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Today’s Talk

= SIGMOD ‘09

= A Comparison of Approaches to
Large-Scale Data Analysis

[ | CACM 110 contributed articles
* MapReduce and Parallel DBMSs: MapReduce
Friends or Foes? §'é%4"§a“°‘
o:lgge:?

= Compare/Contrast with Jeffrey Dean &
Sanjay Ghemawat (Google)
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Outline

= Benchmark Study & Results
= Sweet Spots

= Together At Last

= Concluding Remarks
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Benchmark Environment

= Tested Systems: 'a o Z’g]

= Hadoop (MapReduce)

?
= Vertica (Column-store DBMS) WRTIO\I
= DBMS-X (Row-store DBMS)

= 100-node cluster at Wisconsin xxx

= Additional configuration information is
available on our website.
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Benchmark Tasks

= Original MR Grep Task:
= Find 3-byte pattern in 100-byte record
= Dean et al. (OSDI ‘04)

= Analytical Tasks:
= Web Log Aggregation
= Table Join with Aggregation
= User-defined Function
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Results Summary

| Hadoop | DBMSX | Vertica

Grep Task 284 sec 194 sec 108 sec
Web Log 1146 sec 740 sec 268 sec
Join 1158 sec 32 sec 55 sec

= Full results are available in our SIGMOD &
CACM papers.
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Outline

= Sweet Spots
= Together At Last
= Concluding Remarks
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Extract-Transform-Load

= “Read Once” data sets:
= Read data from several different sources.
= Parse and clean.
= Perform complex transformations.
= Decide what attribute data to store.
= load the information into a DBMS.

= Allows for quick-and-dirty data analysis.
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Semi-Structured Data

= MapReduce systems can easily stored semi-
structured data since no schema is needed:

= Typically key/value records with a varying
number of attributes.

= Awkward to stored in relational DBMS:
= Wide-tables with many nullable attributes.
= Column store fairs better.
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Limited Budget Operations

= MapReduce frameworks:
= Community supported and driven.

= Attractive for projects with modest budgets
and requirements.

= Parallel DBMSs are expensive:

= No open-source option.
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Together At Last?

= What can MapReduce learn from Databases?
= Fast query times.
= Schemas.
= Supporting tools.

= What can Databases learn from MapReduce?
= Ease of use, “out of box” experience.
= Attractive fault tolerance properties.
= Fast load times.
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MR+DBMS Integration

= Vertica now integrates directly with Hadoop:

= Hadoop jobs can use Vertica as input source.

* Push Map/Reduce tasks down directly into
DBMS nodes.

= Other notable commercial MR integrations:
= Greenplum
= AsterData
= Sybase IQ

P T
P - |

@mmE BROWN




January 28, 2010

MR+DBMS Integration

= HadoopDB (Yale+Brown):

= Replace Hadoop’s distributed file system
with multiple database instances.

= Rewrite Hive query plans into localized SQL
for each execution node.

= Position available for HadoopDB @ Yale
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Other Work

= MRi (Wisconsin):
= Improving Hadoop by adding DBMS

technologies that are transparent to users.

= Ported GiST Search Trees to Hadoop.

= SQL Server 2008 R2 (Microsoft):
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MSSQL (Project Madison)
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Conclusion

= Complete benchmark information and
source code is available at our website:
= http://database.cs.brown.edu/sigmod09/

= Questions/Comments?
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