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Thesis Question

What algorithms can be used by
an automated coach agent to
provide advice to one or more

agents in order to improve their

performance?
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Outline

e Prologue

— Robot soccer environment
— Coaching sub-questions
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Outline

e Prologue

— Robot soccer environment

— Coaching sub-questions
e Technical sections

— Matching opponents to models

— Learning/using environment models
e Epilogue

— Relation to previous work
— Review/overview of thesis contributions
— Future work
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Motivating Environment:
Simulated Robot Soccer

ATTCHUN | ted2000: 0 playon 1720 © CHUnited9s: 0

e Real time constraints
e Noisy actions

e Noisy and incomplete
sensation

e Near continuous
state/action spaces

e 22 distributed player agents
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Simulated Robot Soccer: Coaching

e Coach agent with global view and limited communication

— Coach does not see agent actions or intentions
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Simulated Robot Soccer: Coaching

e Coach agent with global view and limited communication

— Coach does not see agent actions or intentions

e Community created standard advice language named CLang

— Rule based

— Conditions are logical combinations of world state atoms

— Actions are recommended macro-actions like passing and
positioning

e Basis for 4 years of coach competitions at RoboCup events

— Run different coaches with same teams
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My Questions in Coaching

e \What can the coach learn from observations?

— Opponent models; learn and/or select from given set
— Learn environment models
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My Questions in Coaching

e \What can the coach learn from observations?
— Opponent models; learn and/or select from given set
— Learn environment models
e How can models be used to get desired actions for agents?

— Plan a response to predicted behavior
— Imitate a good team
— Solve for universal plan

e Once the coach has desired actions, how does the coach
adapt advice to the agent abilities?

e \What format does advice take?

g Patrick Riley
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How to Study Coaching?

e Isolate questions with various domains

Advice
Format
Learn
Adapt Models
Advice Use
Models
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How to Study Coaching?

e Isolate questions with various domains

Soccer

Advice
Format

sub-game

Predator
Prey

Adapt
Advice

RCSSMaze

Soccer
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Opponent Models
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Why Opponent Models?

e Dealing with opponents is a fertile area for advice

e Adapting to current opponent can mean better performance
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Predicting Opponent Movement

M : SWngX.AHR%

[istributions output by jnodel

te

Opponent
Position

Current
Opponent

Position Ball Movement

..
Current

M Opponent model

Sy Set of world states

p Players per team

So Set of opponent states

A Planned actions of our team

Ro Probability distribution
over opponent states

e Use predicted opponent movement to plan team actions

X

Patrick Riley
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Selecting Between Opponent Models

e Online, must make quick decisions with small amounts of
data

e Rather than learning a new model from scratch, coach will
select between models from a predefined set
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Selecting Between Opponent Models

e Online, must make quick decisions with small amounts of

data

e Rather than learning a new model from scratch, coach will

select between models from a predefined set

e Model chosen affects the plan generated
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Selecting Between Opponent Models

e Maintain probability distribution over set of models P[]

e Use observation o = (w, s, a, ¢) to update with naive Bayes

w World state (ball location)

s Starting opponent states (locations)
a Team actions (ball movement)

e Ending opponent states (locations)
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Selecting Between Opponent Models

e Maintain probability distribution over set of models P[]

e Use observation o = (w, s, a, ¢) to update with naive Bayes

w World state (ball location)

s Starting opponent states (locations)
a Team actions (ball movement)

e Ending opponent states (locations)

P[M;lo] = Plei|w,s,a, M;]Ples|w,s,a, M;] ... Pley|w, s, a, M;]

what opponent model calculates

P
[w7 87 a] P[MZ]
P[O] ~——
8 ~  prior

TV
norm. constant
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Can Models Be Recognized?

We presented an algorithm to select a model from
a set. Does it select the correct one?
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Can Models Be Recognized?

