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Thesis Question

What algorithms can be used by
an automated coach agent to
provide advice to one or more
agents in order to improve their

performance?
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Outline

• Prologue

� Robot soccer environment
� Coaching sub-questions

3
Patrick Riley

Thesis Defense



Outline

• Prologue

� Robot soccer environment
� Coaching sub-questions

• Technical sections

� Matching opponents to models
� Learning/using environment models

3
Patrick Riley

Thesis Defense



Outline

• Prologue

� Robot soccer environment
� Coaching sub-questions

• Technical sections

� Matching opponents to models
� Learning/using environment models

• Epilogue

� Relation to previous work
� Review/overview of thesis contributions
� Future work
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Motivating Environment:
Simulated Robot Soccer

• Real time constraints

• Noisy actions

• Noisy and incomplete
sensation

• Near continuous
state/action spaces

• 22 distributed player agents
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Simulated Robot Soccer: Coaching

• Coach agent with global view and limited communication

� Coach does not see agent actions or intentions
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Simulated Robot Soccer: Coaching

• Coach agent with global view and limited communication

� Coach does not see agent actions or intentions

• Community created standard advice language named CLang

� Rule based
� Conditions are logical combinations of world state atoms
� Actions are recommended macro-actions like passing and
positioning

• Basis for 4 years of coach competitions at RoboCup events

� Run different coaches with same teams
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My Questions in Coaching
• What can the coach learn from observations?

� Opponent models; learn and/or select from given set
� Learn environment models
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My Questions in Coaching
• What can the coach learn from observations?

� Opponent models; learn and/or select from given set
� Learn environment models

• How can models be used to get desired actions for agents?

� Plan a response to predicted behavior
� Imitate a good team
� Solve for universal plan

• Once the coach has desired actions, how does the coach
adapt advice to the agent abilities?

• What format does advice take?
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How to Study Coaching?

• Isolate questions with various domains

Adapt

Advice Use

Models

Learn

Models

Format

Advice
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Opponent Models
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Why Opponent Models?

• Dealing with opponents is a fertile area for advice

• Adapting to current opponent canmeanbetter performance
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Predicting Opponent Movement
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Predicting Opponent Movement
M : SW × Sp

O ×A → Rp
O

M Opponent model

SW Set of world states

p Players per team

SO Set of opponent states

A Planned actions of our team

RO Probability distribution
over opponent states
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Predicting Opponent Movement
M : SW × Sp

O ×A → Rp
O

M Opponent model

SW Set of world states

p Players per team

SO Set of opponent states

A Planned actions of our team

RO Probability distribution
over opponent states

• Use predicted opponent movement to plan team actions
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Selecting Between Opponent Models

• Online, must make quick decisions with small amounts of
data

• Rather than learning a new model from scratch, coach will
select between models from a prede�ned set
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Selecting Between Opponent Models

• Online, must make quick decisions with small amounts of
data

• Rather than learning a new model from scratch, coach will
select between models from a prede�ned set

• Model chosen affects the plan generated

Model 1 Model 2 Model 3 Model 4 Model 5
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Selecting Between Opponent Models
• Maintain probability distribution over set of models P [Mi]

• Use observation o = (w, s, a, e) to update with naive Bayes

w World state (ball location)
s Starting opponent states (locations)
a Team actions (ball movement)
e Ending opponent states (locations)
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Selecting Between Opponent Models
• Maintain probability distribution over set of models P [Mi]

• Use observation o = (w, s, a, e) to update with naive Bayes

w World state (ball location)
s Starting opponent states (locations)
a Team actions (ball movement)
e Ending opponent states (locations)

P [Mi|o] = P [e1|w, s, a, Mi]P [e2|w, s, a, Mi] . . . P [ep|w, s, a, Mi]︸ ︷︷ ︸
what opponent model calculates

P [w, s, a]
P [o]︸ ︷︷ ︸

norm. constant

P [Mi]︸ ︷︷ ︸
prior
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Can Models Be Recognized?

We presented an algorithm to select a model from
a set. Does it select the correct one?
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Can Models Be Recognized?

We presented an algorithm to select a model from
a set. Does it select the correct one?

• De�ne a set of �ve models

• De�ne a set of teams that (mostly) act like the models

• Observe each of the �ve teams playing while the coach
makes plans

• For each of the teams, how often is the correct model
selected?
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Recognition Results
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Environment Models
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Environment Model?

• Model the effects of possible agent actions on the state of
the world

� Our algorithms learn an abstract Markov Decision Process
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Environment Model?

