

KUNGL
TEKNISKA
HÖGSKOLAN

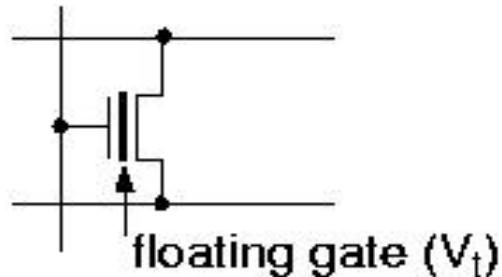
Non-Silicon Non-Binary Computing: Why Not?

*Elena Dubrova, Yusuf Jamal, Jimson Mathew
Royal Institute of Technology
Stockholm, Sweden*

Overview

- Motivation
- Introduction to multiple-valued computing
- Implementation of multiple-valued functions using chemically assembled electronic nanotechnology
- Conclusion and open problems

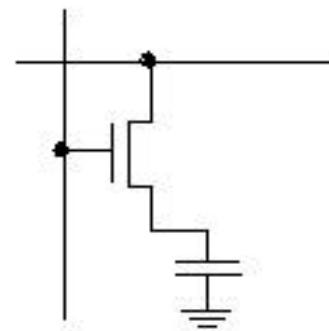
Motivation


- Current silicon-based technologies use binary bits to represent data
 - transistors have two stable states: on/off
 - they are **cheap, reliable and efficient**
- It is possible to use current technologies for non-binary computing, but the theoretical advantage is lost, except for some applications
- The situation might be different for non-silicon based technologies

Theoretical advantages

- On- and off-line interconnect can be reduced if signals in the circuit assume four or more levels rather than two
- Storing two instead of one bit of information per cell doubles the density of the memory in the same die size
 - Intel StartaFlash, NEC 4-Gbit DRAM
- Arithmetic circuits often benefit from using other than binary number systems
 - ripple-through carries can be reduced or eliminated if redundant or residue number systems are used

Example: 4-valued flash memory


- Non-volatile multiple-write memory
- Found in over 90% PCs, over 90% cellular phones and over 50% modems
- Each cell consists of a single transistor

- Transistors can have one of four different threshold voltages V_t , controlled by the amount of charge stored on the floating gate

Dymanic RAM (DRAM)

- Volatile general purpose memory
- Used in main processing units, operating systems, video and audio data processing
- Each cell consists of a single capacitor and a transistor

- capacitor stores a quantity of charge that corresponds to the logic value of the signal

Higher levels of abstraction

- Using multiple-valued logic at higher levels of abstractions gives us a more compact and natural description of the problem
 - for example, a traffic light controller can be described using 3 values, representing “green”, “yellow” and “red”

Practical problems

- The attempts to build multiple-valued circuits can be traced back to 1960
 - 3-valued SETUN computer
 - bipolar I²L, ECL
 - CMOS
- Except Flash and DRAM memory applications, no multiple-valued design survived the competition with binary designs
- Silicon-based technologies do not seem to be suitable for implementinig mulitple-valued circuits

Goal of this paper

- To show that it is possible to implement multiple-valued circuits with non-silicon based technologies
 - chemically assembled electronic nanotechnology is taken as an example
 - the idea can be used in other technologies
- To show that we can benefit from using multiple-valued circuits instead of binary

Multiple-valued computing

- Instead of Boolean functions $\{0,1\}^n \rightarrow \{0,1\}$ we implement multiple-valued functions $\{0,1,\dots,m-1\}^n \rightarrow \{0,1,\dots,m-1\}$

x_2	0	1	2
0	0	0	0
1	0	1	1
2	0	1	2

an example of
3-valued function
 $\text{MIN}(x_1, x_2)$

Functionally complete sets

- A set of functions is called **functionally complete** if any other function can be composed from the functions in this set
 - $\{\text{AND, OR, NOT}\}$ is functionally complete for Boolean functions $\{0,1\}^n \rightarrow \{0,1\}$
- Boolean algebras are not functionally complete for functions over the sets other than $\{0,1\}$

