
Collaboration Using Multiple PDAs Connected to a PC
Brad A. Myers Herb Stiel Robert Gargiulo

Human Computer Interaction Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
bam@cs.cmu.edu

http://www.cs.cmu.edu/~pebbles

ABSTRACT

The Pebbles project is creating applications to connect
multiple Personal Digital Assistants (PDAs) to a main com-
puter such as a PC. We are using 3Com PalmPilots because
they are starting to be ubiquitous. We created the “Remote
Commander” application to allow users to take turns send-
ing input from their PalmPilots to the PC as if they were
using the PC’s mouse and keyboard. “PebblesDraw” is a
shared whiteboard application we built that allows all of the
users to send input simultaneously while sharing the same
PC display. We are investigating the use of these applica-
tions in various contexts, such as co-located meetings.

Keywords: Personal Digital Assistants (PDAs), PalmPilot,
Single Display Groupware, Pebbles, Amulet.

INTRODUCTION

There are certain kinds of meetings, including design re-
views, brainstorming sessions, and organization meetings,
where a PC is used to display slides or a current plan, and
the people in attendance provide input. Many conference
and presentation rooms today have built-in facilities for
projecting a PC onto a large screen, and various inexpen-
sive technologies are available for rooms that do not. When
a PC is used as part of the presentation, often different peo-
ple will want to take turns controlling the mouse and
keyboard. For example, they might want to try out the sys-
tem under consideration, to investigate different options, or
to add their annotations. With standard setups, they will
have to awkwardly swap places with the person at the PC.

We observed that at most meetings and talks, attendees do
not bring their laptops, probably because they are awkward
and slow to set up, the batteries may not last long enough,
and there is a social stigma against typing during meetings.
Today, however, many people are taking notes on their
PalmPilots. A PalmPilot is a small “Personal Digital As-
sistant (PDA)” from 3Com with a 3¼ inch diagonal LCD
display screen which is touch sensitive, and a small input
area for printing characters using a special alphabet (see

Figure 1). PalmPilots have the advantages that they are
small, they turn on instantly, the batteries last for weeks,
and notes are taken by writing silently with a stylus. Since
people have the PalmPilots in their hands anyway, we de-
veloped a set of applications to explore how these
PalmPilots could be used to allow everyone to provide
mouse and keyboard input to the PC without leaving their
seats. We call this the “Remote Commander.”

Once the PDAs are connected to the PC, many other in-
triguing applications become available. In addition to the
Remote Commander, we also created a shared drawing pro-
gram, named PebblesDraw, that allows everyone to draw
simultaneously. In creating PebblesDraw, we had to solve a
number of interesting problems with the standard widgets
such as selection handles, menubars and palettes. Since this
is a Single Display Groupware (SDG) application, all users
are sharing the same screen and therefore the same widgets.
Palettes, such as those to show the current drawing mode or
the current color, normally show the current mode by high-
lighting one of the items in the palette. This no longer
works if there are multiple people with different modes.
Furthermore, the conventional menubars at the top of the
window or screen are difficult to use in multi-user situations
for technical reasons, and also because they may pop up on
top of a different user’s activities. The conventional way to
identify different users is by assigning each a different
color, but in a drawing program, each user might want to
select what color is being used to draw, causing confusion
between the color identifying the user, and the color with
which the user will draw. We therefore developed a new
set of interaction techniques to more effectively support
Single Display Groupware.

This research is being performed as part of the Pebbles
project. Pebbles stands for: PalmPilots for Entry of Both
Bytes and Locations from External Sources.1 This paper
summarizes the PalmPilot’s features, and then describes the
first two applications: Remote Commander, which allows
the PalmPilots to control the PC, and PebblesDraw, which
allows multiple people to draw at the same time.

1 The “bytes” refers to the characters and the “locations” refers to mouse
points that are sent from the PalmPilot down to the PC.

Connecting Multiple PalmPilots to a PC - 2 - **Submitted for Publication**

← Display and input area,
currently running the
Pebbles Remote
Commander applica-
tion

← Labels for the applica-
tion buttons.

← Input area for “Grafitti”
text input.

← 4 round application
buttons, and 2 “up-
down” arrow keys in
the center.

Figure 1. The 3Com PalmPilot running the Pebbles Remote
Commander application.

RELATED WORK

Most previous CSCW approaches for multiple users in the
same room use expensive and special-purpose hardware or
specially constructed meeting rooms. For example, the
Xerox CoLab [21] and the Univ. of Arizona’s electronic
meeting room [15] had computers for each person built into
special tables. Another previous approach was the Xerox
Liveboard [8], which originally supported multiple cursors
operating at the same time, but when produced commer-
cially, only supported one person with one cursor at a time.
Liveboards proved to be too expensive to be widely used.
The Tivoli system [17] supports up to three people using
pens simultaneously on the LiveBoard. We believe that
much of the software used with these previous technologies
can be reproduced using a set of PalmPilots and a single
PC, which will be much cheaper and easier to configure.

The Xerox ParcTab [24] project investigated using small
hand-held devices continuously connected through infrared
(IR) communication. Most of the PARC building was
wired with special IR transceivers to make the ParcTabs
work. The ParcTab screen was 128x64 pixels and had a
few hard-wired buttons and a touch-sensitive screen, which
supported the Unistrokes [9] alphabet, which is similar to
(and predates) PalmPilot’s Graffiti. The ParcTab was used
to investigate some aspects of remote cursors, and informal
voting about how well the speaker was doing, but due to
problems with the IR, they found that multiple people si-
multaneously using the devices in the same room did not
work well.