• Model the effects of possible agent actions on the state of
the world

� Our algorithms learn an abstract Markov Decision Process

• A coach must have some knowledge to provide advice

• An environment model can be solved to get a desired action
policy for the agents
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Observations, ..., Advice

Observations
of Past
Execution

Advice
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What are Observations?
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What are Observations?

t, score, play mode,
〈xball, yball,∆xball,∆yball〉
〈x1, y1,∆x1∆y1, θ

B
1 , θN

1 , view1, . . .〉
〈x2, y2,∆x2∆y2, θ

B
2 , θN

2 , view2, . . .〉
...
〈x22, y22,∆x22∆y22, θ

B
22, θ

N
22, view22, . . .〉
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What are Observations?

t, score, play mode,
〈xball, yball,∆xball,∆yball〉
〈x1, y1,∆x1∆y1, θ

B
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1 , view1, . . .〉
〈x2, y2,∆x2∆y2, θ

B
2 , θN

2 , view2, . . .〉
...
〈x22, y22,∆x22∆y22, θ

B
22, θ

N
22, view22, . . .〉

• Only state, no actions

� But produced by agents taking actions

• Externally visible global view

• Observation logs exists for many processes, not just soccer
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Observations, Markov Chain, ..., Advice

Observations
of Past
Execution

Advice

Abstract
Markov Chain
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Observations to Markov Chain

Observed
Executions

Observed
State
Transitions
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State Abstraction in Robot Soccer

Goal
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State Abstraction in Robot Soccer

Goal Ball possession
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State Abstraction in Robot Soccer

Goal Ball possession

Ball grid
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State Abstraction in Robot Soccer

Goal Ball possession

Ball grid Player occupancy
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Observations to Markov Chain: Formalism

Observation
Data

State
Abstract

s′
i ∈ S

s′
9 → s′

3 → s′
2 → s′

7...

s′
3 → s′

9 → s′
3 → s′

2...

〈S̄, B: S → S̄ ∪ ε〉

S Set of observation states

S̄ Set of abstract states

B Abstraction function

TMC Transition function
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Combine
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S Set of observation states
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B Abstraction function
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Observations, MC, MDP, ..., Advice

Observations
of Past
Execution

Advice

Abstract
Markov Chain State Action

Abstract Abstract

Instantiate
Abstract
Actions

Abstract MDP
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Markov Chain to MDP

How to infer actions from Markov Chain?

• Solution: Introduce abstract
action templates

� Sets of primary and
secondary transitions

� Non-deterministic, but no
probabilities
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Markov Chain to MDP

How to infer actions from Markov Chain?

• Solution: Introduce abstract
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Markov Chain to MDP

How to infer actions from Markov Chain?

• Solution: Introduce abstract
action templates

� Sets of primary and
secondary transitions

� Non-deterministic, but no
probabilities

s7

s0
s1

s2
s0

s3

s7
s4

s1

a

Primary Secondary

a

• Same action templates for different agents
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Markov Chain to MDP: Example

s1

s2

s3

s0 .3

.1

.6

Markov Chain

State
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Markov Chain to MDP: Example
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Observations, MC, MDP, Policy, Advice

Observations
of Past
Execution

Advice

Abstract
Markov Chain State Action

Abstract Abstract

Instantiate
Abstract
Actions

Abstract MDP

Policy
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Adding Rewards

• We have learned an abstract transition model

� MDP is currently reward-less
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Adding Rewards

• We have learned an abstract transition model

� MDP is currently reward-less

• Model can not be solved for an action policy until rewards
are added

• The same transition model can be used for many different
reward signals
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MDP to Advice

MDP
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MDP to Advice

MDP Reward
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MDP to Advice

MDP Reward
Signal

+ = Policy
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Formalism

Chain
Markov

〈S̄, TMC〉

S̄ Set of abstract states

Ā Set of abstract actions

Cp, Cs Primary, Secondary
transition descriptions
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(Abstract) MDP
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Formalism

Chain
Markov

〈S̄, TMC〉

Actions
Associate

Abstract Actions

〈Ā, Cp, Cs〉

〈S̄, Ā, TMDP , R〉

(Abstract) MDP

Add rewards Reward
R(Abstract) MDP

with reward

〈S̄, Ā, TMDP , R〉

S̄ Set of abstract states

Ā Set of abstract actions

Cp, Cs Primary, Secondary
transition descriptions
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Empirical: Flawed Opponent
Can our learning algorithm exploit an opponent's strategy?
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30
Patrick Riley

Thesis Defense



Empirical: Flawed Opponent
Can our learning algorithm exploit an opponent's strategy?

