11-755/18-797 Machine Learning for Signal Processing

Fundamentals of Linear
Algebra — part 2

Class 3 4 Sep 2012

Instructor: Bhiksha Raj
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Overview

= Projections

= More on matrix types

= Matrix determinants

= Matrix inversion

= Eigenanalysis

= Singular value decomposition
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Central Projection

XYz
Y
|
z

X a :i.

z
X y 2 ) . X=ax
— ==.=— Property of aline through origin y=ay'

Xy z

= The positions on the “window” are scaled along the line

= To compute (x,y) position on the window, we need z (distance
of window from eye), and (x’,y’,2’) (location being projected)
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‘ Homogeneous Coordinates

ax=a'x'

% ay=a'y'
a '
— X=X

‘ .
X
= Represent points by a triplet
o Using yellow window as reference: Zx=x' Zy=y'

o (xy)=xy.1) &
o (Xy)=(xyc) c=dla
o Locations on line generally represented as (x,y,c)
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Homogeneous Coordinates in 3-D

X2y ax, =a'x," | ax,=a'x,

ay=a'y, | oy, =a'y,’

az,=a'7 | az,=a'z,’

X1:Y1.Zq

X2:Y2:Z2

= Points are represented using FOUR coordinates
a (X.Y.Zc)

a “c”is the “scaling” factor that represents the distance of the actual
scene
= Actual Cartesian coordinates:
9 Kaetuat = X1, Yacwa = YIC, Zagryar = ZIC
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‘ Homogeneous Coordinates

za N

= In both cases, constant “c” represents distance along the line
with respect to a reference window

o In 2D the plane in which all points have values (x,y,1)
= Changing the reference plane changes the representation

= |.e. there may be multiple Homogenous representations
(x,y,c) that represent the same cartesian point (X' y)
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Orthogonal /Orthonormal vectors

X u
A=y B=| v
| b

AB=0 = Xu+yv+zw=0

= Two vectors are orthogonal if they are perpendicular to one another
o AB=0
0 Avector that is perpendicular to a plane is orthogonal to every vector on the
plane

= Two vectors are orthonormal if
o They are orthogonal
o The length of each vector is 1.0
o Orthogonal vectors can be made orthonormal by normalizing their lengths to 1.0
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Orthogonal matrices

4

Jo5 —Jo125 40375
Jo5 o125 —J0375
0 Jo75 05

= Orthogonal Matrix : AAT=ATA=|

o The matrix is square

o All row vectors are orthonormal to one another
= Every vector is perpendicular to the hyperplane formed by all other vectors
All column vectors are also orthonormal to one another

C

o

Observation: In an orthogonal matrix if the length of the row vectors is
1.0, the length of the column vectors is also 1.0

o Observation: In an orthogonal matrix no more than one row can have
all entries with the same polarity (+ve or —ve)

45ep2012 11755/18-797 8

Orthogonal and Orthonormal Matrices

= Orthogonal matrices will retain the length and relative
angles between transformed vectors
o Essentially, they are combinations of rotations, reflections and
permutations

o Rotation matrices and permutation matrices are all orthonormal
matrices

= If the entries of the matrix are not unit length, it cannot
be orthogonal
o AAT=1 or ATA =1, but not both
o AAT= Diagonal or ATA = Diagonal, but not both
0 If all the entries are the same length, we can get AAT = ATA = Diagonal, though
= A non-square matrix cannot be orthogonal
o AAT=] or ATA =1, but not both
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Matrix Rank and Rank-Deficient Matrices

b Cono /

= Some matrices will eliminate one or more dimensions during
transformation

0 These are rank deficient matrices

o The rank of the matrix is the dimensionality of the transformed version
of a full-dimensional object
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‘ Matrix Rank and Rank-Deficient Matrices

Rank =2 Rank = 1

= Some matrices will eliminate one or more dimensions during
transformation
u These are rank deficient matrices

u  The rank of the matrix is the dimensionality of the transformed version
of a full-dimensional object

4Sep 2012

Projections ate often examples of rank-deficient transforms

= P =W (W'W)WT; Projected Spectrogram = P*M
= The original spectrogram can never be recovered
o Pis rank deficient
= P explains all vectors in the new spectrogram as a mixture of
only the 4 vectors in W
o There are only a maximum of 4 independent bases
o RankofPis4
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| Non-square Matrices