The PDA-ITV project [20] explored the use of a Newton to
control Interactive TV, but used a single real-estate appli-
cation for shopping for houses, and only dealt with one
Newton at a time.

MMM [4] (Multi-Device, Multi-User, Multi-Editor) was
one of the first Single Display Groupware (SDG) environ-

ments to explore multiple mice on a single display. MMM
handled up to three mice. MMM had a single tool palette
and color palette, and a separate “home area” to show each
user’s name, current color, and drawing mode. MMM only
supported editing of text and rectangles, and used color to
distinguish between the users.

The term “Single Display Groupware” was coined by
Stewart et. al. [23]. Stewart’s KidPad [23] is a SDG envi-
ronment for kids, where multiple mice are connected to a
Unix computer. It uses “local tools” [2] on Pad++, where
each tool does exactly one thing (for example, there is a
crayon tool). This model is easier for kids than conven-
tional palettes, but it does not have any global state (so, for
example, there is no concept of a selection). Therefore,
KidPad does not face many of the issues addressed in our
Pebbles work. Background studies showed that children
often argue and fight when trying to share a single mouse
[22], but when using separate mice, cooperated more effec-
tively. Another SDG effort is the COLT toolkit [5], which
explores some limited kinds of user interactions and showed
that children will stay more focused on their tasks when
each child has their own mouse and they simultaneously
manipulate the same object together.

Other groups are studying the use of PalmPilots in various
settings, where they are not connected to a PC. For exam-
ple, NotePals synchronizes people’s independent notes after
a meeting [7], and Georgia Tech’s “Classroom 2000” proj-
ect [1] is studying the use of PalmPilots in classrooms.

THE PALMPILOT

The PalmPilot (see http://palmpilot.3com.com/) is a small
inexpensive hand-held “Personal Digital Assistant” (see
Figure 1) formerly sold by USRobotics (which was bought
by 3Com) and also now sold by IBM as the “WorkPad”
(see http://www.pc.ibm.com/us/workpad/). The PalmPilot
sold over one million units in its first 18 months. They are
starting to be ubiquitous, and many people in our academic
community are using them to take notes in meetings. Al-
though our research is using PalmPilots because they are
easy to program and popular, the research would equally
apply to any PDA.

One of the most important reasons the PalmPilot is so
popular is that it connects very easily to a PC (and also to a
Macintosh or Unix workstation) for synchronization and
downloading. Each PalmPilot is shipped with a cradle and
wire that connects to a computer’s standard serial port.
Software supplied with the PalmPilot will synchronize the
data with the PC. It is also easy to load new applications
into the PalmPilot. Pebbles takes advantage of this easy
connection to a PC. PalmPilot are also small enough to
easily fit into a pocket, and relatively inexpensive.

The main display of the PalmPilot is a 160x160 pixel LCD
panel, with 4 levels of gray (but most applications treat it as
monochrome). The screen is touch sensitive, so text and
graphics can be selected and drawn. A small stylus which

Connecting Multiple PalmPilots to a PC - 3 - **Submitted for Publication**

fits into the PalmPilot case is usually used for this, but a
finger can also be used for pointing and gestures. Textual
characters are entered in the area at the bottom using special
gestures called “Graffiti,” which is a stylized alphabet that
is designed to be easier for the PalmPilot to recognize accu-
rately. Almost all letters and symbols are entered with a
single stroke, which approximates the upper or lower case
way the letter is drawn. Most people seem to be able to
learn the gestures in about 15 minutes. There is also an on-
screen keyboard. In Pebbles, we are taking advantage of
the fact that people have already learned these gestures, and
are comfortable with the operation of the PalmPilot since
they are already using it for many daily activities.

REMOTE COMMANDER

The first application from our Pebbles project is the Remote
Commander. This allows strokes on the main display area
of the PalmPilot to control the PC’s mouse cursor, and for
Graffiti input to emulate the PC’s keyboard input. The im-
portant point is that this works with all existing PC
applications, without requiring any modifications to the ap-
plications themselves. For example, multiple people can
use PowerPoint, Word, Excel, Illustrator, etc., from their
PalmPilots.

We believe in distributing the results of our research, to
help collect useful feedback and aid in technology transfer.
The first version of the Remote Commander software was
released for general use on February 17 (see
http://www.cs.cmu.edu/~pebbles) and was downloaded
about 3000 times in the first six weeks. The current version
works with Windows 95 or NT, and current versions of the
PalmPilot.

In designing this application, we wanted to make sure that it
would fit in with the PalmPilot style. Therefore, it needed
to be natural and non-intrusive. It should be easy to switch
between using the Remote Commander and using other
PalmPilot applications, and it should take advantage of the
Graffiti gestures that the users had already learned. We
also had to deal with the PalmPilot’s limitations: a small,
grayscale screen, and a fairly slow processor. Furthermore,
the users’ focus should normally be directed to the PC’s
screen, so it should be possible to operate the Remote
Commander without looking at the PalmPilot, just as the
mouse can be used without looking.

In the current version of Remote Commander, we rely on
social protocols to control whose turn it is, which is not dif-
ficult since everyone is in the same room. Everyone’s
inputs are mixed together. We decided that a more formal
“floor control” mechanism would obstruct the fluid sharing
and collaboration that is typical in meetings.

Example Uses

When designing the Remote Commander, we had a number
of uses in mind. The first is as discussed above: for multi-
ple people in a meeting to take turns controlling the mouse

and keyboard. Remote Commander is designed to support
meetings where everyone is in the same room. (Remote
participants might can use other CSCW applications, such
as Microsoft NetMeeting.) Remote Commander might be
used so different people can have a turn controlling an ap-
plication, to support multiple annotations on a work
product, or so everyone can enter their personal data into a
shared document. Having a single, shared visual display is
important for coordination and collaboration [16], and peo-
ple will take turns or all work together on these displays.