• Test against a team with a �aw that we program

� Known set of states and actions will have high value

• Opponent team (on right) will not go into corridor below
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Empirical: Flawed Opponent Results
Training

Team Score Difference Mean Ball X % Attacking
SM
EKA
CM4
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Empirical: Flawed Opponent Results
Training

Team Score Difference Mean Ball X % Attacking
SM 12.2 [11.3, 13.2] 19.0 [18.93, 19.11] 43%
EKA 7.3 [6.5, 8.1] 14.6 [14.47, 14.65] 35%
CM4 0.7 [0.4, 1.0] 1.1 [1.04, 1.16] 24%
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Empirical: Flawed Opponent Results
Training

Team Score Difference Mean Ball X % Attacking
SM 12.2 [11.3, 13.2] 19.0 [18.93, 19.11] 43%
EKA 7.3 [6.5, 8.1] 14.6 [14.47, 14.65] 35%
CM4 0.7 [0.4, 1.0] 1.1 [1.04, 1.16] 24%

Testing
CM4 3.1 [2.5, 3.7] 9.5 [9.46, 9.64] 35%
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Empirical: Flawed Opponent Results

• Each dot represents a location of the ball when our team
owned the ball

Training
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Empirical: Flawed Opponent Results

• Each dot represents a location of the ball when our team
owned the ball

Training Testing
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Soccer is Complicated!
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Soccer is Complicated!

• Team of advice receivers

• Team of opponents

• Infrequent, hard to achieve reward

� Unclear evaluation metrics

• Unknown optimal policy
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Introducing RCSSMaze
• Continuous state/action spaces, partial observability

Start
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Introducing RCSSMaze
• Continuous state/action spaces, partial observability

• Single executing agent receiving advice

� �Wall� agents execute �xed movement behaviors

Start
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Introducing RCSSMaze
• Continuous state/action spaces, partial observability

• Single executing agent receiving advice

� �Wall� agents execute �xed movement behaviors

• We approximately know the optimal policy

Start

34
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RCSSMaze Training
Can our algorithm learn a model for effective advice?
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RCSSMaze Training
Can our algorithm learn a model for effective advice?

• Training data (240 minutes)

� Agent randomly picks one of given points
� Heads directly to point until reached or reset to start
� 5% of time, heads in a random direction

Start

35
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RCSSMaze Rewards

• We can put reward wherever we want

Reward 1

Reward 0

Reward 2
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RCSSMaze Results

• A trial begins when the agent is at the start state

• A trial ends when

� A positive reward is received
� The agent is reset to the start state

• A successful trial is one that receives positive reward
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RCSSMaze Results

• A trial begins when the agent is at the start state

• A trial ends when

� A positive reward is received
� The agent is reset to the start state

• A successful trial is one that receives positive reward

Reward % in Training % with MDP
0 < 1% 64%
1 1% 60%
2 7% 93%
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MDP Learning and Other Domains

• We used the MDP for advice, but environment models are
useful in other contexts
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MDP Learning and Other Domains

• We used the MDP for advice, but environment models are
useful in other contexts

• Algorithm inputs

� External observations (do not need to see inside agents'
heads)

� Abstract state space
� Abstract action templates
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MDP Learning and Other Domains

• We used the MDP for advice, but environment models are
useful in other contexts

• Algorithm inputs

� External observations (do not need to see inside agents'
heads)

� Abstract state space
� Abstract action templates

• Apply any reward function

38
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Summary and
Previous and Future Work
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Coaching and Previous Work
Intelligent Tutoring Systems

• Systems to instruct human students

• Generally used with complete and correct expert model

• Focused on humans
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Coaching and Previous Work
Intelligent Tutoring Systems

• Systems to instruct human students

• Generally used with complete and correct expert model

• Focused on humans

Agents Taking Advice

• Lots of Reinforcement Learning [e.g. Maclin and Shavlik,
1996]

• How to operationalize advice? [e.g. Mostow, 1981]

• Use some similar techniques to incorporate advice, but real
concern is giving advice
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Coaching and Previous Work
Abstract/Factored Markov Decision Processes

• Ef�cient reasoning by learning/using abstractions [e.g.
Dearden and Boutilier, 1997, Uther and Veloso, 2002]

• Factored representations [Dean and Kanazawa, 1989] and
their applications [e.g. Guestrin et al., 2001]
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Coaching and Previous Work
Abstract/Factored Markov Decision Processes

• Ef�cient reasoning by learning/using abstractions [e.g.
Dearden and Boutilier, 1997, Uther and Veloso, 2002]

• Factored representations [Dean and Kanazawa, 1989] and
their applications [e.g. Guestrin et al., 2001]

Coaching in Robot Soccer

• This thesis grew with and helped de�ne this �eld

• Early coachingwork dealt with formations [Takahashi, 2000]

