
Reducing Replication Bandwidth for
Distributed Document Databases

Lianghong Xu1, Andy Pavlo1, Sudipta Sengupta2

Jin Li2, Greg Ganger1
Carnegie Mellon University1, Microsoft Research2

http://db.cs.cmu.edu/
http://pdl.cmu.edu/

#1 – You can sleep with
grad students but not
undergrads.

#2 – Keep a bottle of
water in your office in
case a student breaks
down crying.

#3 – Kids love MongoDB,
but they want to go work
for Google.

Reducing Replication Bandwidth for
Distributed Document Databases
In ACM Symposium on Cloud Computing,
pg. 1-12, August 2015.

More Info:
http://cmudb.io/doc-dbs

http://db.cs.cmu.edu/papers/2015/socc15-sdedup.pdf
http://cmudb.io/doc-dbs

Replication Bandwidth

Operation logs Operation logs

Primary
Database

Secondary MMS

WAN

Replication Bandwidth

Operation logs Operation logs

Primary
Database

Secondary MMS

WAN

Goal: Reduce bandwidth
for WAN geo-replication.

Why Deduplication?

• Why not just compress?
– Oplog batches are small and not enough overlap.

• Why not just use diff?
– Need application guidance to identify source.

• Deduplication finds and removes
redundancies.

Traditional Dedup
Modified Region Duplicate Region Chunk Boundary

Deduped
Data

Incoming
Data

1 2 4 5

1 2 4 5 3
Send deduped data

to replicas.

Traditional Dedup
Modified Region Duplicate Region Chunk Boundary

Incoming
Data

Deduped
Data

Must send the
entire document.

Similarity Dedup
Modified Region Duplicate Region Chunk Boundary

Incoming
Data

Deduped
Data

Delta! Delta! Delta! Delta! Delta!

Only send delta
encoding.

Compress vs. Dedup

20GB sampled Wikipedia dataset.
MongoDB v2.7 // 4MB Oplog batches

Primary Node

Client

Secondary Node

sDedup: Similarity Dedup

Source
documents

Insertion & Updates

Database

Oplog

Delta
Compressor

Unsynchronized
oplog entries

Deduplicated
oplog entries Oplog

Re-constructed
oplog entries

Replay

Delta
Decompressor

Oplog
syncer

Database

Source
documents

Source
Document

Cache

Encoding Steps

• Identify Similar Documents
• Select the Best Match
• Delta Compression

Identify Similar Documents
Target Document

Consistent Sampling

Similarity Sketch

Rabin Chunking

32 17 25 41 12

41 32

Feature
Index Table

Candidate Documents

41

32

32 25 38 41 12

32 17 38 41 12

39 32 22 15 Doc #1

Doc #2

Doc #3

32 25 38 41 12

32 17 38 41 12

Doc #2

Doc #3

1
Doc #1

2
Doc #2

2
Doc #3

Similarity
Score

Selecting the Best Match

Source Document
Cache

Rank Candidates Score

1 2

1 2

2 1 Doc #1

Doc #2

Doc #3

Initial Ranking Final Ranking

Rank Candidates Cached? Score

1 Yes 6

1 Yes 3

2 No 2

Doc #1

Doc #3

Doc #2

Is doc cached? If yes, reward 3x

Delta Compression
• Byte-level diff between source and target docs:

– Based on the xDelta algorithm
– Improved speed with minimal loss of compression

• Encoding:

– Descriptors about duplicate/unique regions + unique bytes
• Decoding:

– Use source doc + encoded output
– Concatenate byte regions in order

Evaluation

• MongoDB setup (v2.7)
– 1 primary, 1 secondary node, 1 client
– Node Config: 4 cores, 8GB RAM, 100GB HDD

storage

• Datasets:

– Wikipedia dump (20GB out of ~12TB)
– Stack Exchange data dump (10GB out of ~100GB)

Compression: Wikipedia

9.9

26.3

38.4 38.9

2.3 4.6
9.1

15.2

0

10

20

30

40

50

4KB 1KB 256B 64B

C
om

pr
es

si
on

 R
at

io

Chunk Size

sDedup trad-dedup

20GB sampled Wikipedia dataset

Memory: Wikipedia

34.1 47.9 57.3 61.0 80.2
133.0

272.5

780.5

0

200

400

600

800

4KB 1KB 256B 64B

M
em

or
y

(M
B

)

Chunk Size

sDedup trad-dedup

20GB sampled Wikipedia dataset

Compression: StackExchange

1.0 1.2 1.3
1.8

1.0 1.0 1.1 1.2

0

1

2

3

4

5

4KB 1KB 256B 64B

C
om

pr
es

si
on

 R
at

io

Chunk Size

sDedup trad-dedup

10GB sampled StackExchange dataset

Throughput Overhead

Dedup + Sharding

38.4 38.2 38.1 37.9

0

10

20

30

40

50

1 3 5 9

C
om

pr
es

si
on

 R
at

io

of Shards
20GB sampled Wikipedia dataset

Failure Recovery

20GB sampled Wikipedia dataset.

Failure Point

Conclusion

• Similarity-based deduplication for
replicated document databases.

• sDedup for MongoDB (v2.7)
– Much greater data reduction than traditional dedup
– Up to 38x compression ratio for Wikipedia
– Resource-efficient design for inline deduplication

with negligible performance overhead

What’s Next?

• Port code to MongoDB v3.1
• Integrating sDedup into WiredTiger

storage manager.
• Need to test with more workloads.

• Try not to get anyone pregnant.

WiredTiger vs. sDedup

Compression Ratio

Snappy 1.6x

zLib 3.0x

sDedup (no compress) 38.4x

sDedup + Snappy 60.8x

sDedup + zLib 114.5x

20GB sampled Wikipedia dataset.

END
@andy_pavlo

	Reducing Replication Bandwidth for�Distributed Document Databases
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Replication Bandwidth
	Replication Bandwidth
	Why Deduplication?
	Traditional Dedup
	Traditional Dedup
	Similarity Dedup
	Compress vs. Dedup
	sDedup: Similarity Dedup
	Encoding Steps
	Identify Similar Documents
	Selecting the Best Match
	Delta Compression
	Evaluation
	Compression: Wikipedia
	Memory: Wikipedia
	Compression: StackExchange
	Throughput Overhead
	Dedup + Sharding
	Failure Recovery
	Conclusion
	What’s Next?
	WiredTiger vs. sDedup
	END