A second use for Remote Commander is to support small,
informal meetings. These arise when two or three people
are discussing something that is running on a PC, such as a
demo situation, or for small design and debugging discus-
sions.

Another use for the Remote Commander might be any time
that a single user would rather have a stylus for input in-
stead of a mouse, for example in situations when freehand
drawing or writing is desired. The PalmPilot digitizer can
even read the stylus through a sheet of paper, so Remote
Commander can support the tracing of small drawings. Of
course, if tracing was frequently needed, the user would
probably purchase a “real” tablet, but again we are taking
advantage of technology the user might already have for a
task they might do occasionally.

PalmPilot Module

There are two modules of the Remote Commander — one
which runs on the PalmPilot and the other runs on the PC,
and these two are connected using serial cables.

Moving the Cursor

Figure 1 shows the Remote Commander application running
on the PalmPilot. The large blank upper area is used to rep-
resent the mouse. Moving the stylus (or your finger) across
the screen of the PalmPilot moves the cursor on the PC.
Through experimentation, we arrived at a system which
provides good control.

The current design uses relative coordinates. This is analo-
gous to the small touchpad on some laptops, like the
Macintosh PowerBook. Movement across the PalmPilot
screen is mapped to an incremental movement across the
PC’s screen, so the actual position where you put down the
stylus is not important; just how far it is moved from the
initial position.

Originally, we tried directly mapping the 160x160 pixels of
the PalmPilot to the 1024x768 pixels (for example) of the
PC, using absolute coordinates. Thus, tapping in the upper
left of the PalmPilot screen would move the cursor to the
upper left of the PC screen. However, this did not work at
all. Since each pixel on the PalmPilot represented 6 pixels
on the PC, and since characters are often less than 6 pixels
wide, this made it impossible to select individual characters.
Furthermore, the positions reported by the PalmPilot digit-
izer are very jittery, varying by 1 or 2 pixels in all

Connecting Multiple PalmPilots to a PC - 4 - **Submitted for Publication**

directions when the stylus is kept still, so the cursor jumped
all over the PC’s screen.

The jittery coordinates coming from the PalmPilot were still
a problem when we switched to relative coordinates, mak-
ing it difficult to position the cursor accurately. Looking at
other applications running locally on the PalmPilot, such as
various sketching programs, we noticed that the jittery val-
ues were not limited to our program, but seem to be a
property of the device. Therefore, we added filtering of the
positions. After experimenting with various algorithms and
parameters, the best behavior resulted from collecting the
last 7 points returned by the PalmPilot, and returning the
average as the current point. This removes most of the jitter
without adding too much lag. This filtering starts over each
time the stylus comes in contact with the PalmPilot, and the
array of the last 7 points is initialized with the initial point.
This allows points to be provided immediately when the
stylus comes in contact with the surface. We also added
extra acceleration to the PalmPilot output so one swift
movement across the PalmPilot screen would move entirely
across the PC’s screen.

Mouse Buttons

Another issue concerns emulating the mouse buttons. As
with a touchpad, the stylus of the PalmPilot must be in
contact with the surface in order to move the cursor, so a
different signal is needed for the buttons. This is not a
problem for applications which run on the PalmPilot itself,
since the screen displays the objects that the user wants to
point at, and there is no need for a separate cursor.

We provide three different ways to signal pressing a mouse
button. First, tapping on the blank area of the PalmPilot
screen with the stylus causes the Remote Commander pro-
gram to send a click event (down press followed by a
release) of the left mouse button to the PC. A double-click
can easily be sent to the PC by double-tapping. A tap is
determined by a press and release at the same place. Since
Windows (and now Macintosh system 8) allows menus to
stay up when clicked on, this is an easy way to select items
in menus and push on-screen buttons. User experience with
this tapping is mixed. It appears to take practice to be able
to tap without moving, and novices seem to draw little lines
when they want to tap. On the other hand, others seem to
tap by accident, possibly due to some bounce of the stylus
on the surface, or when trying to draw small items. We will
continue to investigate adjusting the parameters to see if we
can eliminate these problems.

In many cases, it is also necessary to drag with the button
held down. “Dragging” is when the mouse button is
pressed somewhere, then the mouse is moved, and the but-
ton is released at a different point. To support dragging, we
first added a “Drag” button to the Remote Commander
screen (see Figure 1). Pressing on this Drag button starts
the dragging by sending a left down event. The user can
then move the stylus. Pressing on the Drag button again
will end the drag by sending the button-up event. Experi-

ence suggests that the Drag button is not a particularly good
idea, because people frequently make mode errors, where
they forget whether the mouse button is pressed or not, and
end up drawing a line when they planned to just move the
cursor, and vice versa.

We added a third way to signal pressing of the
mouse buttons, which proved to be the most success-
ful way to drag. This uses the up and down physical
buttons in the center bottom of the PalmPilot (shown in
Figure 1 and at right). We use the up button for the left
mouse button, and the down button for the right, which is
similar to the way many laptops handle with the mouse
buttons. It is easy to hold the PalmPilot so that the thumb
of the non-dominate hand (e.g. left hand) can work the but-
tons while the dominate hand (e.g. right hand) draws with
the stylus. Experience shows that people do not have much
trouble coordinating their two hands for this task. Since
this method works well, we did not add any other ways to
signal the right mouse button.