Chain-based Post algebra

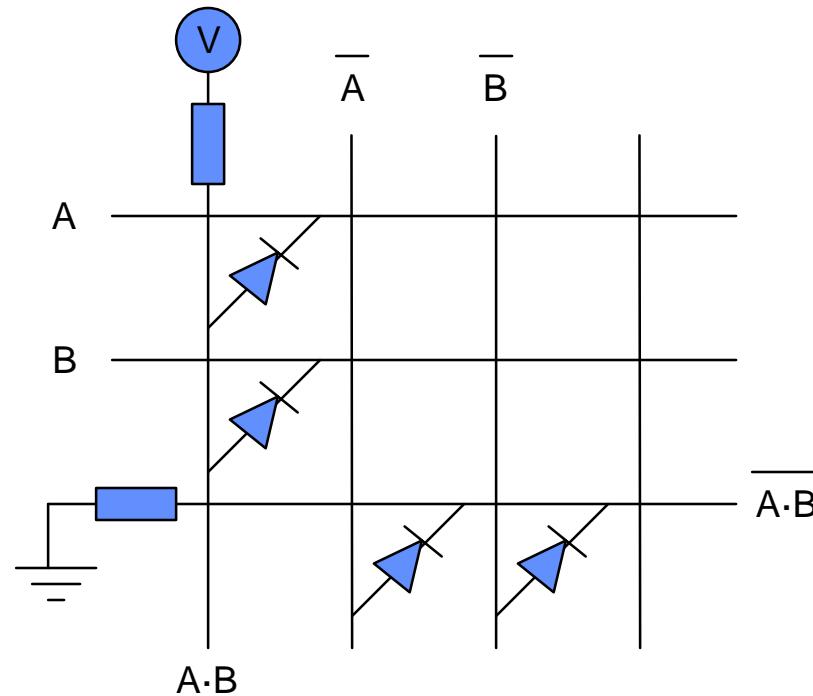
- A generalization of Boolean algebra
 - corresponds to the first multiple-valued logic developed in 1921 by Emil Post
- $P := \langle M; +, \cdot, L \rangle$
 - $M := \{0, 1, \dots, m - 1\}$ set whose elements form totally ordered chain $0 < 1 < \dots < m - 1$
 - “+” is the binary operation **maximum**
 - “.” is the binary operation **minimum**
 - $L := \{x^0, x^1, \dots, x^{m-1}\}$ is the set of unary **literal** operators

Representation of multiple-valued functions

	x_1	0	1	2
x_2	0	0	1	0
1	0	0	0	0
2	2	0	2	2

$$f(x_1, x_2) = 1 \cdot x_1^1 \cdot x_2^0 + 2 \cdot x_1^0 \cdot x_2^2 + 2 \cdot x_1^2 \cdot x_2^2$$

	x_1	0	1	2
x_2	0	0	1	0
1	0	1	0	0
2	2	2	2	2


$$f(x_1, x_2) = 1 \cdot x_1^1 + 2 \cdot x_2^2$$

$1 + 2 = 2$ since “+” = MAX

Chemically assembled electronic nanotechnology (CAEN)

- Dense regular architecture: *nanoFabric* composed of *nanoBlocks*
- *nanoBlock* is a molecular logic array that can be programmed to implement a three-input three-output Boolean function and its complement
- Active elements are molecular switches
 - two-terminal devices (cheaper chemical assembly)
 - no inverters can be built
 - all signals should be available in both, complemented and non-complemented form

nanoBlock of an AND

$\{\text{AND, NOT}\}$ is a functionally complete set for Boolean functions, so any Boolean function can be composed from nanoBlocks

Implementation of multiple-valued functions using CAEN

- We would like to preserve the following features of nanoFabric:
 - the architecture is a **two-dimensional** array
 - it can be configured to implement **any** multiple-valued function
 - only **two-terminal** devices are used
- The last point implies that, as in binary case, no "inverters" are available

What is an "inverter" in MV-case?

