

MAKE YOUR
DATABASE
DREAM OF
ELECTRIC
SHEEP
DESIGNING
FOR
AUTONOMOUS
OPERATION

@andy_pavlo

Part #1 - Background

Part #2 - Engineering

Part #3 - Oracle Rant

AUTONOMOUS DBMSs SELF-ADAPTIVE DATABASES

3

1970-1990s
Self-Adaptive
Databases

- Index Selection
- Partitioning / Sharding
- Data Placement

AUTONOMOUS DBMSs SELF-ADAPTIVE DATABASES


```
SELECT * FROM A JOIN B  
ON A.ID = B.ID  
WHERE A.VAL > 123  
AND B.NAME LIKE 'XY%'
```


AUTONOMOUS DBMSs SELF-ADAPTIVE DATABASES

AUTONOMOUS DBMSs SELF-ADAPTIVE DATABASES

INDEX SELECTION IN A SELF-ADAPTIVE DATA BASE MANAGEMENT SYSTEM

Michael Hammer
Arvoa Chan

Laboratory for Computer Science, MIT,
Cambridge, Massachusetts, 02139.

We address the problem of automatically adjusting the physical organization of a data base to optimize its performance as its access requirements change. We describe the principles of the automatic index selection facility of a prototype self-adaptive data base management system that is currently under development. The importance of accurate usage model acquisition and data characteristics estimation is stressed. The statistics gathering mechanisms that are being incorporated into our prototype system are discussed. Exponential smoothing techniques are used for averaging statistics observed over different periods of time in order to predict future characteristics. An heuristic algorithm for selecting indices to match projected access requirements is presented. The cost model on which the decision procedure is based is flexible, enough to incorporate the overhead costs of index creation, index storage and application program recompilation.

INTRODUCTION

The efficient utilization of a data base is highly dependent on the optimal matching of its physical organization to its access requirements and other characteristics (such as the distribution of values in it). We consider here the problem of automatically tuning the physical organization of an integrated data base. By an integrated data base, we mean one that supports a diversity of applications in an enterprise; the development of such data bases is expected to be one of the most important data processing activities for the rest of the 70's [1]. There are many reasons for the incorporation of heretofore separate but related data bases with a high degree of duplication into a single integrated one. The reduction of storage and updating costs, and the elimination of inconsistencies that may be caused by different copies of the data in different stages of updating, are among the more important ones. Viewing an integrated data base as the repository of information for running an enterprise, it can no longer be considered as a static entity. Instead, it must be looked upon as continually changing in size, with access requirements gradually altering as applications evolve, and as users develop familiarity with the system. Consequently, the tuning of a data base's physical organization must also be a continual process. In current data base management systems, the responsibility of making reorganization decisions falls on the data base administrator (DBA), whose judgements are based on intuition and on a limited amount of communication with

some individual data base users. For large integrated data bases, a more systematic means for acquiring information about data base usage, and a more algorithmic way of evaluating the costs of alternative configurations, will be essential. A minimal capability of a data base management system should be the incorporation of monitoring mechanisms that collect usage statistics while performing query processing. A more sophisticated system would sense the change in access requirements, evaluate the cost/benefits of various reorganization strategies, and recommend action to the DBA; eventually, such a system might itself perform the necessary tuning.

INDEX SELECTION IN AN ADAPTIVE DATA BASE SYSTEM

We are currently developing a self-adaptive data base management system which monitors the access patterns and the data characteristics of a data base, and uses this information to tune its physical organization. We operate in the environment of a relational data base system, which provides a level of physical data independence that facilitates physical reorganization. Continuous monitoring of the usage of a relational data base opens up many possibilities for its reorganization. Continuous monitoring of the usage of a relational data base opens up many and tradeoffs. As a first cut at the problem, we have a secondary index (sometimes referred to as an inversion) is a performance of accesses to a relation (table) [1]. For each domain maintained, which for each value of the domain in question, contents in the designated domain is the specified value. A particular domain can improve the execution of many query. The maintenance of such an index has costs that slow down deletions. Roughly speaking, a domain that is referenced frequently relative to its modification is a good