Emulating the Keyboard

Writing characters in the Graffiti area of the PalmPilot will
send those characters to the PC as if they were typed at the
keyboard. Capital letters and punctuation marks work in
the normal way for Graffiti. The PalmPilot comes with a
built-in on-screen keyboard, which people often use espe-
cially for the obscure punctuation symbols for which they
may not have memorized the Graffiti gestures. Unfortu-
nately, this keyboard does not have all the special keys
found on the PC keyboard, like F1 and ESC, so we had to
create our own on-screen keyboard. Just like the regular
PalmPilot keyboard, you pop-up the Remote Commander’s
keyboard by tapping the stylus inside the “abc” area (also
labeled “abcde” on some PalmPilots) at the bottom left of
the Graffiti area. This brings up the screen shown in Figure
2, on which you can tap the desired keyboard key. To dis-
miss the keyboard, tap in the “abcde” area again, or tap the
“Done” button of the keyboard at the bottom right, or use
the Menu command when the keyboard is displayed. The
small area above the keyboard is still available to make
mouse movements or taps.

The “Shift,” “Ctrl” and “Alt” keys on the on-screen key-
board modify the characters hit on the keyboard, and will
also modify Graffiti characters and mouse clicks. For ex-
ample, to do a SHIFT-CLICK of the mouse, you can tap the
“Shift” area on the keyboard and then tap the stylus in the
upper area.

Because SHIFT, CONTROL and ALT clicking is so com-
mon, we wanted to provide more convenient methods for
doing this, so we allow the four physical “application but-
tons” at the bottom of the PalmPilot (see Figure 1) to be
used as SHIFT, CONTROL and ALT and FUNCTION.
Little labels above the keys show the assignment of the
buttons, as shown in Figure 1. Since these buttons normally
allow the user to quickly switch to a different PalmPilot ap-
plication, the use of these buttons as shift keys can be

Connecting Multiple PalmPilots to a PC - 5 - **Submitted for Publication**

turned off with a Remote Commander menu command, if
desired.

← Click in the “abcdef” area
to get this keyboard.

Figure 2. The Remote Commander’s on-screen keyboard.

The FUNCTION buttons allows Graffiti characters to send
all the special PC keyboard keys. We defined a mapping of
letters to the function keys so the user never needs to pop
up the keyboard. For example, holding down the function
button while making the 1 gesture sends F1, using
FUNCTION-e sends ESCAPE, etc.

Connecting the PalmPilot with the PC

To use the PalmPilot to control the PC, they need to be
connected to each other. Our goals for the connection tech-
nology include: minimal interference with the use of the
PalmPilots, continuous connections while users are writing
on the PalmPilots, multiple PalmPilots operating at the
same time in the same room, and minimal power consump-
tion.

Ideally, we would use some sort of wireless technology.
The most popular short-range wireless technology is infra-
red (IR), but this does not yet seem to be appropriate for
our application. For example, the IR built into the new
PalmIII version of the PalmPilot reportedly only transmits
for 1 meter, and it must be aimed at the receiver (in the
same way that a TV remote control must be aimed at the
TV). Only one PalmIII device can be operated in the same
area at a time (because they interfere with each other), and
the IR will require a lot of power, so you would not want to
use it for long periods of time. The designers of the Parc-
Tabs [24] had to go to enormous lengths to make the IR
work in those devices, including installing multiple trans-
mitters on each ParcTab, receivers on the ceilings of every
room, and an elaborate software protocol to deal with mul-
tiple transmissions. They still reported problems, especially
with multiple people trying to transmit at the same time.
We hope that future IR technologies, like IRDA v2, will
resolve these problems for the PalmPilot.

Another wireless possibility is radio. There is a wireless
modem for the PalmPilot for about $500, and Bell Atlantic
offers wireless Internet service for about $50/month for
each PalmPilot. This seems too expensive to use in our
Remote Commander.

In the meantime, we are using a wired solution, which has
the advantage of being flexible, inexpensive, and easy to set
up. It lets us explore the various user interface and systems
issues, and is practical for use today.

The Remote Commander currently assumes the devices are
connected using the built-in serial ports of the PalmPilot
and the PC. The easiest way to do this is to simply use the
cradle provided with the PalmPilot. However, using the
PalmPilot while it is in the cradle is quite clumsy, so in-
stead, we usually use the HotSync cable sold by 3Com,
which does a nice job of staying attached to the PalmPilot
without getting in the way. It is also inexpensive.

In order to connect multiple PalmPilots to a PC at one time,
the PC needs multiple serial ports. For desktop PCs, there
are many cards available which provide multiple serial
ports. The one we found costs about $400 for 8 ports. For
laptops, we found the QSP-100 PCMCIA card [18] which
provides 4 ports (see Figure 3) and costs about $500. Most
laptops have 2 PCMCIA slots, so this allows up to 8 serial
ports using two cards in the laptop. The cards self-
configure under Windows95 (they do not currently work on
WindowsNT) and use a sequence of COM ports.

Figure 3. Quatech QSP-100 PCMCIA card.

Figure 4. The PC module of the Remote Commander.

PC Module

The PC module of the Remote Commander is fairly simple.
It takes the characters and mouse movements reported by
the PalmPilot module and inserts them into the Windows
input event queue, as if they were regular mouse and key-
board events. The user interface for the PC module is
shown in Figure 4. Clicking on the “Add Port” button
brings up a dialog box in which a serial port number can be
typed, and a user name specified. The “PowerPoint” wid-
gets in the middle are discussed in the next section. The
Remote Commander can handle as many users as there are
serial ports on the PC. In the future, we may try to make

Connecting Multiple PalmPilots to a PC - 6 - **Submitted for Publication**

this module more self-configuring, by having the program
automatically check for PalmPilots on the PC’s serial ports.