B ., 4

8 .9 g g g

X, X oo Xy
X X% 1o [X, YZ,,YN}
Yoo Y2 o - W 60 4 4 .- Iy
X =2D data P = transform PX = 3D, rank 2

= Non-square matrices add or subtract axes
0 More rows than columns - add axes
= But does not increase the dimensionality of the data
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| Non-square Matrices

e =y

XX oo Xy X X X
v v y 312 [i‘l <2 N
o2 N 51 1 i Y2 Yn
7, . . Iy
X'=3D data, rank 3 P = transform PX = 2D, rank 2

= Non-square matrices add or subtract axes
a
.
o Fewer rows than columns - reduce axes
= May reduce dimensionality of the data
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‘ The Rank of a Matrix

é,’
% 8 9
312 19
511 6 0
= The matrix rank is the dimensionality of the transformation of a full-
dimensioned object in the original space

= The matrix can never increase dimensions
o Cannot convert a circle to a sphere or a line to a circle

= The rank of a matrix can never be greater than the lower of its two
dimensions
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The Rank of Matrix

Projected Spectrogram =P * M

0 Every vector in it is a combination of only 4 bases

= The rank of the matrix is the smallest no. of bases required to

describe the output

o E.g.if note no. 4 in P could be expressed as a combination of notes 1,2
and 3, it provides no additional information

o Eliminating note no. 4 would give us the same projection

o The rank of P would be 3!
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‘ Matrix rank is unchanged by transposition

09 05 08 09 01 042
01 04 09 05 04 044

042 044 086 0.8 09 086

= If an N-dimensional object is compressed to a
K-dimensional object by a matrix, it will also be
compressed to a K-dimensional object by the
transpose of the matrix
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‘ Matrix Determinant

(2) Gasdady (11412)
leg)
[., .',]m)
A= area
e |2 =
24k
wd (1)

= The determinant is the “volume” of a matrix
= Actually the volume of a parallelepiped formed from its
row vectors

o Also the volume of the parallelepiped formed from its column
vectors

= Standard formula for determinant: in text book
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‘ Matrix Determinant: Another Perspective

Volume =V, Volume =V, M
{ " /
T s 8 0 07 L
08 aaw )

09 07

= The determinant is the ratio of N-volumes
o If vy is the volume of an N-dimensional object “O” in N-dimensional
space
= Ois the complete set of points or vertices that specify the object

a IfV, is the volume of the N-dimensional object specified by A*O,
where A is a matrix that transforms the space

a JAl=V, /v,
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Matrix Determinants

= Matrix determinants are only defined for square matrices

o They characterize volumes in linearly transformed space of the same
dimensionality as the vectors

= Rank deficient matrices have determinant 0

0 Since they compress full-volumed N-dimensional objects into zero-
volume N-dimensional objects

= E.g.a3-Dsphereintoa 2-D ellipse: The ellipse has 0 volume (although it
does have area)

= Conversely, all matrices of determinant O are rank deficient

o Since they compress full-volumed N-dimensional objects into
zero-volume objects
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‘ Multiplication properties

= Properties of vector/matrix products
o Associative

A-(B-C)=(A-B)-C
o Distributive
A-B+C)=A-B+A-C
o NOT commutative!!!
A-B=B-A

= left multiplications # right multiplications
o Transposition

(A-B) =BT -AT
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Determinant properties

= Associative for square matrices ‘A'B-C‘ :‘AHBHC‘

o Scaling volume sequentially by several matrices is equal to
scaling once by the product of the matrices

= Volume of sum != sum of Volumes ‘(B + C)‘ # ‘B‘ + ‘C‘

= Commutative
o The order in which you scale the volume of an object is irrelevant

|A-B|=[B-Al=|A|-[B]
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08 0 o7
10 08 08
07 09 07

Matrix Inversion

T

= A matrix transforms an ‘Q
N-dimensional object to a . <l q
different N-dimensional A 4

.'A
object V

= What transforms the new

229
object back to the original? Q{? » 7}1 L
0 The inverse transformation v
= The inverse transformation is A ‘Q
called the matrix inverse L # | tEEEET
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Matrix Inversion