- In binary case, the complement is defined by

$$x' = 1 - x$$

- In m-valued case, it can be defined as

$$x' = (m-1) - x$$

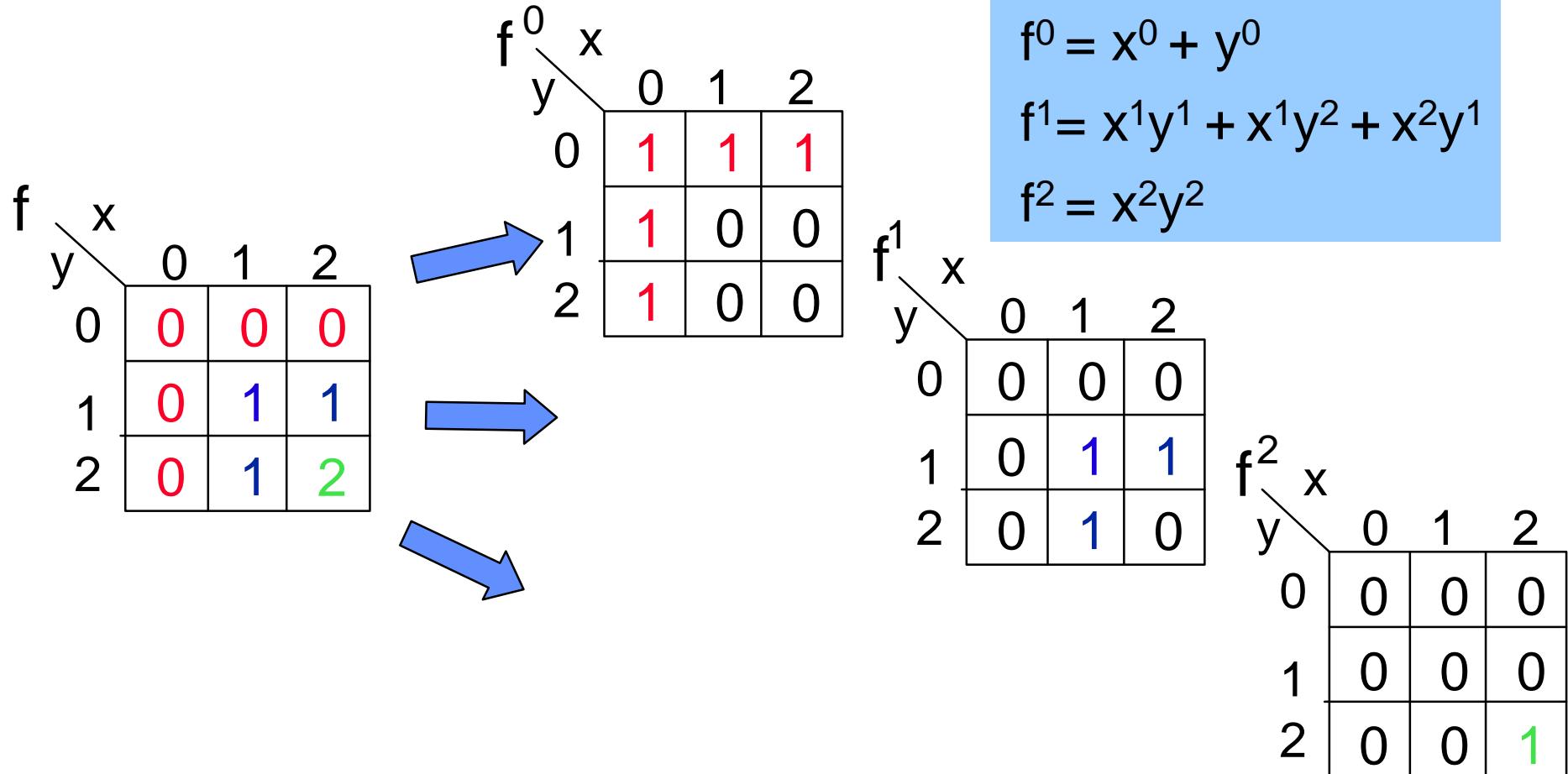
x	x'
0	2
1	1
2	0

- However, it will not result a functionally complete set in combination with AND and OR

