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Clustering Image Segmentation 

Image Segmentation 

Pink/White pixel :  Apple blossom Orange pixel :  Orange 

Green pixel :  leaf 

Image Segmentation 

Pixels as features 

Principle of clustering: 

Put things that are closer to each 

other (in feature space) into the 

same group 
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Pixels as features But what is a ‘good’ cluster? 

Low in-group variability 

High out of group 

variability 

Compactness: Min(in group variability) 

 Need a measure that shows how ‘compact’ our clusters 

are 

 

 Distance based measures 

Distance-based Measures 

 Total distance between each element in the cluster and 

every other element 

Distance-based Measures 

 Distance between farthest points in cluster 

Distance-based Measures 

 Total distance of every element in the cluster from the 

Centroid in the cluster 



9/27/2012 

3 

Distance-based Measures 

 Total distance of every element in the cluster from the 

Centroid in the cluster 

Distance-based Measures 

 Total distance of every element in the cluster from the 

Centroid in the cluster 

Finding clusters: K-means 

K-means algorithm 

 Minimizes scatter: Distance from centroid 

What is a ‘Centroid’ 
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K–means 
1. Initialize a set of centroids randomly 

 

2. For each data point x, find the 
distance from the centroid for each 
cluster 

•  
 
 

3. Put data point in the cluster of the 
closest centroid 

• Cluster for which dcluster is 
minimum 
 

4. When all data points clustered, 
recompute cluster centroid 

 

 
 

5. If not converged, go back to 2 
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Another example Another example 

Another example Another example 



9/27/2012 

8 

Going back to our first example Going back to our first example 

Going back to our first example 

4 clusters 

Going back to our first example 

6 clusters 

Problems with K-means 

 Initial conditions important 

Problems with K-means 

 Initial conditions important 
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Problems with K-means 

 Initial conditions important 

Problems with K-means 

 Initial conditions important 

Problems with K-means 

 Initial conditions important 

Problems with K-means 

 What is K? 

Problems with K-means 

 K=2 

Problems with K-means 

 K=5 
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Is there an optimal clustering 

method? 

 

Optimal method: Exhaustive Enumeration 

 Compute distances between every single pair of data 

points and cluster on that 
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Optimal method: Exhaustive Enumeration 

 Compute distances between every single pair of data 

points and cluster on that 

 

 Very very computationally expensive 

 If M data points and we want N clusters: 

 

 

 

 Compute goodness for every possible combination 
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Optimal method: Exhaustive Enumeration 

 Compute distances between every single pair of data 

points and cluster on that 

 

 Very very computationally expensive 

 If M data points and we want N clusters: 

 

 

 

 Compute goodness for every possible combination 

K-means: Fast but greedy 
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Going back to our first example 

Hierarchical clustering 

Hierarchical clustering: Bottom up 

Bottom up clustering Bottom up clustering 
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Bottom up clustering Bottom up clustering 

Bottom up clustering 

 Initially,  every point is its own cluster 

Bottom up clustering 

Bottom up clustering Bottom up clustering 
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Bottom up clustering Bottom up clustering 

Notes about bottom up clustering 

 Single Link: Nearest neighbor distance 

 

 

Notes about bottom up clustering 

 Single Link: Nearest neighbor distance 

 

 

 Complete link: Farthest neighbor distance 

 

 

Notes about bottom up clustering 

 Single Link: Nearest neighbor distance 

 

 

 Complete link: Farthest neighbor distance 

 

 

 Centroid: Distance between centroids 

Hierarchical clustering: Top Down 
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Top down clustering Top down clustering 

Top down clustering K-Means for Top–Down clustering 
1. Start with one cluster  

 

2. Split each cluster into two: 
 Perturb centroid of cluster slightly  (by < 5%) 

to generate two centroids 
 

3. Initialize K means with new set of 
centroids 

 

4. Iterate Kmeans until convergence 
 

5. If the desired number of clusters is 
not obtained, return to 2 
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K-Means for Top–Down clustering 
1. Start with one cluster  

 

2. Split each cluster into two: 
 Perturb centroid of cluster slightly  (by < 5%) to 

generate two centroids 
 

3. Initialize K means with new set of 

centroids 
 

4. Iterate Kmeans until convergence 
 

5. If the desired number of clusters is 

not obtained, return to 2 

K-Means for Top–Down clustering 
1. Start with one cluster  

 

2. Split each cluster into two: 
 Perturb centroid of cluster slightly  (by < 5%) to 

generate two centroids 
 

3. Initialize K means with new set of 

centroids 
 

4. Iterate Kmeans until convergence 
 

5. If the desired number of clusters is 

not obtained, return to 2 

When is a data point in a cluster? 