SIGMOD 1976

AUTONOMOUS DBMSs SELF-TUNING DATABASES

- Index Selection
- Partitioning / Sharding
- Data Placement

AUTONOMOUS DBMSs SELF-TUNING DATABASES

AUTONOMOUS DBMSs SELF-TUNING DATABASES

Microsoft
Auto

Self-Tuning Database Systems: A Decade of Progress

Surajit Chaudhuri
Microsoft Research
surajitc@microsoft.com

Vivek Narasayya
Microsoft Research
viveknar@microsoft.com

ABSTRACT

In this paper we discuss advances in self-tuning database systems over the past decade, based on our experience in the AutoAdmin project at Microsoft Research. This paper primarily focuses on the problem of automated physical database design. We also highlight other areas where research on self-tuning database technology has made significant progress. We conclude with our thoughts on opportunities and open issues.

1. HISTORY OF AUTOADMIN PROJECT

Our VLDB 1997 paper [2] reported our first technical results from the AutoAdmin project that was started in Microsoft Research in the summer of 1996. The SQL Server product group at that time had taken on the ambitious task of redesigning the SQL Server code for their next release (SQL Server 7.0). Ease of use and elimination of knobs was a driving force for the design of SQL Server 7.0. At the same time, in the database research world, data analysis and mining techniques had become popular. In starting the AutoAdmin project, we hoped to leverage some of the data analysis and mining techniques to automate difficult tuning and administrative tasks for database systems. As our first goal in AutoAdmin, we decided to focus on physical database design. This was by no means a new problem, but it was still an open problem. Moreover, it was clearly a problem that required performance tuning. The decision to focus on physical database design was somewhat ad-hoc. Its close relationship to query processing was an implicit driving function as the latter was out of area of past work. Thus, the paper in VLDB 1997 [26] described our first solution to automating physical database design.

In this paper, we take a look back on the last decade and review some of the work on Self-Tuning Database systems. A complete survey of the field is beyond the scope of this paper. Our discussions are influenced by our experience with the specific problems we addressed in the AutoAdmin project since our VLDB 1997 paper was on physical database design, a large area of this paper is also devoted to providing details of the progress in that specific sub-topic (Sections 2-6). In Section 7, we discuss briefly a few of the other important areas where self-tuning database technology have made advances over the last decade. We reflect on future directions in Section 8 and conclude in Section 9.

Permission to copy without fee all or part of this material is granted provided that the copies are made or distributed for direct commercial advantage, the VLDB copyright notice and the full name of the publication and its date appear, and notice is given that copying is by permission of the Very Large Database Endowment. To copy otherwise, or to republish, to post on servers or to redistribute to lists, requires a fee and/or special permissions from the publisher, ACM, Inc.

VLDB '07, September 23-28, 2007, Vienna, Austria
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

2. AN INTRODUCTION TO PHYSICAL DATABASE DESIGN

2.1 Importance of Physical Design

A crucial property of a relational DBMS is that it provides physical data independence. That is, the physical structure such as indexes to change seamlessly without affecting the output of the query; but such changes do impact efficiency. Thus, together, with the capabilities of the execution engine and the optimizer, the physical database design determines how efficiently a query is executed on a DBMS.

The first generation of relational execution engines were relatively simple, targeted at OLTP, making index selection less of a problem. The importance of physical design was amplified as query engines became sophisticated to cope with complex decision support queries. Since query execution and optimization techniques were far more advanced, DBAs could no longer rely on a simplistic model of the engine. But, the choice of right index structures was crucial for efficient query execution over large databases.

2.2 State of the Art in 1997

The role of the workload, including queries and updates, in physical design was widely recognized. Therefore, at a high level, the problem of physical database design was - for a given workload, find a *configuration*, i.e. a set of indexes that minimize the cost. However, early approaches did not always agree on what constitutes a *workload*, or what should be measured as *cost* for a given query and configuration.