We presented an algorithm to select a model from
a set. Does it select the correct one?

e Define a set of five models
e Define a set of teams that (mostly) act like the models

e Observe each of the five teams playing while the coach
makes plans

e For each of the teams, how often is the correct model
selected?
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Recognition Results

Probability Correct Recognition
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Environment Model?

e Model the effects of possible agent actions on the state of
the world

— Our algorithms learn an abstract Markov Decision Process
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Environment Model?

e Model the effects of possible agent actions on the state of
the world

— Our algorithms learn an abstract Markov Decision Process

e A coach must have some knowledge to provide advice

e An environment model can be solved to get a desired action
policy for the agents

g Patrick Riley
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Observations, ..., Advice
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What are Observations?
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What are Observations?

t, score, play mode,

(Tpall, Yoall, ATpall, AYball)

<331 Y1, AZElAyl, (91 ,(91 ,VleW1, .. >
<332, Y2, AZUQAyQ, (92 , (92 7VleW27 .. >

B gN i
<96227 Y22, AT22AY22, 055, 055, VieWas, . . .)
e Only state, no actions

— But produced by agents taking actions

e Externally visible global view

e Observation logs exists for many processes, not just soccer

g Patrick Riley
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Observations, Markov Chain, ..., Advice
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Observations to Markov Chain
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State Abstraction in Robot Soccer
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State Abstraction in Robot Soccer

Ball possession
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State Abstraction in Robot Soccer
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State Abstraction in Robot Soccer
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Observations to Markov Chain: Formalism
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Observations, MC, MDP, ..., Advice
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Markov Chain to MDP

How to infer actions from Markov Chain?

e Solution: Introduce abstract
action templates

— Sets of primary and
secondary transitions

— Non-deterministic, but no
probabilities
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Markov Chain to MDP
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e Solution: Introduce abstract
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Markov Chain to MDP

How to infer actions from Markov Chain?

e Solution: Introduce abstract
action templates

: a @ —
— Sets of primary and 50—
secondary transitions (s2) =>(s7)

— Non-deterministic, but no a —(s3)

probabilities SD—> —>(::)

e Same action templates for different agents

Primary Secondary
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Markov Chain to MDP: Example
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Markov Chain to MDP: Example
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Observations, MC, MDP, Policy, Advice
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Adding Rewards

e \We have learned an abstract transition model

— MDP is currently reward-less
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Adding Rewards

e \We have learned an abstract transition model

— MDP is currently reward-less

e Model can not be solved for an action policy until rewards
are added

e The same transition model can be used for many different
reward signals

g Patrick Riley
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MDP to Advice

Patrick Riley
Thesis Defense



MDP to Advice

Reward
Signal

28
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MDP to Advice
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Formalism

<Sa TMC’>

Chain

S Set of abstract states C,,Cs Primary, Secondary

A Set of abstract actions transition descriptions
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Formalism
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Formalism
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Formalism
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Empirical: Flawed Opponent

Can our learning algorithm exploit an opponent’s strategy?
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Empirical: Flawed Opponent

Can our learning algorithm exploit an opponent’s strategy?

e Test against a team with a flaw that we program

— Known set of states and actions will have high value

e Opponent team (on right) will not go into corridor below

¢

N
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Empirical: Flawed Opponent Results

Training

Team Score Difference Mean Ball X % Attacking
SM

EKA
CMgy

g Patrick Riley
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Empirical: Flawed Opponent Results

Training
Team Score Difference Mean Ball X % Attacking
SM 12.2 [11.3,13.2] 19.0 [18.93,19.11] 43%
EKA 7.316.5,81] 14.6 [14.47,14.65 35%
CMg4 0.7 [0.4,1.0] 1.1[1.04,1.16 24%
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Empirical: Flawed Opponent Results

