Reducing Replication Bandwidth f
Distributed Document Databases

&
l.'\
\

Lianghong Xu', Andy Pavlo!, Sudipta Sengupta?
Jin Li3, Greg Ganger!
Carneg|e Mellon University!, Microsoft Research2'

> 9 CARNEGIE MELLON
5" %% DATABASE GROUP
.

http://db.cs.cmu.edu/
http://pdl.cmu.edu/

% Andy Pavlo
‘{ y

Today | am visiting @eliothorowitz at
@mongodbinc to try to convince them to
ditch MMAP & switch to anti-caching.

CACHE RULES EVERYTHING AROUND ME

i:d' ARNEGIE MELLON ~r -
=2 DATABASE GROUP @andy_pavlo

#1 - You can sleep with
grad students but not
undergrads.

#2 - Keep a bottle of
water in your office in
case a student breaks
dowh crying.

#3 - Kids love MongoDB,
but they want to go work
for Google.

% CMUSCS

Faloutsos/Pavlo

System Votes

g]psgnner 24
“mongoDB 23
&8 redis 10

DynamoDB S

o, ,
HBASE 1

AbSharels 1

CMU SCS 15-415/615

Reducing Replication Bandwidth for

Distributed Document Databases
In ACM Symposium on Cloud Computing,
pg. 1-12, August 201]5.

More Info:
http://cmudb.io/doc-dbs

Reducing Replication Bandwidth for

Distributed Document Databases
Lianghong Xu* Andrew Pavle® Sudipta Sengupta’ JinLi' Gregory R. Ganger®

Carnegie Mellon University®, Microsoft Research
Long Research Paper

Abstract

With the rise of large-scale, Web-bused applications, users
are increasingly adopting a new class of document-oriented
database management systems (CHEMSs) that allow for rapid

pitcg while also achicving scalable Like
[nr other distributed storage systems, replication is impos-
rant for document DEMS der 10 guarantee avai

The network bandwidth required 1o keep replicas synchro-
nized is expensive and is ofiea a performance boltleneck. As
such, there is a strong need 1o reduce the replication bamd-
width, especially for geo-replication scenarios where wide-
area network (WAN) llandnu!lh s I||n|lrd

This paper present: 13 Dedd:
that reduces the amout of data |r.|u\[cr|rdmrr the network
for |rp|».¢|n| document DBMSs. sDedup uses umrJu-rm»
based de W remove red in
data by delta encoding against similar documents selected
from the entire database. It exploits key charscieristics of
document-oriented workloads, including small ilem sizes,
wemporal bocality. and the incremental natre of document
edite. Our experimental evaluation of sDedup with three
real-workl datasets shows that il is able w achéeve up 1o
38 reduction in data sent over the network, significamly

ing traditional chunk-based deduplication tech-

nigques while incurring negligible performance overhead.

1. Introduction

Document-oriented databases are becoming moe popular
due w the prevalence of semi-anectured data. The docu-
ment model allows emtities 1o be represeated in a schema-
less manner using a hierarchy of propertics. B:L.uux hese
DBMSs are typically used with F it

2120 186
2 100
§ LS
© 60
g b 4
200
T ks
Compress trad-dedup shedup sDedup +
compress
Figure 1: Compression ratios far Wikipedia - The four bars

represent compeession mtios achieved for the Wikipedia dataset
(see Section §) for four approaches: (1} standard compression on
each oplog hacch (4 MB aversge size), (2) traditional chusk-based
dedup (256 B chunks), (3 cur sysiem nu. uses similarity -based
deddug, and (4] il

significant divergence across replicas. This problem is es-
pecially onerous in geo-replication scenarios, where WAN
bandwidth is expensive and capacity grows relatively slowly
across infrastructure upgrades over lime.,

O approach to selving this problem is b compress the
operation log fopbog) that is sent from the primary DBMS
modes o the replicas for synchronization. For text-based
document data, simply running a standard compression li-
brary {e.g.. gziph on each oplog batch before Iransmission
will provide approximately a 3 compression rati. Bt
higher ratios are possible with deduplication techniques that
eaploit redundancy with data beyond a single oplog hmh
For a workload based on Wikipedia, as shown in
an existing deduplication approsch schieves compression
up 109 while our proposed similarity-based deduplication
scheme is able o compress at 38, Moreover, these ratios
can be combined with the 3 from compression, yielling
=120 reduction for aus proposed approsch.

is impontant that they ase always on-line .md available. To
ensure this availability, these systems replicate datn across
oodes with some level of diversity. For example, the DBMS.
could be configured o maintain replicas within the daa
g nodes on different racks, differemt clusters) of

across data centers in geographically separated regions.
Such replication can require significant network band-
width. which becomes increasingly scarce and expensive
the farther away the replicas arc located from their pri-
mary DBMS podes. It not only impeses additional cost on
maintaining replicas, but can also become the bottlenack for
the DAMS's performance if the application cannot tolerate

Mot systems 21, 23, 29, 38, 30, 45] ar-
el backup streams for large-seale file systems and rely
upon several propertics of these worklosds, Foremuost is that
backup files are karge and changes affect an extremely small
portion of the data. This argues for using large chunks o
avoid the need for massive dedup indices: the trad-dedup
bar in Fig. 1 ignores this issue and shows the result for a
256 B chunk size. With a typical 4 KB chunk size, rad-
dedup achieves a 235 compression ratio, Second, these sys-
tems assume that good chunk locality exists across backup
sircams, such that chunks tend w appear in moughly the
same order in each backup cyele. This allows for eflicien

http://db.cs.cmu.edu/papers/2015/socc15-sdedup.pdf
http://cmudb.io/doc-dbs

Secary

Goal: Reduce bandwidth
for WAN geo-replication.