Previous physical design of databases started appearing as early as 1974, in work such as by Stonebraker [63] assumed a parametric model of the workload and work by Hammer and Chan [44] used a predictive model to derive the parameters. Later papers increasingly started using an explicit workload [40],[41],[56]. An explicit workload can be collected using the tracing capabilities of the DBMS. Moreover, some papers restricted the class of workloads, whether explicit or parametric, to single table queries. Sometimes such restrictions were necessary for their proposed index selection techniques to even apply and in some cases they could justify the goodness of their solution only for the restricted class of queries.

All papers recognized that it is not feasible to estimate goodness of a physical design for a workload by actual creation of indexes and then executing queries and updates in the workload. Nonetheless, there was a lot of variance on what would be the model of cost. Some of the papers took the approach of doing the comparison among the alternatives by building their own cost model. For columns on which no indexes are present, they built

of

VLDB 2007

AUTONOMOUS DBMSs SELF-TUNING DATABASES

AUTONOMOUS DBMSs CLOUD MANAGED DATABASES

5

AUTONOMOUS DBMSs CLOUD MANAGED DATABASES

5

2010s
Cloud
Databases

AUTONOMOUS DBMSs CLOUD MANAGED DATABASES

5

- Initial Placement
- Tenant Migration

Why is this previous work
insufficient?

AUTONOMOUS DBMSs

A BRIEF HISTORY

Problem #1
Human
Judgements

Problem #2
Reactionary
Measures

What is **different** this time?

Better hardware.

Better machine learning tools.

Better appreciation for data.

**We seek to complete the circle in
autonomous databases.**

OtterTune
Existing
Systems

Peloton
New
System

OtterTune

ottertune.cs.cmu.edu

Database Tuning-as-a-Service

- Automatically generate DBMS knob configurations.
- Reuse data from previous tuning sessions.

Supported
Systems

PostgreSQL

vectorwise

MySQL

Greenplum

CONTROLLER

CONTROLLER

TARGET
DATABASE

TUNING MANAGER


```
mysql> SHOW GLOBAL STATUS;
```

METRIC_NAME	VALUE
ABORTED_CLIENTS	0
ABORTED_CONNECTS	0
...	
INNODB_BUFFER_POOL_BYTES_DATA	129499136
INNODB_BUFFER_POOL_BYTES_DIRTY	76070912
INNODB_BUFFER_POOL_PAGES_DATA	7904
INNODB_BUFFER_POOL_PAGES_DIRTY	4643
INNODB_BUFFER_POOL_PAGES_FLUSHED	25246
INNODB_BUFFER_POOL_PAGES_FREE	0
INNODB_BUFFER_POOL_PAGES_MISC	288
INNODB_BUFFER_POOL_PAGES_TOTAL	8192
INNODB_BUFFER_POOL_READS	15327
INNODB_BUFFER_POOL_READ_AHEAD	0
INNODB_BUFFER_POOL_READ_AHEAD_EVICT	0
INNODB_BUFFER_POOL_READ_AHEAD_RND	0
INNODB_BUFFER_POOL_READ_REQUESTS	2604302
INNODB_BUFFER_POOL_WAIT_FREE	0
INNODB_BUFFER_POOL_WRITE_REQUESTS	562763
INNODB_DATA_FSYNCs	2836
INNODB_DATA_PENDING_FSYNCs	1
INNODB_DATA_WRITES	28026
...	
UPTIME	5996
UPTIME_SINCE_FLUSH_STATUS	5996