Training
Team Score Difference Mean Ball X % Attacking
SM 12.2 [11.3,13.2] 19.0 [18.93,19.11] 43%
EKA 7.316.5,81] 14.6 [14.47,14.65 35%
CMg4 0.7 [0.4,1.0] 1.1[1.04,1.16 24%
Testing
CMg 3.1 [2.5,3.7] 9.5 [9.46, 9.64] 35%

CH4 EEKRA S5H
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Empirical: Flawed Opponent Results

e Each dot represents a location of the ball when our team
owned the ball

|
|
:
|

Training
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Empirical: Flawed Opponent Results

e Each dot represents a location of the ball when our team
owned the ball

Training Testing

g Patrick Riley
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Soccer is Complicated!
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Soccer is Complicated!

e Team of advice receivers
e Team of opponents

e Infrequent, hard to achieve reward

— Unclear evaluation metrics

e Unknown optimal policy

g Patrick Riley
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Introducing RCSSMaze

e Continuous state/action spaces, partial observability
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- "Wall" agents execute fixed movement behaviors
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Introducing RCSSMaze

e Continuous state/action spaces, partial observability
e Single executing agent receiving advice
- "Wall" agents execute fixed movement behaviors

e We approximately know the optimal policy

Start S




RCSSMaze Training

Can our algorithm learn a model for effective advice?
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RCSSMaze Training

Can our algorithm learn a model for effective advice?

e Training data (240 minutes)

- Agent randomly picks one of given points
— Heads directly to point until reached or reset to start
— 5% of time, heads in a random direction

Start

R,
8

-

_+_

8
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RCSSMaze Rewards

e \We can put reward wherever we want

Reward 1

g Patrick Riley
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RCSSMaze Results

e A trial begins when the agent is at the start state

e A trial ends when

— A positive reward is received
— The agent is reset to the start state

e A successful trial is one that receives positive reward

g Patrick Riley
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RCSSMaze Results

e A trial begins when the agent is at the start state

e A trial ends when

— A positive reward is received
— The agent is reset to the start state

e A successful trial is one that receives positive reward

Reward % in Training % with MDP

0 < 1% 64%
1 1% 60%
2 7% 93%
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MDP Learning and Other Domains

e We used the MDP for advice, but environment models are
useful in other contexts
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MDP Learning and Other Domains

e We used the MDP for advice, but environment models are
useful in other contexts

e Algorithm inputs

— External observations (do not need to see inside agents’

heads)
— Abstract state space
— Abstract action templates
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MDP Learning and Other Domains

e We used the MDP for advice, but environment models are
useful in other contexts

e Algorithm inputs

— External observations (do not need to see inside agents’

heads)
— Abstract state space
— Abstract action templates

e Apply any reward function

g Patrick Riley
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Summary and
Previous and Future Work
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Coaching and Previous Work
Intelligent Tutoring Systems

e Systems to instruct human students
e Generally used with complete and correct expert model

e Focused on humans
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Coaching and Previous Work
Intelligent Tutoring Systems

e Systems to instruct human students
e Generally used with complete and correct expert model

e Focused on humans
Agents Taking Advice

e Lots of Reinforcement Learning [e.g. Maclin and Shauvlik,
1996]

e How to operationalize advice? [e.g. Mostow, 1981]

e Use some similar techniques to incorporate advice, but real
concern is giving advice

g Patrick Riley
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Coaching and Previous Work
Abstract/Factored Markov Decision Processes

e Efficient reasoning by learning/using abstractions [e.q.
Dearden and Boutilier, 1997, Uther and Veloso, 2002]

e Factored representations [Dean and Kanazawa, 1989] and
their applications [e.g. Guestrin et al., 2001]
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Coaching and Previous Work
Abstract/Factored Markov Decision Processes

e Efficient reasoning by learning/using abstractions [e.q.
Dearden and Boutilier, 1997, Uther and Veloso, 2002]

e Factored representations [Dean and Kanazawa, 1989] and
their applications [e.g. Guestrin et al., 2001]

