source location
• Scene sparsity: S actual sources
• M microphones (sensors); can be in/out/on/off the grid
• Sensor geometry assumed known
• Distances and delays can be calculated

Discretized Scene:
N Grid points

Each a potential source
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System Model

Discretized Scene:
N Grid points

Each a potential source



© MERL  Oct 18, 2012

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

System Model

X(") is sparse: very few locations contain sources
Sparsity pattern depends on source location only

X(") has the same sparsity pattern for all "

Discretized Scene:
N Grid points

Each a potential source

Solution: Joint Sparsity Models
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Simulation Examples

Sensor

Actual Source

Estimated Source

SNR ~5dB

Main features:
Can localize more sources than microphones (S > M)

Reconstruction for S > M not as straightforward (working on it)
Working on theoretical guarantees
Very good performance in practice
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HIGH SPEED VIDEO ACQUISITION
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Time Aliasing in Video Acquisition

0 fMax- fMax fS/2 = Sampling Frequency/2

Each frame integrates light (signal) over time and samples

High frequency information is lost.

TFrame= Frame Duration = 40ms
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Time Domain Coded Strobing [w/ Asif, Reddy, Veeraraghavan]

Camera acquisition (i.e., sampling/recording) still at slow rate 

Math model similar to random demodulator (0/1 instead of +/-1)

Incoherent with frequency-sparse signals

t

Solution: use a coded aperture to modulate the integration

TFrame= Frame Duration = 40ms
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Observation Model

y

Observed 
Intensity

Signal

A x=

Coded 
Strobing

Frame 1

Frame M
Frame Integration 

Period TS

t

Represents 1-pixel location of the video
Same A for all pixels

Assume video is locally periodic (sparse in frequency)
Nearby pixels have similar sparsity pattern
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Example: Crest Toothbrush Video
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Reconstructed Video

5x Undersampling 10x Undersampling

15x Undersampling 20x Undersampling

Questions/Comments?
http://boufounos.com

petrosb@merl.com
http://dsp.rice.edu/cs

http://nuit-blanche.blogspot.com/