T*T'D=D S TT=|

= The product of a matrix and its inverse is the
identity matrix

o Transforming an object, and then inverse transforming
it gives us back the original object

TTD=D S TT =|
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‘ Inverting rank-deficientmatrices

1 0 0
0 25 -0433
0 -0433 075

= Rank deficient matrices “flatten” objects

a  Inthe process, multiple points in the original object get mapped to the same
point in the transformed object

= Itis not possible to go “back” from the flattened object to the original
object
o Because of the many-to-one forward mapping

= Rank deficient matrices have no inverse
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Revisiting Projections and Least Squares

= Projection computes a least squared error estimate
= For each vector V in the music spectrogram matrix

=a*notel + b*note2 + c*note3..

0 Approximation: V,o,.o,

a

5Y8 v b
7222 _
=l pprof

C

0 Errorvector E= V-V,

o Squared error energy for V. e(V) = norm(E)?

for all vectors such that Total error is

approx

= Projection computes V.
minimized
= But WHAT ARE “a” “b” and “c”?
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‘ The Pseudo Inverse (PINV)

a a a
Voo T|D|  EE) VAT|b| EE) | b |=PINV(T)*V
Cc C Cc

= We are approximating spectral vectors V as the
transformation of the vector [a b c]"

o Note —we’re viewing the collection of basesin T as a
transformation

= The solution is obtained using the pseudo inverse

o This give us a LEAST SQUARES solution
= If T were square and invertible Pinv(T) =T, and V=V,
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Explaining music with one note

-

Recap: P =W (W'W) W' Projected Spectrogram = P*M

Approximation: M = W*X
The amount of W in each vector = X = PINV(W)*M
W*Pinv(W)*M = Projected Spectrogram

o W*Pinv(W) = Projection matrix!!
48ep 2012 11:755/18797 2

PINV(W) = (WTW)'WT

‘ Explanation with multiple notes

X=PINV(W)M

= X = Pinv(W)*M; Projected matrix = W*X = W*Pinv(W)*M
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How about the other way?

M= i
[ BaN — -
V= PSS |V, S b S | S
oM e
| | R
wi ? - ?
= WV \approx M W =M * Pinv(V) U=wv
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Pseudo-inverse (PINV)

Pinv() applies to non-square matrices
Pinv ( Pinv (A))) = A

A*Pinv(A)= projection matrix!

o Projection onto the columns of A

If A=K x N matrix and K> N, A projects N-D
vectors into a higher-dimensional K-D space
o Pinv(A) = NxK matrix

o Pinv(A)*A =1 in this case

Otherwise A * Pinv(A) =1
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Matrix inversion (division)

The inverse of matrix multiplication

o Not element-wise division!!

Provides a way to “undo” a linear transformation

o Inverse of the unit matrix is itself

o Inverse of a diagonal is diagonal

o Inverse of a rotation is a (counter)rotation (its transpose!)

o Inverse of a rank deficient matrix does not exist!

But pseudoinverse exists

For square matrices: Pay attention to multiplication side!
A-B=C, A=C-B, B=A'.C

If matrix not square use a matrix pseudoinverse:
A-B=C, A=C-B",B=A"-C

MATLAB syntax: inv(a), pinv(a)
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Eigenanalysis

If something can go through a process mostly
unscathed in character it is an eigen-something

o Sound example: .E:) ﬂ @ @

A vector that can undergo a matrix multiplication and
keep pointing the same way is an eigenvector

o Its length can change though

How much its length changes is expressed by its
corresponding eigenvalue

o Each eigenvector of a matrix has its eigenvalue

Finding these “eigenthings” is called eigenanalysis
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EigenVectors and EigenValues

Black

vectors P M:[}(‘)% ]?07} Sy
are ~J
eigen d
vectors

Vectors that do not change angle upon transformation
o They may change length

MV = AV

oV =eigen vector

o A =eigen value

o Matlab: [V, L] = eig(M)
Lis a diagonal matrix whose entries are the eigen values
V is a maxtrix whose columns are the eigen vectors
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Eigen vector example
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Matrix multiplication revisited