PowerPoint version

Of course, Remote Commander can interface with any ex-
isting Windows application, because it just emulates the
regular mouse and keyboard. However, we want to experi-
ment with adapting existing applications so they are more
amenable to joint use by multiple people in the same room.

As an experiment, we added a special feature for using the
Remote Commander with Microsoft PowerPoint (versions
7.0 or 97SR-1). In presentation mode in PowerPoint, nor-
mally clicking the mouse will change to the next slide, but if
you go into “pen” mode, then you can draw on top of the
slides in various colors. When the Power Point checkboxes
in the middle of the Remote Commander are selected (see
Figure 4), then whenever the user drags on the PalmPilot
end, Remote Commander will send out codes to set the
color of the pen to that user’s color. For example, in the
case of Figure 4, whenever Brad drew on a slide using the
PalmPilot, the ink would be black, and Herb’s drawings
would be green (see Figure 5). Remote Commander picks
unique colors for each user, but users can change their col-
ors by using the menu shown in Figure 4.

Figure 5. PowerPoint screen showing some annotations
entered using Remote Commander from two PalmPilots.

It is important to emphasize that we achieved this without
any modifications to PowerPoint—Remote Commander just
uses the standard commands available from PowerPoint.
The color change commands are sent before each mouse
drag event (down press) to make sure that the color is set
correctly for each user.

An observation while using this feature in early versions of
Remote Commander was that, not surprisingly, users often
made mode errors where they forgot to turn the PowerPoint
mode off when switching applications. Remote Com-
mander would then send the PowerPoint change-color
commands to the current application, which would do vari-
ous incorrect actions. For example, it was not possible to
un-check the PowerPoint mode in the Remote Commander
PC module because the color change commands would

cause the module to quit! Therefore, we added more
checking to try to detect whether the front-most window is
really a PowerPoint presentation and only if so, does Re-
mote Commander send the color-change commands.

In the future, we would like to investigate special versions
of Remote Commander for other applications. For exam-
ple, Microsoft Word allows the color of the text to be
changed. Although Word lacks built-in keyboard com-
mands to change the color, it would be easy to build special
styles or macros to change the color, assign keyboard com-
mands to these, and then have the Remote Commander
execute these commands before each keystroke. Then, each
user’s input would appear in a different color. Similar
techniques could be used for Excel, Paint, and many other
tools. This is a very versatile capability that would allow
gesturing and annotation on top of many different applica-
tions, without the need to change the applications
themselves. Eventually, it might be better and more robust
to use OLE integration to control the applications, instead
of sending special text as commands.

Experiences with Remote Commander

When we use the Remote Commander in meetings, we find
that people initially “fiddle around” moving the mouse even
when they are not planning to do anything, which interferes
with other people’s attempts at real work. The result is that
someone will tell another to stop sending input. This prob-
lem seems to disappear with practice, but if we wanted to
address it, we would probably not go to a full, formal floor
control mechanism, because that seems too inhibiting.

The feedback from the users who have downloaded the
Remote Commander has been quite positive, and we have
received many nice compliments.

Some substantive suggestions from users have been to sup-
port key repeat when the user holds the stylus over an on-
screen keyboard key (which we plan to do), and to add the
acceleration for cursor movement (already done). Another
good idea is to support the “Paste” operation on the Palm-
Pilot module, so text typed into other PalmPilot
applications, like Memo, can be easily entered into the PC.
Ideas from users we probably will not pursue include the
ability to support turning the PalmPilot upside down or
sideways, so the physical buttons would be in a more natu-
ral position (but Graffiti would not work in these
orientations), and to have the cursor continue moving when
the stylus is pegged at the side of the digitizer (but there is a
dead area around the digitizer inside the case, so it would
be hard for users to stay over the edge of the digitizer). We
will continue to gather feedback and ideas from the users
and our own experience with Remote Commander.

PEBBLESDRAW

In addition to Remote Commander, we built another appli-
cation, called PebblesDraw, to explore allowing all users to
have their own cursors. PebblesDraw is a multi-cursor

Connecting Multiple PalmPilots to a PC - 7 - **Submitted for Publication**

drawing program that is analogous to other “shared white-
board” applications, with one important difference: here all
the users share the same display. Thus, PebblesDraw quali-
fies as Single Display Groupware.

Figure 6. First version of PebblesDraw.

The initial design for PebblesDraw is shown in Figure 6.
Clicking on the “Add User” button at the bottom allows the
name, serial port number and the shape for that user to be
entered. All active users are shown along the bottom of the
window. At the left are the conventional drawing and color
palettes. At the right is a button panel that contains the
most common commands.

In creating this application, we discovered a number of im-
portant issues not addressed by previous SDG applications.
In particular, the standard widgets, like selection handles,
palettes, and pull-down menus, do not work for multiple
users. Previous SDG systems had little state associated
with each user. For example, in KidPad [23] there are no
selections. Tivoli [17] supports only a few pen widths.
MMM [4] only dealt with up to 4 users. We wanted to sup-
port more of the choices available in typical drawing
programs so a more general mechanism was required.
However, we wanted the interaction style to be similar to
conventional direct manipulation applications, so it would
be familiar.

The problem with conventional selection handles is that
they do not show which user has the object selected. One
goal for PebblesDraw is that each user’s actions are inde-
pendent. Each user therefore must have their own separate
selection handles. Most previous SDG applications, such as
MMM [4], assign each user a color. Since PebblesDraw

allows each user to select a color that will next be drawn,
we thought using color-coding would be confusing. In fact,
the developer of KidPad [23] reported that using color as
feedback was not a good idea because kids had a lot of
trouble. COLT [5] also used a color to identify people, and
reported running into trouble with one color-blind user.