Secondary M

Why Deduplication?

e Why not just compress?
— Oplog batches are small and not enough overlap.

e Why not just use diff?

— Need application guidance to identify source.

« Deduplication finds and removes
redundancies.

Traditional Dedup

| chunk Boundary B Modified Region B bupiicate Region
IncorS;r](g %ﬁ% A /ﬁ
7)K%

Send deduped data
to replicas.

Deduped

J
Data

Traditional Dedup

I Chunk Boundary I Modified Region I Duplicate Region
Incoming % | \I ! | J | ﬂ]
Data
) \
Ej Must send the

entire document.

i

J

Data

Y
Deduped I | ‘ |

Similarity Dedup

I Chunk Boundary I Modified Region I Duplicate Region

SR

® Only senc_l delta
Deduped encoding.)
Data

Incoming
Data

Compression ra

Compress vs. Dedup

Compress trad-dedup sDedup sDedup +

compress
20GB sampled Wikipedia dataset.

MongoDB v2.7 /;/ 4MB Oplog batches

sDedup: Similarity Dedup

Client
Insertion & Updates
Oplo

Oplo : : Plog
Plod é syncer

7 Unsynchronized§

Source oplog entries 7 4 Source
v documents i 4

Database

: 4 documents
' 2 B Decompressor

Database

Oal Re-constructed ?
/ i I oplog entries 4
Dsgtjjrrr(\::nt Deduplicated g P Replay
Cache oplog entries gOpIog

o, - .
...

Primary Node Secondary Node

Encoding Steps

e |dentify Similar Documents
e Select the Best Match
e Delta Compression

Identify Similar Documents
[I:I | | [|Target Document

. . Similarity
‘ Rabin Chunking Candidate Documents Score
32(17 [25| 41|12 L r
39|132(22| 15 Doc #1
Consistent Sampling _"' 32|125|38|41|12 Doc #2
Similarity Sketch 32 | [32]17 38| 41|12 Doc #3

32(25(38 12 Doc #2

B
[32] 7 38 Bl 12| [Doc#B

o

v

Feature
Index Table

Selectmg the Best Match

Initial Ranking Final Ranking

.

Is doc cached? If yes, reward 3x

Source Document
Cache

Delta Compression

« Byte-level diff between source and target docs:

— Based on the xDelta algorithm
— Improved speed with minimal loss of compression

« Encoding:

— Descriptors about duplicate/unique regions + unique bytes
« Decoding:

— Use source doc + encoded output

— Concatenate byte regions in order

Evaluation

e MongoDB setup (v2.7)

— 1 primary, 1 secondary node, 1 client

— Node Config: 4 cores, 8GB RAM, 100GB HDD
storage

e Datasets:

— Wikipedia dump (20GB out of ~12TB)
— Stack Exchange data dump (10GB out of ~100GB)

Compression: Wikipedia

m sDedup trad-dedup

Compression Ratio

4KB 1KB 256B 64B
Chunk Size

20GB sampled Wikipedia dataset

Memory: Wikipedia

m sDedup trad-ded
** 2725
'' 1330

34.1 902 47.9 57.3
. — I
4KB 1KB 256B

Chunk Size
20GB sampled Wikipedia dataset

Compression: StackExchange

m sDedup trad-dedup

5 ,,,
O
ga
B B
(72}
@ 2 13 """"""""""""""""""""""""""""""""" 1.8 """""""""""""""""""""""
o 1.0 1.0 12 40 1.1
E1 - pu e N e - R
o
s Hn e B

0

4KB 1KB 256B 64B

Chunk Size
10GB sampled StackExchange dataset

N
o

Insertion throughput (MB/s)

Throughput Overhead

[with sDedup

0 w/o sDedup

[
Ul

[
o

Ul

Wikipedia Stack Exchange

20
15

Stack Exchange

% 50 100 150 200
Run time (seconds)

Compression Ratio

Dedup + Sharding

of Shards
20GB sampled Wikipedia dataset

N
Ul
o

-
o
o

Compression ratio

o

Failure Recover

N
o
o

=
ol
=

U1
o

...........................

5' | == Failure

0 250 300 350 400

50 100 150 20
Inserted documents (thousand)

20GB sampled Wikipedia dataset.

Conclusion

e Similarity-based deduplication for
replicated document databases.

« sDedup for MongoDB (v2.7)

— Much greater data reduction than traditional dedup
— Up to 38x compression ratio for Wikipedia

— Resource-efficient design for inline deduplication
with negligible performance overhead

What’s Next?

Port code to MongoDB v3.l

Integrating sDedup into WiredTiger
storage manager.

Need to test with more workloads.

Try not to get anyone pregnant.

WiredTiger vs. sDedup

Compression Ratio

Snappy 1.6X

zLib 3.0X%

sDedup (no compress) 38.4x
sDedup + Snappy 60.8x
sDedup + zLib 114.5x

20GB sampled Wikipedia dataset.

@andy_pavlo

	Reducing Replication Bandwidth for�Distributed Document Databases
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Replication Bandwidth
	Replication Bandwidth
	Why Deduplication?
	Traditional Dedup
	Traditional Dedup
	Similarity Dedup
	Compress vs. Dedup
	sDedup: Similarity Dedup
	Encoding Steps
	Identify Similar Documents
	Selecting the Best Match
	Delta Compression
	Evaluation
	Compression: Wikipedia
	Memory: Wikipedia
	Compression: StackExchange
	Throughput Overhead
	Dedup + Sharding
	Failure Recovery
	Conclusion
	What’s Next?
	WiredTiger vs. sDedup
	END