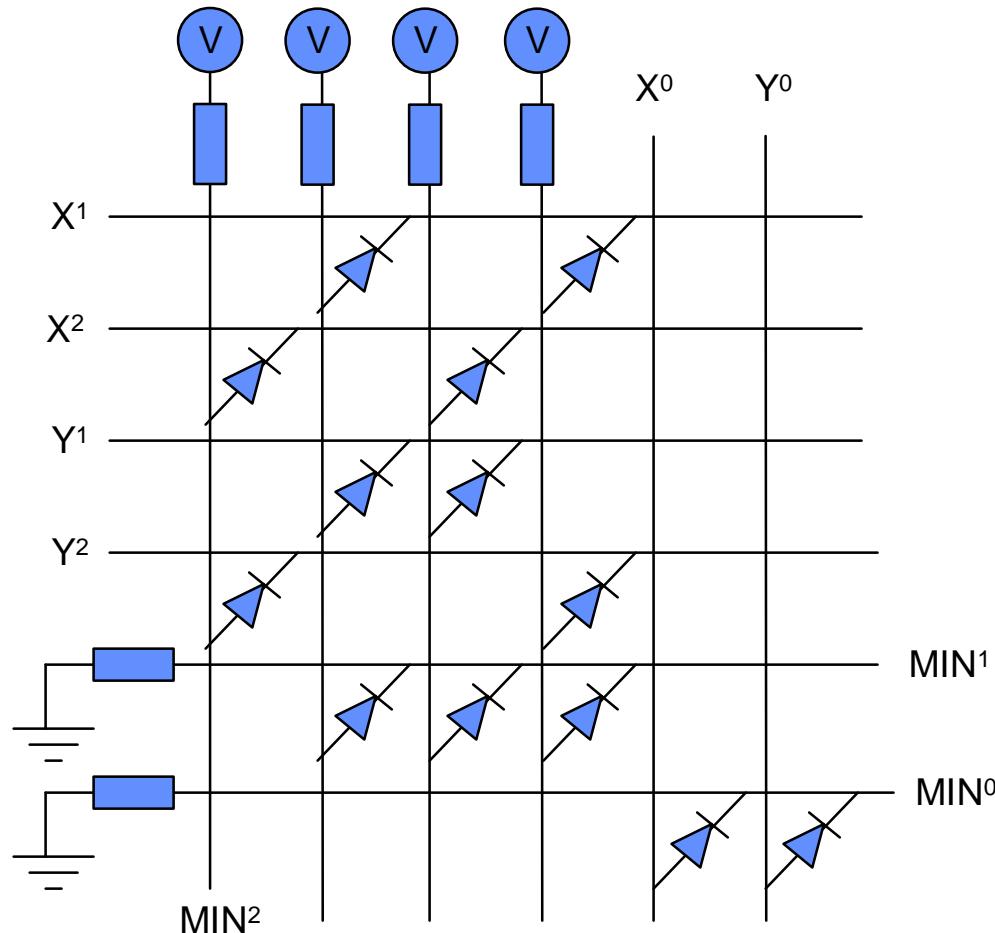
Multiple-valued "inverter"

- To get a functionally complete set, we have to extend NOT to the literal operator, defined by

$$x^i = \begin{cases} 1, & \text{if } x = i \\ 0, & \text{otherwise} \end{cases}$$


x	x ⁰	x ¹	x ²
0	1	0	0
1	0	1	0
2	0	0	1

- in combination with AND and OR, literals give us a functionally complete set for $\{0,1,\dots,m-1\}^n \rightarrow \{0,1\}$ functions


Implementation of MV functions

- In binary case, the absence of inverters implies that all the signals should be available in complemented and non-complemented form
- In multiple-valued case, all the signals should be available as literals
 - literals are functions of type $\{0,1,\dots,m-1\}^n \rightarrow \{0,1\}$
 - AND and OR operations can be applied to literals
 - $x^i \cdot x^j$ is of type $\{0,1\}^2 \rightarrow \{0,1\}$
 - same diode-resistor logic as in binary case can be used for multiple-valued functions

Example of literals f^0, f^1, f^2

3-valued $\text{MIN}(x,y)$ gate

4-valued adder

- In the paper, we show a design of a 4-valued adder implemented in the molecular logic array using 16 x 16 grid
- It is smaller than a 2-bit binary adder implemented in the molecular logic array

Conclusion

- It is possible to implement multiple-valued functions with chemically assembled electronic nanotechnology using the same diode-resistor logic as in binary case
- Multiple-valued designs can be more compacts than binary ones implementing the same functionality
- The idea can be extended to other non-silicon technologies

Open problems

- In general, mapping a multiple-valued function in a molecular array is a harder problem
 - a complete suite of associated algorithms is still not available
- Some multiple-valued synthesis and optimization tools exist, but they are not as mature as binary tools
 - MVSIS, University of California at Berkeley