For all these reasons, we assign each user a shape. The
model was a game like Monopoly where each person picks
a shape as their piece. The same shape is used as the user’s
cursor, and to show the user’s selection, to show the text
editing position, and to mark the user’s commands in the
undo history. We selected a set of shapes that could be
easily distinguished when they are very small (11x11 pix-
els). We also needed each shape to have a pointy part at the
upper left, so it would be clear how to use them to point at
objects. The complete set of the current icons is shown in
Figure 7.

Figure 7. The current set of cursors for PebblesDraw.

When a user executes an operation, it will only operate on
that user’s selected objects. Thus, if Brad does a cut, only
the yellow oval will be affected. Currently, multiple people
can select the same object at the same time. The cursor
shapes are designed so users can always see that the object
is multiply selected, although it can be difficult to tell by
which users. The operations do reasonable things if two
people manipulate on the same object at the same time. In
the future, we might want to disallow multiple people se-
lecting the same object if this proves too confusing.
Alternatively, we might make is easier to see which users
have the object selected. For example, since there happen
to be eight handles around an object and we support up to
eight shapes, an obvious idea is to divide the handle posi-
tions among all the users who have this object selected.
However, this might confuse users into thinking that they
can only change the object’s size from the handles that have
their shape. Further studies of these issues are planned.

The problem with the standard design for palettes is that the
currently selected tool is displayed in the palette itself (see
Figure 8), which does not work if different users can have
different modes. If one user is drawing a red circle at the
same time that another is typing blue text, how would that
be shown? Most CSCW applications are for multiple ma-
chines and assume that each user can see their own private
copy of the palettes on their own separate displays, so this
is not an issue. The MMM palettes did not show any state
and showed each user’s current modes only in the home ar-
eas. The Tivoli project [17] mentioned this problem with
palettes, but apparently provided no feedback as to the us-
ers’ modes.

Connecting Multiple PalmPilots to a PC - 8 - **Submitted for Publication**

Figure 8. As a single-user application, Microsoft Paint can
show the current tool (line tool), the current line style
(medium) and the current colors (red line and white fill) in
the palettes.

To solve this problem, we provide the feedback for all the
user’s modes both in that user’s cursor as well as in the
picture for that user at the bottom of the window. The bot-
tom row corresponds to the home areas in MMM, but we
feel that having the modes also in the user’s cursor will be
less confusing and will require less eye movement. The
item for “0” is labeled “main” in Figure 6, and is used to
show the modes for the regular mouse and keyboard.
Clicking on a item in a palette (at the left of Figure 6) cop-
ies that mode into the user’s cursor and home area. Notice
that the palettes do not show a current mode. Instead, the
current tool is shown in the center of the box attached to the
cursor, the line color is shown in the outline of the box, and
the fill color is shown inside the box. In Figure 6, Herb is
using the star cursor. He is currently in select mode, and is
growing the blue rectangle. Brad is also in select mode,
and has the yellow oval selected. Robert is drawing a free-
hand shape. Both Bonnie and Albert are editing the second
row of text. Each user’s text input cursor has that user’s
icon hanging from it, so users can simultaneously edit text
and still know where they are working.

Another set of problems relate to drop-down and pop-up
menus. The first problem is that the menu for one user
might pop up on top of where a different user is working,
especially for the large menus typical in today’s applica-
tions. The second problem with pop-ups is more technical:
each pop-up is implemented as a separate window, and the
Windows window manager deals with directing the mouse
input to the various windows as they pop-up and disappear.
Since in this shared cursor application we are not using the
real cursor for all the users (there is only one, after all), it is
difficult to direct the PalmPilot input to the correct window,
especially since different users might have different pop-ups
in different parts of the screen. For these reasons, we de-
cided to try to minimize the use of pop-ups, so the button
panel on the right allows the most common operations to be
performed without using a pop-up menu (see Figure 6).

Another issue is graying out of illegal items. Since only
one user at a time can use the drop-down menus, it makes
sense for the items in those menus to gray out as appropri-
ate for that user. For example, if Bonnie has nothing

selected, then if she would use the drop-down menus, the
commands that require a selection would be grayed out.
However, the button panel of commands (at the right of
Figure 6) is always visible. Therefore, it does not work for
items to be grayed out, because some commands will be
valid for one user but invalid for another user. Therefore,
we had to modify all the operations to make sure that they
did something reasonable, like beep or display an error
message, if they were invoked when they were not valid for
the current user. The previous implementation of these
commands in Amulet assumed that since they would be
grayed out, they could never be invoked when not valid.

Gestural input is a quick and easy way to give commands
without using a tool palette. With a gesture, the path of the
input device is used to interpret the meaning. Like Tivoli
[17], PebblesDraw supports gestural input. For example, in
PebblesDraw, making an “L” shape while pressing the right
mouse button (or the bottom PalmPilot arrow button) cre-
ates a new rectangle no matter what the current selected
mode is. Making a circular shape with the right mouse
button down creates a circle. Other gestures support enter-
ing lines and text, deleting objects, and undo. The
advantages of gestures are that the user does not have to
keep going back and forth to the palette to change tools,
and the single gesture defines both the operation to perform,
and the parameters such as how big the object should be.
The gesture recognizer is trainable, so new gestures can be
easily added [10].

Figure 9. Undo dialog box [13] for PebblesDraw where
each command is marked with the shape for the user who
performed it.