— e

<
bt

-
Y
b
b
\\
10 -0.07 A
A 5 \
[711 12} \\\i

Matrix transformation “transforms” the space

0 Warps the paper so that the normals to the two
vectors now lie along the axes
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‘A stretching operation
14 r 08

= Draw two lines

Stretch / shrink the paper along these lines by factors A4
and A,

0 The factors could be negative —implies flipping the paper

The result is a transformation of the space
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‘ A stretching operation

= Draw two lines

Stretch / shrink the paper along these lines by factors A4
and A,

o The factors could be negative — implies flipping the paper

The result is a transformation of the space
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‘ Physical interpretation of eigen vector

= The result of the stretching is exactly the same as transformation by a
matrix

= The axes of stretching/shrinking are the eigenvectors
0 The degree of stretching/shrinking are the corresponding eigenvalues

= The EigenVectors and EigenValues convey all the information about
the matrix
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S xi':f

‘ Physical interpretation of eigen vector

V= [V1 Vz] 7 }-\"\_ )

M =VAV %*’I

The result of the stretching is exactly the same as transformation by a
matrix
= The axes of stretching/shrinking are the eigenvectors

0 The degree of stretching/shrinking are the corresponding eigenvalues
= The EigenVectors and EigenValues convey all the information about
the matrix
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‘ Eigen Analysis

= Not all square matrices have nice eigen values and
vectors
o E.g. consider a rotation matrix

o _[cos0 —sing
“{sing  coso

X =

o This rotates every vector in the plane
= No vector that remains unchanged

= In these cases the Eigen vectors and values are complex
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‘ Singular Value Decomposition

3 10 -0.07
A=
{71.1 12 }

= Matrix transformations convert circles to ellipses
= Eigen vectors are vectors that do not change direction in the
process

= There is another key feature of the ellipse to the left that carries
information about the transform
o Canyou identify it?
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| Singular Value Decomposition

- o

R T R P

= The major and minor axes of the transformed ellipse
define the ellipse
o They are at right angles

= These are transformations of right-angled vectors on
the original circle!
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‘ Singular Value Decomposition

S1Uqm, A{LO ’0‘07}
s,U, o2 Vi \Z
A=USVT
matlab:

[U.S.V] = svd(A)
= UandV are orthonormal matrices

o Columns are orthonormal vectors
= Sis a diagonal matrix

= The right singular vectors of V are transformed to the left singular
vectors in U
o And scaled by the singular values that are the diagonal entries of S
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Singular Value Decomposition

= The left and right singular vectors are not the same

o If Ais not a square matrix, the left and right singular vectors will be of
different dimensions

= The singular values are always real

= The largest singular value is the largest amount by which a
vector is scaled by A
o Max (|Ax| / [x]) = spa

= The smallest singular value is the smallest amount by which a
vector is scaled by A
o Min (JAX] / [x]) = Spin
o This can be 0 (for low-rank or non-square matrices)
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‘ The Singular Values

S1Uq
soUs

\
—
FE TR

= Square matrices: The product of the singular values is the determinant of the
matrix
4 Thisis also the product of the eigen values
o le. there are two different sets of axes whose products give you the area of an ellipse

For any “broad” rectangular matrix A, the largest singular value of any square
submatrix B cannot be larger than the largest singular value of A

o Ananalogous rule applies to the smallest singluar value

o This property is utilized in various problems, such as compressive sensing
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‘ Symmetric Matrices

~

= Matrices that do not change on transposition
o Row and column vectors are identical

= The left and right singular vectors are identical
o U=V
a A=USUT

= They are identical to the eigen vectors of the matrix
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‘ Symmetric Matrices

~

= Matrices that do not change on transposition
o Row and column vectors are identical

= Symmetric matrix: Eigen vectors and Eigen values are
always real

= Eigen vectors are always orthogonal
o At 90 degrees to one another
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Symmetric Matrices

. 15 -07
; : -07 1

Eigen vectors point in the direction of the major
and minor axes of the ellipsoid resulting from the
transformation of a spheroid