RUNNING MANAGER

TensorFlow

Iteration
Scheduler

Metric
Analyzer

Knob
Analyzer

Internal
Repository

MySQL™

METRIC_NAME	VALUE
ABORTED_CLIENTS	0
ABORTED_CONNECTS	0
...	
INNODB_BUFFER_POOL_BYTES_DATA	129499136
INNODB_BUFFER_POOL_BYTES_DIRTY	76070912
INNODB_BUFFER_POOL_PAGES_DATA	7904
INNODB_BUFFER_POOL_PAGES_DIRTY	4643
INNODB_BUFFER_POOL_PAGES_FLUSHED	25246
INNODB_BUFFER_POOL_PAGES_FREE	0
INNODB_BUFFER_POOL_PAGES_MISC	288
INNODB_BUFFER_POOL_PAGES_TOTAL	8192
INNODB_BUFFER_POOL_READS	15327
INNODB_BUFFER_POOL_READ_AHEAD	0
INNODB_BUFFER_POOL_READ_AHEAD_EVICT	0
INNODB_BUFFER_POOL_READ_AHEAD_RND	0
INNODB_BUFFER_POOL_READ_REQUESTS	2604302
INNODB_BUFFER_POOL_WAIT_FREE	0
INNODB_BUFFER_POOL_WRITE_REQUESTS	562763
INNODB_DATA_FSYNCS	2836
INNODB_DATA_PENDING_FSYNCS	1
INNODB_DATA_WRITES	28026
...	
UPTIME	5996
UPTIME_SINCE_FLUSH_STATUS	5996

RUNNING MANAGER

TensorFlow

Iteration
Scheduler

Metric
Analyzer

Knob
Analyzer

Internal
Repository

MySQL™


```
mysql> SHOW GLOBAL VARIABLES;
+-----+-----+
| KNOB_NAME          | KNOB_VALUE |
+-----+-----+
| AUTOCOMMIT          | ON          |
| AUTOMATIC_SP_PRIVILEGES | ON          |
| ...                |             |
| INNODB_BUFFER_POOL_SIZE | 134217728  |
| INNODB_CHANGE_BUFFERING | all         |
| INNODB_FLUSH_LOG_AT_TRX_COMMIT | 1          |
| INNODB_FLUSH_METHOD |             |
| INNODB_FORCE_LOAD_CORRUPTED | OFF        |
| INNODB_FORCE_RECOVERY | 0          |
| INNODB_IO_CAPACITY | 200        |
| INNODB_LARGE_PREFIX | OFF        |
| INNODB_LOCKS_UNSAFE_FOR_BINLOG | OFF        |
| INNODB_LOCK_WAIT_TIMEOUT | 500        |
| INNODB_LOG_BUFFER_SIZE | 8388608   |
| INNODB_LOG_FILES_IN_GROUP | 2          |
| INNODB_LOG_FILE_SIZE | 5242880   |
| ...                |             |
| SORT_BUFFER_SIZE    | 2097152   |
| SQL_AUTO_IS_NULL    | OFF        |
| ...                |             |
| TIMED_MUTEXES       | OFF        |
| VERSION_COMPILE_OS  | debian-linux-gn |
| WAIT_TIMEOUT        | 28800      |
+-----+-----+
```

TUNING MANAGER

TensorFlow

ation
nder

Metric
Analyzer

Knob
Analyzer

Internal
Repository

MySQL™


```
mysql> SHOW GLOBAL VARIABLES;  
+-----+-----+  
| KNOB_NAME          | KNOB_VALUE |  
+-----+-----+  
| AUTOCOMMIT          | ON          |  
| AUTOMATIC_SP_PRIVILEGES | ON          |  
| ... |  
| INNODB_BUFFER_POOL_SIZE | 134217728 |  
| INNODB_CHANGE_BUFFERING | all         |  
| INNODB_FLUSH_LOG_AT_TRX_COMMIT | 1 |  
| INNODB_FLUSH_METHOD |  
| INNODB_FORCE_LOAD_CORRUPTED | OFF         |  
| INNODB_FORCE_RECOVERY | 0 |  
| INNODB_IO_CAPACITY | 200 |  
| INNODB_LARGE_PREFIX | OFF         |  
| INNODB_LOCKS_UNSAFE_FOR_BINLOG | OFF         |  
| INNODB_LOCK_WAIT_TIMEOUT | 500 |  
| INNODB_LOG_BUFFER_SIZE | 8388608 |  
| INNODB_LOG_FILES_IN_GROUP | 2 |  
| INNODB_LOG_FILE_SIZE | 5242880 |  
| ... |  
| SORT_BUFFER_SIZE | 2097152 |  
| SQL_AUTO_IS_NULL | OFF         |  
| ... |  
| TIMED_MUTEXES | OFF         |  
| VERSION_COMPILE_OS | debian-linux-gn |  
| WAIT_TIMEOUT | 28800 |  
+-----+-----+
```

TUNING MANAGER

CONTROLLER

TARGET
DATABASE

TUNING MANAGER

CONTROLLER

TUNING MANAGER

Demonstration

Postgres v9.3

TPC-C Benchmark

Default

Scripts

RDS

DBA

OtterTune

Throughput (txn/sec)

MySQL

PostgreSQL

Peloton
pelotondb.io

Self-Driving Database System

- In-memory DBMS with integrated ML/RL framework.
- Designed for autonomous operations.