The undo dialog box for Amulet was augmented to annotate
each command with the shape for the user who executed it
(see Figure 9). The normal Undo command undoes the last
executed command no matter who executed it. The Undo-
by-User command undoes the last command of the user
who executes this undo command. This takes advantage of
Amulet’s selective undo mechanism [13] which can undo
any previous operation if it still makes sense. For example,
in Figure 9, if Herb performs undo-by-user, it will skip over
Bonnie’s commands and undo the Move of a rectangle
(command # 34). If that rectangle had been deleted by a
different user, then Herb’s attempt to do undo-by-user

Connecting Multiple PalmPilots to a PC - 9 - **Submitted for Publication**

would just beep, since his last command could not be un-
done. Of course, regular undo is always possible. Multi-
user undo has been previously studied in various systems,
such as GINA [3].

The implementation architecture that supports PebblesDraw
is described in a separate paper [12]. Briefly, the part of
the Remote Commander that accepts input from the serial
ports and then converts it into events is linked in with the
Amulet toolkit [14]. Instead of inserting these events into
the regular Windows input stream, as for the regular Re-
mote Commander, Amulet was augmented to directly
accept multiple, parallel streams of input. The Amulet be-
havior objects (called “interactors”) and widgets were
augmented to accept a user-id parameter. If the user-id is a
particular user’s id, then this widget is reserved for use by
only that user. Each user in PebblesDraw has a separate
selection handles widget using this mechanism. Special
values for the user-id slot include “anyone,” which means
everyone can use this widget, even simultaneously, and
“one-at-a-time,” which means that whoever starts using
this widget gets to finish their interaction and other users
cannot use it until the first user is finished. One-at-a-time is
the default, and the buttons, palettes, scroll bars and menus
are all marked as one-at-a-time.

We envision PebblesDraw as being used to allow multiple
users to create or annotate drawings at the same time. To
make it more useful as an annotation tool, images can be
read in and annotations added on top. The annotations can
be saved, read and further edited. For example, Figure 10
shows PebblesDraw being used by 3 people to annotate a
plan on a map.

Figure 10. Multiple users can concurrently be annotating
and setting up the map.

STATUS AND FUTURE WORK

The first version of the Remote Commander was released
for general use, as mentioned above, and the second version
along with PebblesDraw will be released shortly. One im-
portant area for further research is to more formally
evaluate the Pebbles applications.

We have many exciting ideas for future work for other ap-
plications which might benefit from multiple PDAs
connected to a PC. The next program we plan to write is a
Chat program, so that one PalmPilot user can write a note
that will be seen on one or more other PalmPilots. This
might be useful for passing side notes in a meeting. An-
other application might support voting, which could either
be formal secret or role-call votes, or the informal “how is
the speaker doing” style of votes that were done for the
ParcTab [24].

Another planned project is joint work with Alex Waibel to
use his NPen++ handwriting recognizer [11] with the
PalmPilot. NPen++ is much more accurate than previous
attempts (like the Apple Newton), but is currently too large
to run on the PalmPilot. Therefore, we will use the Remote
Commander mechanism so the recognizer can run on the
PC and the writing can be performed on the PalmPilot, and
the recognized words can then be sent back to the PalmPilot
for display.

Some new mice, like the “IntelliMouse” from Microsoft and
the “ScrollPoint” mouse from IBM, have an extra input de-
vice between the two buttons which can be used for
scrolling. In earlier work, we found that it is more effective
to use the other hand for scrolling, since then the user will
naturally operate both input devices at the same time [6].
We will explore using the PalmPilot as the other input de-
vice, so it can be used with the other hand for scrolling.

Instead of having the users’ current modes shown in the
cursor as in PebblesDraw, they might be shown on each
person’s PalmPilot screen. Then, the user could easily see
and choose the desired mode. The interesting research
questions in this area are how to make it easy for applica-
tion writers to specify the palettes for the PalmPilot, and
how to augment the communication path to support the
high-level semantic input from the PalmPilots. The Palm-
Pilot can also be used as the user’s “private space,” if they
want to compose content before sharing it with the group.
Another idea is to use the PalmPilot to hold items tempo-
rarily, like the Pick-and-Drop pens [19] that make it easy to
transfer information from one computer to another.

Of course, we want to explore many other applications of
these ideas to new domains. The CSCW literature contains
many interesting programs designed for multiple computers,
such as “Electronic Brainstorming” and “Structured Idea
Generation Process” from Univ. of Arizona [15] and Xerox
PARC’s Cognoter [21]. We want to see which of these will
be effective if used with PalmPilots and a single PC display.

Connecting Multiple PalmPilots to a PC - 10 - **Submitted for Publication**

CONCLUSIONS

We have developed applications to investigate many inter-
esting uses for multiple PDAs connected to a PC. The
Remote Commander application allows multiple co-located
users to take turns controlling the mouse and keyboard of a
PC without leaving their seat. The PebblesDraw applica-
tion demonstrates interaction techniques that allow multiple
users to work on the same display simultaneously. These
tools can be useful for formal and informal meetings, and
even for a single user. Using PDAs in this way takes ad-
vantage of technology that people already have and have
already learned, and does not require changes in work hab-
its. We are excited about the potential of this approach and
the positive response we have received from initial users.

ACKNOWLEDGMENTS
For help with this paper, we would like to thank Lauren Bricker,
Andrew Faulring, Richard McDaniel, Robert Miller, Bernita My-
ers, Jason Stewart, and Bernhard Suhm.

This research was partially sponsored by NCCOSC under Con-
tract No. N66001-94-C-6037, Arpa Order No. B326. The views
and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official
policies, either expressed or implied, of the U.S. Government.