0 The eigen values are the lengths of the axes
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Symmetric matrices

Eigen vectors V, are orthonormal

o Vivi=1

o VIVj=0,il=j

Listing all eigen vectors in matrix form V
o Vi=v1

o Viv=l

o VVi=|

MV, =LV,

In matrix form : MV =V A
o Ais a diagonal matrix with all eigen values

M=VAVT
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The Correlation and Covariance Matrices
A AT
(I/N)za, 2

(I/MN)Zay @y,
i

Consider a set of column vectors represented as a DxN matrix A

The correlation matrix is

o C=(1/N)AAT
If the average value (mean) of the vectors in A is 0, C is called the covariance matrix
covariance = correlation + mean * mean”

Diagonal elements represent average of the squared value of each dimension
o Off diagonal elements represent how two components are related

How much knowing one lets us guess the value of the other
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Correlation / Covariance Matrix

C=VAV'
Sqrt(C) =V.Sqrt(A)V'
Sqrt(C).Sqrt(C) =V.Sqrt(A)V V.Sqrt(A)V T
=V.Sqrt(A).Sqrt(A)VT =VAVT =C

The correlation / covariance matrix is symmetric

0 Has orthonormal eigen vectors and real, non-negative eigen values
The square root of a correlation or covariance matrix is easily derived
from the eigen vectors and eigen values

0 The eigen values of the square root of the covariance matrix are the
square roots of the eigen values of the covariance matrix

o These are also the “singular values” of the data set
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Square root of the Covariance Matrix

The square root of the covariance matrix
represents the elliptical scatter of the data

The eigenvectors of the matrix represent the
major and minor axes
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The Correlation Matrix

Any vector V = a, ; * eigenvec! + a,, *eigenvec2 + ..

Iy ay, = eigenvalue(i)

Projections along the N eigen vectors with the largest
eigen values represent the N greatest “energy-carrying”
components of the matrix

Conversely, N “bases” that result in the least square
error are the N best eigen vectors
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An audio example

The spectrogram has 974 vectors of dimension 1025
The covariance matrix is size 1025 x 1025
There are 1025 eigenvectors
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Eigen Reduction
M = spectrogram  1025x1000
C=M.MT [1025x1025
V = 1025x1025 [V, L] =eig(C)
Vieweed =IVi -+ V] 1025x25
M i = PINV(Vggcea )M 25x1000
M g =V, M ougim 1025x1000

reconstructe reduced
Compute the Correlation

Compute Eigen vectors and values
Create matrix from the 25 Eigen vectors corresponding to 25 highest Eigen
values

Compute the weights of the 25 eigenvectors

To reconstruct the spectrogram — compute the projection on the 25 eigen
vectors
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Eigenvalues and Eigenvectors

Left panel: Matrix with 1025 eigen vectors M = spectrogram
Right panel: Corresponding eigen values C=MM"

o Most eigen valugs are close to zero ) [V, L]=eig(C)
The corresponding eigenvectors are “unimportant”
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Eigenvalues and Eigenvectors

H Vec = a1 *eigenvec1 + a2 * eigenvec2 + a3 * eigenvec3 ...

The vectors in the spectrogram are linear combinations of all

1025 eigen vectors

The eigen vectors with low eigen values contribute very little

o The average value of a; is proportional to the square root of the
eigenvalue

o Ignoring these will not affect the composition of the spectrogram
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An audio example Vi =V, .+ V]
M g = PINV(Y e )M

The same spectrogram projected down to the 25 eigen
vectors with the highest eigen values
o Only the 25-dimensional weights are shown

The weights with which the 25 eigen vectors must be added to
compose a least squares approximation to the spectrogram
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An audio example

M

M econstructed = Vireauce M iowaim
The same spectrogram constructed from only the 25 eigen vectors
with the highest eigen values
0 Looks similar

With 100 eigenvectors, it would be indistinguishable from the original
o Sounds pretty close

o But now sufficient to store 25 numbers per vector (instead of 1024)

45ep 2012 11.755/18797 o
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| With only 5 eigenvectors

= The same spectrogram constructed from only
the 5 eigen vectors with the highest eigen
values
o Highly recognizable
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‘ Correlation vs. Covariance Matrix

= Correlation:
o The N eigen vectors with the largest eigen values represent the
N greatest “energy-carrying” components of the matrix

o Conversely, N “bases” that result in the least square error are
the N best eigen vectors

= Projections onto these eigen vectors retain the most energy in the data.