WORKLOAD HISTORY

TARGET
DATABASE

"THE BRAIN"

PELOTON BUS TRACKING APP WITH ONE-HOUR HORIZON

17

Queries Per Hour

PELOTON ADMISSIONS APP WITH THREE-DAY HORIZON

18

PELOTON ADMISSIONS APP WITH THREE-DAY HORIZON

18

Queries Per Hour

PELOTON ADMISSIONS APP WITH THREE-DAY HORIZON

18

Queries Per Hour

Let's on check
the demo...

Design Considerations for Autonomous Operation

AUTONOMOUS DBMS DESIGN CONSIDERATIONS

21

Configuration Knobs

Internal Metrics

Action Engineering

Anything that requires a human value judgement should be marked as off-limits to autonomous components.

- *File Paths*
- *Network Addresses*
- *Durability / Isolation Levels*

The autonomous components need hints about how to change a knob

- *Min/max ranges.*
- *Separate knobs to enable/disable a feature.*
- *Non-uniform deltas.*

The autonomous components need hints about how to change a knob

- *Min/max ranges.*
- *Separate knobs to enable/disable a feature.*
- *Non-uniform deltas.*

CONFIGURATION KNOBS

HOW TO CHANGE

The autonomous command
about how to change

- *Min/max ranges.*
- *Separate knobs to enable.*
- *Non-uniform deltas.*

23

```
pavlo=> \d pg_settings;
      View "pg_catalog.pg_settings"
      Column          | Type      | Modifiers
-----+-----+-----+
      name           | text
      setting        | text
      unit           | text
      category       | text
      short_desc     | text
      extra_desc     | text
      context         | text
      vartype         | text
      source          | text
      min_val         | text
      max_val         | text
      enumvals        | text[]
      boot_val        | text
      reset_val       | text
      sourcefile      | text
      sourceline      | integer
      pending_restart | boolean
```


Indicate which knobs are constrained by hardware resources.

- *The sum of all buffers cannot exceed the total amount of available memory.*

The problem is that sometimes it makes sense to overprovision.

Expose DBMS's hardware capabilities: – *CPU, Memory, Disk, Network*

```
pvlo=# SELECT * FROM INFORMATION_SCHEMA.cpufreq ;  
+----+-----+-----+-----+-----+  
| id | model | mhz | cache | bogomips |  
+----+-----+-----+-----+-----+  
| 0 | Intel Xeon E7-4830 | 3472.718 | 4096 KB | 5615.84 |  
| 1 | Intel Xeon E7-4830 | 3472.718 | 4096 KB | 5615.84 |  
| 2 | Intel Xeon E7-4830 | 3472.718 | 4096 KB | 5615.84 |  
| 3 | Intel Xeon E7-4830 | 3472.718 | 4096 KB | 5615.84 |  
| 4 | Intel Xeon E7-4830 | 3472.718 | 4096 KB | 5615.84 |  
| 5 | Intel Xeon E7-4830 | 3472.718 | 4096 KB | 5615.84 |  
| 6 | Intel Xeon E7-4830 | 3472.718 | 4096 KB | 5615.84 |  
| 7 | Intel Xeon E7-4830 | 3472.718 | 4096 KB | 5615.84 |
```


Configuration Recommender

Expose DBMS's hardware capabilities:

- *CPU, Memory, Disk, Network*

Otherwise you have to come up with clever ways to approximate this...

INTERNAL METRICS HARDWARE MICROBENCHMARKS

26

If the DBMS has sub-components that are tunable, then it must expose separate metrics for those components.