• ISAAC [Raines et al., 2000]

• Opponent modeling [Steffens, 2002, Kuhlmann et al., 2004]
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Big Picture Summary

Advice to Agents

Observations

from

Environment

42
Patrick Riley

Thesis Defense



Big Picture Summary

Advice to Agents

Observations

from

Environment

Observations

Current

(Logs)

Observations

Past

42
Patrick Riley

Thesis Defense



Big Picture Summary

Advice to Agents

Observations

from

Environment

Observations

Current

(Logs)

Observations

Past

Advice Formatting

42
Patrick Riley

Thesis Defense



Big Picture Summary

Advice to Agents

Observations

from

Environment

Observations

Current

(Logs)

Observations

Past

Advice Formatting

Learning Expert’s

Coding

Models

Opponent

Model

Selection

Planning Response

42
Patrick Riley

Thesis Defense



Big Picture Summary

Advice to Agents

Observations

from

Environment

Observations

Current

(Logs)

Observations

Past

Advice Formatting

Learning Expert’s

Coding

Models

Opponent

Model

Selection

Planning Response

Learning

Models

Environment

Policy Solver

Policies

42
Patrick Riley

Thesis Defense



Big Picture Summary

Advice to Agents

Observations

from

Environment

Observations

Current

(Logs)

Observations

Past

Advice Formatting

Learning Expert’s

Coding

Models

Opponent

Model

Selection

Planning Response

Learning

Models

Environment

Policy Solver

Policies
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Contributions
• Several opponent model representations, with learning and
advice generation algorithms (in robot soccer)

• Algorithms for learning an abstract MDP from observations,
given state abstraction, and abstract action templates

• Study of adapting advice in a predator-prey environment
considering limitation and communication bandwidth

• Multi-Agent Simple Temporal Networks: novel multi-agent
plan representation and accompanying execution algorithm

• Largest empirical study of coaching in simulated robot soccer
(5000 games/2500 hours)
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Future Work: Abstract MDP Learning

• Recursive Learning and Veri�cation of Abstract Markov
Decision Processes

• Learning Hierarchical Semi-Markov Decision Processes from
External Observation

• Re�ning State Abstractions for Markov Decision Process
Learning
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Future Work:
Adapting to Advice Receivers

• Learning About Agents While Giving Advice

• Talking Back: How Advice Receivers Can Help Their Coaches

• What I See and What I Don't: What a Coach Needs to Know
About Partial Observability
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Questions?

?
46
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Why is the Coach a Separate Agent?

• Some of the reasoning described could be done by a single
executing agent

• Advice language provides abstraction to work across agents

• Agent systems will be more distributed
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Why Coaching?

Disclaimer: This isn't a philosophy talk

Coach/agent separation is a forced distribution

• Why would/should one make their agent system like this?

• Agent systems will be more distributed � how will agents
interact?

• Knowledge transfer will not always be easy
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Coaching Problem Properties

• Team goals

• External, observing coach

• Advice, not control

• Access to past behavior logs

• Advice at execution, not training
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Coaching Problem Dimensions

• Online vs. of�ine learning

• One-time vs occasional vs. continual advice

• Advice as actions vs. macro-actions vs. plans
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Coaching General Lessons

• The coach and advice receivers are a tightly coupled system

• Coach learning will require iteration to achieve the best
performance

• A tradeoff exists in how much of the state space to cover
with advice versus how good the advice is

• Different observability by the coach and agents can be
ignored somewhat, but will need to be considered at times

• Analyzing the past behavior of an agent is most useful only
if the future will look similar to the past
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Empirical: Circle Passing

• By using a domain smaller than the whole soccer game, can
better isolate effects

• Setup

� Give the players a �xed action strategy
� Because of noise, coach will see other possible action
results

• Coach learns a model, then gives advice

• Different rewards lead to different agent behaviors
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Circle Passing: Setup

• Six players trying to pass in a
circle

• Not all passes are successful

• Some kicks result in passes to
other players or a dribble
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Circle Passing: Reward

• Can apply any reward
function

• We'll describe one (more
in the thesis)

• In the middle (miskicks
from several players go
here)
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Circle Passing: Results

• We consider a trial a success if:

� From a random starting position
� Reward is received within 200 cycles (20 seconds)

Success % During Training 40%
Success % With Advice 88%
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RCSSMaze: Recursive Learning

# Rew. (Training) % Success (Testing)
Training
Data

R0 R1 R2 R0 R1 R2

Original 11 115 1055 64% 60% 93%
From R0 676 0 0 82% n/a n/a
From R1 1 2909 0 0% 67% n/a
From R2 0 0 9088 n/a n/a 78%
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