= Covariance:

o the N eigen vectors with the largest eigen values represent the N
greatest “variance-carrying” components of the matrix

o Conversely, N “bases” that retain the maximum possible
variance are the N best eigen vectors
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‘ Eigenvectors, Eigenvalues and
Covariances

= The eigenvectors and eigenvalues (singular
values) derived from the correlation matrix
are important

= Do we need to actually compute the
correlation matrix?
o No

= Direct computation using Singular Value
Decomposition
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‘ SVD vs. Eigen decomposition

= Singluar value decomposition is analogous to the eigen
decomposition of the correlation matrix of the data
o SVD: D=USVT
o DDT= USVTVSUT =US2UT

= The “left” singluar vectors are the eigen vectors of the
correlation matrix
o Show the directions of greatest importance

= The corresponding singular values are the square roots
of the eigen values of the correlation matrix
o Show the importance of the eigen vector
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Thin SVD, compact SVD, reduced SVD
NxN MxM
\a

A u
NxM
SEINIE

= Thin SVD: Only compute the first N columns of U
o Allthatis required if N <M

= Compact SVD: Only the left and right singular vectors corresponding to
non-zero singular values are computed

NxM
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‘ Why bother with eigens/SVD

= Can provide a unique insight into data
| —
0 Strong statistical grounding hﬂ n 'I 4 I
0 Candisplay complex interactions y
between the data 1
o Can uncover irrelevant parts of the ﬁ E » H
data we can throw out |
- IV |
=

= Can provide basis functions
describe our data ) —
0 Indispensable for performing E E @ Ig!

o Aset of elements to compactly
compression and classification

= Used over and over and still perform Ui IE.iQEI'I'laCSSf ;
amaZin | We” sing a |ne§r ranstorm O

ely the above “eigenvectors” we

can compose various faces
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Making vectors and matrices in MATLAB

Make a row vector:

a = [12 3]
Make a column vector:
a = [1;2;3]

Make a matrix:
A=[123;456]
Combine vectors
A = [bc] or A = [b;c]
Make a random vector/matrix:
r = rand(m,n)
Make an identity matrix:
I = eye(n)
Make a sequence of numbers
¢ = 1:100rc = 1:0.5:100rc = 100:-2:50
Make a ramp

linspace( 0, 1, 100)

c =
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Indexing

To get the i-th element of a vector
a(i)

To get the i-th j-th element of a matrix
A(i,J)

To get from the i-th to the j-th element
a(i:j)

To get a sub-matrix

A(i:3,k:1)

To get segments

a(fi:j k:1 m])
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Arithmetic operations

Addition/subtraction
C=A+BoOrC =A - B
Vector/Matrix multiplication
C=A*B
o Operant sizes must match!
Element-wise operations
o Multiplication/division
C=A.*BorC=24./B
o Exponentiation
C=2A."B
o Elementary functions
C = sin(A) orC = sqgrt(a), ...
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Linear algebra operations

Transposition

C =Aa'

o If ais complex also conjugates use C = A.’ to avoid that
Vector norm

norm (x) (also works on matrices)

Matrix inversion

C = inv(a) if Ais square

C = pinv(A) if Ais not square

o A might not be invertible, you'll get a warning if so
Eigenanalysis

[u,d] = eig(n)

o uis a matrix containing the eigenvectors

o dis adiagonal matrix containing the eigenvalues
Singular Value Decomposition

[u,s,v] = svd(A)or [u,s,v] = svd(A,0)

o “thin” versus regular SVD

o s is diagonal and contains the singular values
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Plotting functions

1-d plots os
plot (x) 02 ;
if x is a vector will plot all its elements e e 8w

If x is a matrix will plot all its column
vectors

bar (x)

Ditto but makes a bar plot
2-d plots
imagesc (x)

plots a matrix as an image
surf (x)

makes a surface plot
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Getting help with functions

The help function

o Type help followed by a function name
Things to try

help help

help +

help eig

help svd

help plot

help bar

help imagesc

help surf

help ops

help matfun

Also check out the tutorials and the mathworks site
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