Bad Example:

RocksDB

RocksDB Column Family Knobs

```
rocksdb_override_cf_options=\n  cf_link_pk={prefix_extractor=capped:20}
```

Column Family Metrics

CF_NAME	METRIC_NAME	VALUE
default	COMPACTION_PENDING	1
default	CUR_SIZE_ACTIVE_MEM_TABLE	21672
default	CUR_SIZE_ALL_MEM_TABLES	21672
default	MEM_TABLE_FLUSH_PENDING	0
default	NON_BLOCK_CACHE_SST_MEM_USAGE	0
default	NUM_ENTRIES_ACTIVE_MEM_TABLE	18
default	NUM_ENTRIES_IMM_MEM_TABLES	0
default	NUM_IMMUTABLE_MEM_TABLE	0
default	NUM_LIVE_VERSIONS	2

Missing:
Reads
Writes

RocksDB Column Family Knobs

```
rocksdb_override_cf_options=\n    cf_link_pk={prefix_extractor=capped:20}
```

Global Metrics

```
mysql> SHOW GLOBAL STATUS;\n+-----+-----+\n| METRIC_NAME          | VALUE |\n+-----+-----+\n| ABORTED_CLIENTS      | 0     |\n...\n| ROCKSDB_BLOCK_CACHE_BYTES_READ    | 295700537 |\n| ROCKSDB_BLOCK_CACHE_BYTES_WRITE   | 709562185 |\n| ROCKSDB_BLOCK_CACHE_DATA_HIT     | 64184 |\n| ROCKSDB_BLOCK_CACHE_DATA_MISS    | 1001083 |\n| ROCKSDB_BYTES_READ             | 5573794 |\n| ROCKSDB_BYTES_WRITTEN           | 5817440 |\n| ROCKSDB_FLUSH_WRITE_BYTES       | 2906847 |\n...\n| UPTIME_SINCE_FLUSH_STATUS      | 5996  |\n+-----+-----+
```


Aggregated
Metrics

No action should ever require the DBMS to restart in order for it to take affect.

The commercial systems are much better than this than the open-source systems.

Provide a notification callback to indicate when an action starts and when it completes.

Harder for changes that can be used before the action completes.

Support executing the same action with different resource usage levels.

Allow replica configurations to diverge from each other.

What About Oracle's
Self-Driving DBMS?

World's First "Self-Driving" Database

**No Human Labor – Half the Cost
No Human Error – 100x More Reliable**

ORACLE

oracle.com/selfdrivingdb

Human labor refers to tuning, patching, updating, and maintenance of database.
Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Self-Driving Database Management Systems

Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jieqi Lin, Lin Ma, Prashanth Menon, Todd C. Morwry, Matthew Perron, Ian Quah, Siddharth Santurkar, Anthony Tomasic, Shye Toor, Dana Van Aken, Ziqi Wang, Yingjun Wu*, Ran Xian, Tieying Zhang
Carnegie Mellon University, *National University of Singapore

ABSTRACT

In the last two decades, both researchers and engineers have built advisory tools to assist database administrators (DBAs) in various aspects of query tuning and physical design. Most of this previous work, however, is incomplete because they still require humans to make the final decisions about any changes to the database and are reactionary measures that fix problems after they occur.

What is needed is a self-driving database management system (DBMS) is a new architecture that is designed for autonomous operation. This is different than earlier attempts because all aspects of the system are controlled by an integrated planning component that not only optimizes the current state of the workload, but also predicts future workload trends so that the system can prepare itself accordingly. With this, the DBMS can support all of the previous tuning and optimization work, but also add a layer on top of it to make the right way and proper time to deploy them. It also enables new optimizations that are important for modern high-performance DBMSs, but which are not possible today because the complexity of managing these systems was prohibitive.

This paper presents the architecture of *Peloton*, the first self-driving DBMS. *Peloton*'s autonomous capabilities are now possible due to algorithmic advancements in deep learning, as well as improvements in hardware and adaptive database architectures.

1. INTRODUCTION

The idea of using a DBMS to remove the burden of data management from the original setup point is not a new one. The model and declarative language have been around since the 1970s [31]. With this approach, a developer only writes a query that specifies what they want to access. The DBMS then finds the most efficient way to store and retrieve the data in an intelligent manner.

