of Crazy Emails!

→ Physics: $E \neq mc^2$

→ Math: Fermat's Thm

→ ComSci: $P=NP$
Hi Andy,

I'm writing to let you know that I have developed an initial prototype of a database, that it could be of your interest.

The prototype is a Key/Value in-memory database, with the ability to perform data access in constant time. The data is grouped into DATASET of ordered element and in constant time. You can also...

From: pavlo@cs.cmu.edu
Date: 8/3/15 8:55 AM

of C.

Com

Math

Phys
Crazy Emails Received

Emails Per Month

2013 2014 2015 2017 2018

Email Sample:

Terminator Database Idea

From: [Redacted]
To: pavlo@cmu.edu
Date: 3/5/17 4:25 PM

Andy - You know some pile about DB. This I know is true from your tube. I got an idea that you will love and you should do. We can do a company together and make shits of money. Let me know if you want to talk about my idea more. I am in [Redacted]. We can get money from people and start a company.

You know how in Terminator they use a neural network chip for the Arnold robot. That is what we need to do for your DB. It can be done all in hardware. We can make it automatically tune itself and everything that you find in your paper. That's the...
Crazy Emails Received

Emails Per Month

2013 2014 2015 2017 2018
1970s: Self-Adaptive
1990s: Self-Tuning
2010s: Self-Driving
1970s: Self-Adaptive

1990s: Self-Tuning

2010s: Self-Driving

Self-Driving Database Management Systems

Andrew Payne, Gustavo Angulo, Jay Andur, Habib Lin, Jili Lin, Lin Ma, Prashanth Menon, Tod C. Mowry, Matthew Merron, Ian Quast, Siddharth Srinivasa, Anthony Tam, Sky Tio, Dana Van Allen, Jing Wang, Yingwu Wu, Rui Xian, Tianyang Zhang

Carnegie Mellon University, National University of Singapore

ABSTRACT

In the past three decades, database technologies and schemes have evolved to respond to changes in the environment. Applications and assistants have become more sophisticated and require systems to be self-adaptive in order to respond to changes in the environment. This has led to the development of self-adaptive database management systems (DBMS), which can dynamically adjust their behavior to meet the needs of the application. The self-adaptive DBMSs can modify their behavior in response to changes in the environment, such as changes in the workload, the data, or the application. This allows the DBMS to be more efficient and effective in managing data and providing services to the users. The self-adaptive DBMSs are designed to be flexible and responsive, allowing them to adapt to changes in the environment. This is achieved by using a combination of techniques, such as machine learning, rule-based systems, and dynamic reconfiguration. The self-adaptive DBMSs are designed to be more efficient and effective in managing data and providing services to the users. The self-adaptive DBMSs are designed to be flexible and responsive, allowing them to adapt to changes in the environment. This is achieved by using a combination of techniques, such as machine learning, rule-based systems, and dynamic reconfiguration. The self-adaptive DBMSs are designed to be more efficient and effective in managing data and providing services to the users. The self-adaptive DBMSs are designed to be flexible and responsive, allowing them to adapt to changes in the environment. This is achieved by using a combination of techniques, such as machine learning, rule-based systems, and dynamic reconfiguration. The self-adaptive DBMSs are designed to be more efficient and effective in managing data and providing services to the users. The self-adaptive DBMSs are designed to be flexible and responsive, allowing them to adapt to changes in the environment. This is achieved by using a combination of techniques, such as machine learning, rule-based systems, and dynamic reconfiguration. The self-adaptive DBMSs are designed to be more efficient and effective in managing data and providing services to the users. The self-adaptive DBMSs are designed to be flexible and responsive, allowing them to adapt to changes in the environment. This is achieved by using a combination of techniques, such as machine learning, rule-based systems, and dynamic reconfiguration. The self-adaptive DBMSs are designed to be more efficient and effective in managing data and providing services to the users. The self-adaptive DBMSs are designed to be flexible and responsive, allowing them to adapt to changes in the environment. This is achieved by using a combination of techniques, such as machine learning, rule-based systems, and dynamic reconfiguration. The self-adaptive DBMSs are designed to be more efficient and effective in managing data and providing services to the users. The self-adaptive DBMSs are designed to be flexible and responsive, allowing them to adapt to changes in the environment. This is achieved by using a combination of techniques, such as machine learning, rule-based systems, and dynamic reconfiguration. The self-adaptive DBMSs are designed to be more efficient and effective in managing data and providing services to the users. The self-adaptive DBMSs are designed to be flexible and responsive, allowing them to adapt to changes in the environment. This is achieved by using a combination of techniques, such as machine learning, rule-based systems, and dynamic reconfiguration. The self-adaptive DBMSs are designed to be more efficient and effective in managing data and providing services to the users. The self-adaptive DBMSs are designed to be flexible and responsive, allowing them to adapt to changes in the environment. This is achieved by using a combination of techniques, such as machine learning, rule-based systems, and dynamic reconfiguration.
Self-Driving DBMS

→ What to change?
→ When to change it?
→ Was it helpful?