Distance from cluster 

 Euclidean distance from centroid 
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Distance from cluster 

 Distance from the closest point 

Distance from cluster 

 Distance from the farthest point 

Distance from cluster 

 Probability of data measured on cluster distribution 

A closer look at ‘Distance’ 

K–means 
1. Initialize a set of centroids randomly 

 

2. For each data point x, find the 
distance from the centroid for each 
cluster 

•  
 
 

3. Put data point in the cluster of the 
closest centroid 

• Cluster for which dcluster is 
minimum 
 

4. When all data points are clustered, 
recompute centroids 

 

 
 

5. If not converged, go back to 2 
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A closer look at ‘Distance’ 

 Original algorithm uses L2 norm and weight=1 

 

 

 

 

 This is an instance of generalized EM 

 The algorithm is not guaranteed to converge for other 

distance metrics 
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2||||),( clusterclustercluster mxmx distance
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Problems with Euclidean distance Problems with Euclidean distance 

Problems with Euclidean distance Problems with Euclidean distance 

Better way: Map it to different space 

f([x,y]) -> [x,y,z] 

x = x 

y = y 

z = a(x2 + y2) 

The Kernel trick 
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The Kernel trick 

 Transform data to higher dimensional space (even 

infinite!) 

 z = F(x) 

 

The Kernel trick 

 Transform data to higher dimensional space (even 

infinite!) 

 z = F(x) 

 

 Compute distance in higher dimensional space 

 d(x1, x2) =  ||z1- z2||
2 = ||F(x1) – F(x2)||

2 

 

The cool part 

 Distance in low dimensional space: 

 ||x1- x2||
2 = (x1- x2)

T(x1- x2) = x1.x1 + x2.x2 -2 x1.x2 

 

 

The cool part 

 Distance in low dimensional space: 

 ||x1- x2||
2 = (x1- x2)

T(x1- x2) = x1.x1 + x2.x2 -2 x1.x2 

 

 Distance in high dimensional space: 

 d(x1, x2) =||F(x1) – F(x2)||
2  

             = F(x1). F(x1) + F(x2). F(x2) -2 F(x1). F(x2) 

 

 

 Note:  Every term involves dot products! 

Kernel function 

 Kernel function is just  

 K(x1,x2) = F(x1). F(x2)  

 

 

 Going back to our distance function in the high 

dimensional space: 

 d(x1, x2) =||F(x1) – F(x2)||
2  

             = F(x1). F(x1) + F(x2). F(x2) -2 F(x1). F(x2) 

             = K(x1,x1) + K(x2,x2) - 2K(x1,x2) 

 

 Kernel functions are more efficient than dot products 

 

Typical Kernel Functions 
 Linear: K(x,y) = xTy + c 

 

 Polynomial K(x,y) = (axTy + c)n 

 

 Gaussian: K(x,y) = exp(-||x-y||2/s2) 
 

 Exponential: K(x,y) =  exp(-||x-y||/l) 

 

 Several others 

 Choosing the right Kernel with the right parameters for 

your problem is an art 
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Kernel K-means 

Kernel K–means 
1. Initialize a set of centroids randomly 

 

2. For each data point x, find the 
distance from the centroid for each 
cluster 

•  
 
 

3. Put data point in the cluster of the 
closest centroid 

• Cluster for which dcluster is 
minimum 
 

4. When all data points clustered, 
recompute cluster centroid 

 

 
 

5. If not converged, go back to 2 
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Kernel K–means 
1. Initialize a set of centroids randomly 

 

2. For each data point x, find the 
distance from the centroid for each 
cluster 

•  
 
 

3. Put data point in the cluster of the 
closest centroid 
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minimum 
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Other clustering methods 

 Regression based clustering 

 Find a regression representing each cluster 

 Associate each point to the cluster with the best 

regression 

 Related to kernel methods 

Questions? 