Coaching in Robot Soccer

e This thesis grew with and helped define this field
e Early coaching work dealt with formations [Takahashi, 2000]
e ISAAC [Raines et al., 2000]

e Opponent modeling [Steffens, 2002, Kuhlmann et al., 2004]

g Patrick Riley
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Contributions

e Several opponent model representations, with learning and
advice generation algorithms (in robot soccer)

e Algorithms for learning an abstract MDP from observations,
given state abstraction, and abstract action templates

e Study of adapting advice in a predator-prey environment
considering limitation and communication bandwidth

e Multi-Agent Simple Temporal Networks: novel multi-agent
plan representation and accompanying execution algorithm

e Largest empirical study of coaching in simulated robot soccer
(5000 games/2500 hours)

g Patrick Riley
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Future Work: Abstract MDP Learning

e Recursive Learning and Verification of Abstract Markov
Decision Processes

e Learning Hierarchical Semi-Markov Decision Processes from
External Observation

e Refining State Abstractions for Markov Decision Process
Learning

g Patrick Riley
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~ Future Work:
Adapting to Advice Receivers

e Learning About Agents While Giving Advice
e Talking Back: How Advice Receivers Can Help Their Coaches

e \What | See and What | Don’t: What a Coach Needs to Know
About Partial Observability

g Patrick Riley
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Questions?

Patrick Riley
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Why is the Coach a Separate Agent?

e Some of the reasoning described could be done by a single
executing agent

e Advice language provides abstraction to work across agents

e Agent systems will be more distributed

g Patrick Riley
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Why Coaching?

Disclaimer: This isn’t a philosophy talk

Coach/agent separation is a forced distribution

e Why would/should one make their agent system like this?

e Agent systems will be more distributed — how will agents
Interact?

e Knowledge transfer will not always be easy

g Patrick Riley
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Coaching Problem Properties

e Team goals

e External, observing coach

e Advice, not control

e Access to past behavior logs

e Advice at execution, not training

g Patrick Riley
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Coaching Problem Dimensions

e Online vs. offline learning
e One-time vs occasional vs. continual advice

e Advice as actions vs. macro-actions vs. plans

g Patrick Riley
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Coaching General Lessons

e The coach and advice receivers are a tightly coupled system

e Coach learning will require iteration to achieve the best
performance

e A tradeoff exists in how much of the state space to cover
with advice versus how good the advice is

e Different observability by the coach and agents can be
ignored somewhat, but will need to be considered at times

e Analyzing the past behavior of an agent is most useful only
if the future will look similar to the past

g Patrick Riley
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Empirical: Circle Passing

e By using a domain smaller than the whole soccer game, can
better isolate effects

e Setup

— Give the players a fixed action strategy
— Because of noise, coach will see other possible action
results

e Coach learns a model, then gives advice

e Different rewards lead to different agent behaviors

g Patrick Riley
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Circle Passing: Setup

e Six players trying to pass in a
circle

e Not all passes are successful

e Some kicks result in passes to
other players or a dribble

3 4 5 6
'\\$
* 13 | 14 15*\ 16
ag3 | 24| o5
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Circle Passing: Reward

e Can apply any reward

function

e We'll describe one (more
in the thesis)

e In the middle (miskicks
from several players go
here)

3 4 5 6
*
13 | 14| 15% 18
ag | “24| 95| 28
—_ .._
33 35 | 36
a3 aa| 5% as
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Circle Passing: Results

e \We consider a trial a success if:

— From a random starting position
— Reward is received within 200 cycles (20 seconds)

Success % During Training | 40%
Success % With Advice 88%

g Patrick Riley
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RCSSMaze: Recursive Learning

# Rew. (Training)

% Success (Testing)

Training Ro R1 R2 Ro R1 R2
Data

Original 11 115 1055 64% 60% 93%
From Ro 676 0 0 82% nla n/a
From R1 1 2909 0 0% 67% n/a
From R2 0 0 9088 n/a nl/a 78%
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