Over four decades later, DBMSs are now the critical part of every data-intensive application in all facets of society, business, and science. These applications are also more complicated now with a long and growing list of functions. But tuning a DBMS to support these tuning tools is an onerous task, as they require laborious preparation of workload samples, spare hardware to test proposed updates, and above all else intuition into the DBMS's internals. If the DBMS could do these things automatically, then it would remove many of the complications and costs involved with deploying a database [29].

This article is published under a Creative Commons Attribution License (<http://creativecommons.org/licenses/by/3.0/>), which permits distribution and reproduction in other materials, but not in a modified form. The original author(s) and source must be clearly indicated.

© 2017, Oracle and/or its affiliates. All rights reserved. This article is published in the *6th Biennial Conference on Innovative Data Systems Research (CIDR '17)*, January 8–13, 2017, Diamond, California, USA.

Most of the previous work in self-driving systems is focused on tasks that are much more granular than a single query of the database. For example, some tools are able to choose the best logical or physical design of a database [16], such as indexes [30, 17, 58], partitioning schemes [6, 44], data organization [7], or materialized views [5]. Others are able to select the tuning parameters for an application [56, 22, 23].

The DBA provides it with a sample database and workload trace that guides a search process to find an optimal or near-optimal configuration. This is true for many DBMSs, such as Oracle [23, 35], Microsoft [16, 42], and IBM [55, 57], operate in this manner. There is a recent push for integrated components that support adaptive architectures [36], but these again only focus on one specific area. Likewise, cloud-based systems employ dynamic resource allocation at the service-level [20], but do not include individual databases.

All of these are insufficient for a completely autonomous system because they are not able to take a holistic view of the system problem at a time. That is, they observe the DBMS's behavior from outside of the system and advise the DBA on how to make corrections to fix the system's behavior after the fact has occurred. The authors assume that the human operating them is knowledgeable enough to update the DBMS in a time window when it will have the least impact on application performance. This is challenging, as the hardware and software landscape in which DBMSs have changed organically in the last decade and one cannot assume that a DBMS is deployed by an expert that understands the intricacies of database operations. But what if one could take a more automated approach to deployment? But what if one could take an automated approach to deployment? The authors argue that this is possible, as the DBMS architectures are not designed to support major changes without stressing the system further nor are they able to adapt in anticipation of future bottlenecks.

In this paper, we introduce the concept of self-driving database systems are now achievable. We begin by discussing the key challenges with such a system. We then present the architecture of *Peloton* [1], the first DBMS that is designed for autonomous operation. We conclude with a discussion on how *Peloton*'s integrated planning framework for workload forecasting and action deployment.

2. PROBLEM OVERVIEW

The first challenge in a self-driving DBMS is to understand an application's workload. The first step is to characterize the queries as being either an OLTP or OLAP application [26]. If the DBMS identifies which of these two workload classes the application belongs to, then it can make decisions about how to optimize the database. For example, if it is OLTP, then the DBMS should use a row-oriented database for reads and column-oriented writes. If it is OLAP, then the DBMS should use a column-oriented

September 2017

January 2017

ORACLE
SELF-DRIVING DBMS

Automatic Indexing
Automatic Recovery
Automatic Scaling
Automatic Query Tuning

34

**World's First
"Self-Driving"
Database**

No Human Labor – Half the Cost
No Human Error – 100x More Reliable

ORACLE®

oracle.com/selfdrivingdb

Human labor refers to tuning, patching, updating, and maintenance of database.
Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

September 2017

Automatic Indexing
Automatic Recovery
Automatic Scaling

Automatic Query Tuning

September 2017

Automatic Indexing

Automatic Recovery

Automatic Scaling

Automatic Query Tuning

September 2017

ORACLE
SELF-DRIVING DBMS

Automatic Indexing

Automatic Recovery

Automatic Scaling

Automatic Query Tuning

Microsoft

INGRES

September 2017

True autonomous DBMSs are achievable in the next decade.

You should think about how each new feature can be controlled by a machine.

Demo Results

END

@andy_pavlo

Show the last 100 results

Eq

_fsync