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#1 – You can sleep with 
grad students but not 
undergrads. 



#2 – Keep a bottle of 
water in your office in 
case a student breaks 
down crying. 



#3 – Kids love MongoDB, 
but they want to go work 
for Google. 





Reducing Replication Bandwidth for 
Distributed Document Databases 
In ACM Symposium on Cloud Computing, 
pg. 1-12, August 2015. 

More Info: 
http://cmudb.io/doc-dbs   

http://db.cs.cmu.edu/papers/2015/socc15-sdedup.pdf
http://cmudb.io/doc-dbs
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Goal: Reduce bandwidth 
for WAN geo-replication. 



Why Deduplication? 

• Why not just compress? 
– Oplog batches are small and not enough overlap. 
 

• Why not just use diff? 
– Need application guidance to identify source. 
 

• Deduplication finds and removes 
redundancies. 
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Similarity Dedup 
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Delta! Delta! Delta! Delta! Delta! 

Only send delta 
encoding. 



Compress vs. Dedup 

20GB sampled Wikipedia dataset. 
MongoDB v2.7 // 4MB Oplog batches 
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Encoding Steps 

• Identify Similar Documents 
• Select the Best Match 
• Delta Compression 

 



Identify Similar Documents 
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Selecting the Best Match 

Source Document 
Cache 

Rank Candidates Score 

1 2 

1 2 

2 1 Doc #1 

Doc #2 

Doc #3 

Initial Ranking Final Ranking 

Rank Candidates Cached? Score 

1 Yes 6 

1 Yes 3 

2 No 2 

Doc #1 

Doc #3 

Doc #2 

Is doc cached? If yes, reward 3x 



Delta Compression 
• Byte-level diff between source and target docs: 

– Based on the xDelta algorithm 
– Improved speed with minimal loss of compression 

 
• Encoding:  

– Descriptors about duplicate/unique regions + unique bytes 
• Decoding: 

– Use source doc + encoded output 
– Concatenate byte regions in order 



Evaluation 

• MongoDB setup (v2.7) 
– 1 primary, 1 secondary node, 1 client 
– Node Config: 4 cores, 8GB RAM, 100GB HDD 

storage 

 
• Datasets: 

– Wikipedia dump (20GB out of ~12TB) 
– Stack Exchange data dump (10GB out of ~100GB) 
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Memory: Wikipedia 
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Compression: StackExchange 
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10GB sampled StackExchange dataset 



Throughput Overhead 



Dedup + Sharding 
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Failure Recovery 

20GB sampled Wikipedia dataset. 

Failure Point 



Conclusion 

• Similarity-based deduplication for 
replicated document databases. 

• sDedup for MongoDB (v2.7) 
– Much greater data reduction than traditional dedup 
– Up to 38x compression ratio for Wikipedia 
– Resource-efficient design for inline deduplication 

with negligible performance overhead 

 



What’s Next? 

• Port code to MongoDB v3.1 
• Integrating sDedup into WiredTiger 

storage manager. 
• Need to test with more workloads. 

 
• Try not to get anyone pregnant. 

 



WiredTiger vs. sDedup 

Compression Ratio 

Snappy 1.6x 

zLib 3.0x 

sDedup (no compress) 38.4x 

sDedup + Snappy 60.8x 

sDedup + zLib 114.5x 

20GB sampled Wikipedia dataset. 
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