NSF Science and engineering workshop

Nanocomputing design science challenges

George Bourianoff Intel Corporation and Semiconductor Research Corporation CMU Pittsburgh, Pa Nov 17 and 18, 2002

Thesis

- Conventional scaling of CMOS will end in near term (10 to 15 years)
- That will be followed by a period of heterogeneous integrations of dissimilar technologies on silicon based platforms in the intermediate term (10-20 years)
- Finally, radical new scalable information processing technologies will emerge in the far term (> 20 years)

Goal

 Define the design sciences required to integrate novel information processing technologies with existing computational infrastructure in an evolutionary manner

Outline

- **♦**CMOS forever
 - Scaled silicon and the ITRS
 - The foundations of scaling
 - The economics of scaling
 - CMOS device circa 2015
- ◆Alternative technologies
 - A universe of options
 - Selection criteria
- ◆Age of integration –CMOS + other stuff
- ◆Conclusions

Source: ICE

Alternative technologies

Which technologies will dominate?

- ◆Economic relevance criteria
 - The risk adjusted ROI for any new technology must exceed that of silicon
- Caution
 - Sufficiently advanced technologies will create their own applications. New technologies cannot necessarily be justified by current day applications.

Which technologies will dominate? What are the selection criteria?

- ♦ Energy efficiency
- CMOS compatibility
- ♦ Performance
- Scalability
- ◆ Architectural compatibility
- ♦ Sensitivity to parametric variation
- ♦ Room temperature operation
- ◆ Stability and reliability

Age of integration

Changing architectural paradigms Current **Future** Boolean logic Neural networks, CNN, Binary data representation QCA,.. Associative, patterned, memory based, ... data representations ♦ 2D ♦ 3D Homogeneous Non homogeneous Globally interconnected Nearest neighbor Synchronous Asynchronous Von Neuman Integrated memory/logic 3 terminal 2 terminal

System software design needs to facilitate emerging technologies Challenge

- CMOS is based on Boolean logic and binary data representation
- Alternative technologies will require "native" logic systems and data representations to optimize their performance

Solution?

 Design science must provide functional abstractions and interfaces to couple multiple, dissimilar technologies into a single functional system

ANCHITECTURE 3.D INTEGRATION OF CONTROL AND CONTROL AN

Quantum computing

- Non charge encoded logic and signaling
 - Quantum phase information
- New applications
- Exponential speedups
- Secure information transmission
- Extreme sensitivity to everything

Conclusions

- Scaled CMOS will dominate microelectronics for next 15 years and provide the common platform indefintely
- Alternative technologies will require native logic systems and data representations to be developed
- ◆Integration and market acceptance will require functional abstraction and transparent interfaces