REFERENCES

1. Abowd, G.D., et al. “Investigating the capture, integration and
access problem of ubiquitous computing in an educational set-
ting,” in Proceedings SIGCHI’98: Human Factors in
Computing Systems. 1998. Los Angeles, CA: To appear.

2. Bederson, B., et al. “Local Tools: An Alternative to Tool Pal-
ettes,” in Proceedings UIST’96: ACM SIGGRAPH Symposium
on User Interface Software and Technology. 1996. Seattle,
WA: pp. 169-170.

3. Berlage, T. and Genau, A. “A Framework for Shared Applica-
tions with a Replicated Architecture,” in Proceedings UIST’93:
ACM SIGGRAPH Symposium on User Interface Software and
Technology. 1993. Atlanta, GA: pp. 249-257.

4. Bier, E.A. and Freeman, S. “MMM: A User Interface Archi-
tecture for Shared Editors on a Single Screen,” in Proceedings
UIST’91: ACM SIGGRAPH Symposium on User Interface
Software and Technology. 1991. Hilton Head, SC: pp. 79-86.

5. Bricker, L., Cooperatively Controlled Objects in Support of
Collaboration. PhD Thesis, Department of Computer Science
and Engineering University of Washington, 1998, Seattle, WA.

6. Buxton, W. and Myers, B. “A Study in Two-Handed Input,” in
Proceedings SIGCHI’86: Human Factors in Computing Sys-
tems. 1986. Boston, MA: pp. 321-326.

7. Davis, R.C., et al., NotePals: Lightweight Note Taking by the
Group, for the Group. CS Division, EECS Department, UC
Berkeley, Report #CSD-98-997, 1998, Berkeley, CA.

8. Elrod, S., et al. “LiveBoard: A Large Interactive Display Sup-
porting Group Meetings, Presentations and Remote
Collaboration,” in Proceedings SIGCHI’92: Human Factors in
Computing Systems. 1992. Monterey, CA: pp. 599-607.

9. Goldberg, D. and Richardson, C. “Touch Typing with a Sty-
lus,” in Proceedings INTERCHI’93: Human Factors in

Computing Systems. 1993. Amsterdam, The Netherlands: pp.
80-87.

10. Landay, J.A. and Myers, B.A. “Extending an Existing User
Interface Toolkit to Support Gesture Recognition,” in Adjunct
Proceedings INTERCHI’93: Human Factors in Computing
Systems. 1993. Amsterdam, The Netherlands: pp. 91-92.

11. Manke, S., Finke, M., and Waibel, A. “NPen++: A Writer In-
dependent, Large Vocabulary On-Line Cursive Handwriting
Recognition System,” in Proceedings of the International
Conference on Document Analysis and Recognition. 1995.
Montreal, Canada: IEEE Computer Society.

12. Myers, B.A., “An Implementation Architecture to Support
Single-Display Groupware,” 1998. Submitted for Publication.

13. Myers, B.A. and Kosbie, D. “Reusable Hierarchical Command
Objects,” in Proceedings CHI’96: Human Factors in Comput-
ing Systems. 1996. Vancouver, BC, Canada: pp. 260-267.

14. Myers, B.A., et al., “The Amulet Environment: New Models
for Effective User Interface Software Development.” IEEE
Transactions on Software Engineering , 1997. 23(6): 347-365.

15. Nunamaker, e.a., “Electronic Meeting Systems to Support
Group Work.” CACM, 1991. 34(7): pp. 40-61.

16. Olson, J. and Rocco, E. “A Room of Your Own,” in Adjunct
Proceedings of SIGCHI’98: Human Factors in Computer Sys-
tems. 1998. Los Angeles, CA: To appear.

17. Pederson, E., et al. “Tivoli: An Electronic Whiteboard for In-
formal Workgroup Meetings,” in Proceedings INTERCHI’93:
Human Factors in Computing Systems. 1993. Amsterdam, The
Netherlands: pp. 391-398.

18. Quatech, “QSP-100 Four Channel Asynchronous RS-232
PCMCIA Adapter,” 1997. Quatech, Inc., 662 Wolf Ledges
Parkway, Akron, OH 44311. (330) 434-3154:
http://204.210.192.4/public/qsp100.htm.

19. Rekimoto, J. “Pick-and-Drop: A Direct Manipulation Tech-
nique for Multiple Computer Environments,” in Proceedings
UIST’97: ACM SIGGRAPH Symposium on User Interface
Software and Technology. 1997. Banff, Alberta, Canada: pp.
31-39.

20. Robertson, S., et al. “Dual Device User Interface Design:
PDAs and Interactive Television,” in Proceedings CHI’96:
Human Factors in Computing Systems. 1996. Vancouver, BC,
Canada: pp. 79-86.

21. Stefik, e.a., “Beyond the Chalkboard: Computer Support for
Collaboration and Problem Solving in Meetings.” Communica-
tions of the ACM, 1987. 30(1): pp. 32-47.

22. Stewart, J., et al. “When Two Hands Are Better Than One:
Enhancing Collaboration Using Single Display Groupware,” in
Adjunct Proceedings of SIGCHI’98: Human Factors in Com-
puter Systems. 1998. Los Angeles, CA: pp. To appear.

23. Stewart, J.E. “Single Display Groupware,” in SIGCHI’97
Adjunct Proceedings: Human Factors in Computer Systems,
Extended Abstracts. 1997. Atlanta, GA: pp. 71-72.

24. Want, R., et al., “An Overview of the ParcTab Ubiquitous
Computing Experiment.” IEEE Personal Communications,
1995. : pp. 28-43. December. Also appears as Xerox PARC
Technical Report CSL-95-1, March, 1995.

