
How to Build a Non-Volatile Memory
Database Management System

Joy Arulraj Andrew Pavlo
Carnegie Mellon University Carnegie Mellon University
jarulraj@cs.cmu.edu pavlo@cs.cmu.edu

ABSTRACT
The difference in the performance characteristics of volatile (DRAM)
and non-volatile storage devices (HDD/SSDs) influences the design
of database management systems (DBMSs). The key assumption
has always been that the latter is much slower than the former. This
affects all aspects of a DBMS’s runtime architecture. But the arrival
of new non-volatile memory (NVM) storage that is almost as fast
as DRAM with fine-grained read/writes invalidates these previous
design choices.

In this tutorial, we provide an outline on how to build a new
DBMS given the changes to hardware landscape due to NVM. We
survey recent developments in this area, and discuss the lessons
learned from prior research on designing NVM database systems.
We highlight a set of open research problems, and present ideas for
solving some of them.

1. INTRODUCTION
DBMSs have always dealt with the trade-offs between volatile and

non-volatile storage devices. In order to retain modifications after
a loss of power, the DBMS must write that data to a non-volatile
device, such as a SSD or HDD. Such devices only support slow,
bulk data transfers as blocks. Contrast this with volatile DRAM,
where a DBMS can quickly read and write a single byte from these
devices, but all data is lost once power is lost.

Non-volatile memory (NVM)1 offers an intriguing blend of these
two storage mediums. NVM is a broad class of technologies, in-
cluding phase-change memory [67], memristors [73], and STT-
MRAM [36], that provide low latency reads and writes on the same
order of magnitude as DRAM, but with persistent writes and large
storage capacity like a SSD [24].

Researchers have been discussing the possibility of building a
DBMS for NVM for decades [31]. Although battery-backed DRAM
has existed for some time, it has physical form, cost, and availability
limitations that prevent it from being widely adopted. And until re-
cently, it looked as if NVM would suffer the same fate. We contend,
however, that there are three recent developments that make it look
like we are finally at the point where NVM will become available.
First is that the industry has agreed to standard definitions of NVM
1NVM is also referred to as storage-class memory or persistent memory.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGMOD’17, May 14-19, 2017, Chicago, IL, USA
© 2017 ACM. ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3054780

technologies and form factors [8, 10]. The second change is that
both Linux [3, 1] and Microsoft [52, 48] have announced support
for NVM in their respective kernels. Lastly, Intel has announced
that there are new instructions coming in their next ISA update that
are specifically for flushing data from CPU caches to NVM [69, 9].

All of these portend the soon arrival of NVM. But it is unclear at
this point how to best leverage these new technologies in a DBMS.
There are several aspects of NVM that make existing DBMS archi-
tectures inappropriate for them [33]. For example, disk-oriented
DBMSs (e.g., Oracle RDBMS, IBM DB2, MySQL) are predicated
on using block-oriented devices for durable storage that are slow
at random access. As such, they maintain an in-memory cache for
blocks of tuples and try to maximize the amount of sequential reads
and writes to storage. In the case of memory-oriented DBMSs (e.g.,
VoltDB, MemSQL), they contain components for overcoming the
volatility of DRAM. Such components may be unnecessary in a
system with byte-addressable NVM with fast random access.

Tutorial Outline and Goals: This tutorial is a comprehensive
discussion of how to design and build a DBMS for NVM. Our
focus is on systems that contain a hybrid architecture comprised
of DRAM, NVM, and HDD/SSDs (as opposed to one with only
NVM [14]), as such platforms will likely be the most common in
the near-term. The goal of our tutorial is to provide an overview
of the major design decisions in a DBMS implementation that are
affected by NVM. We will discuss issues related to both on-line
transaction processing (OLTP) and on-line analytical processing
(OLAP) systems, as well as hybrid (HTAP) DBMSs that seek to
support both workloads in a single platform.

We will first present an overview of NVM technologies (Sec-
tion 2), highlighting their differences both with each other and
compared to DRAM/SSDs. We will then discuss the three areas of
a DBMS architecture that are affected the most by NVM. First, we
discuss the core components, such as memory management, that
are shared throughout the DBMS (Section 3). We will then discuss
how the DBMS builds off of these components to support storage
and recovery mechanisms (Section 4). Then we describe how to
build on top of this storage layer to perform query optimization
and execution for NVM-resident databases (Section 5). Lastly, we
conclude with a summary of the lessons that we have learned in
building a DBMS for NVM.

This tutorial differs from previous presentations on NVM [77]
because we go beyond storage management and talk about the entire
internal DBMS stack. We will couch all of the above topics in the
context of the Peloton [4, 63] DBMS. Peloton is an open-source
HTAP DBMS that we are building that is designed from the ground-
up to use NVM. Our intended audience are developers, researchers,
and practitioners with knowledge of DBMS internals. They do not
need any in-depth background or experience with NVM.

1753

mailto:jarulraj@cs.cmu.edu
mailto:pavlo@cs.cmu.edu
http://dx.doi.org/10.1145/3035918.3054780

DRAM PCM RRAM MRAM SSD HDD

Read latency 60 ns 50 ns 100 ns 20 ns 25 µs 10 ms
Write latency 60 ns 150 ns 100 ns 20 ns 300 µs 10 ms
Addressability Byte Byte Byte Byte Block Block
Persistent No Yes Yes Yes Yes Yes
Endurance >1016 1010 108 1015 105 >1016

Table 1: Comparison of emerging NVM technologies with other storage
technologies [26, 37, 66, 59]: phase-change memory (PCM) [67], memris-
tors (RRAM) [73], and STT-MRAM (MRAM) [36].

2. BACKGROUND
There are essentially two types of DBMS architectures: disk-

oriented and memory-oriented systems [33]. The former is exem-
plified by the first DBMSs from the 1970s, such as IBM’s System
R [16], where the system is predicated on the management of blocks
of tuples on disk using an in-memory cache; the latter by IBM’s
IMS/VS Fast Path [43], where the system performs updates on in-
memory data and relies on the disk to ensure durability. The need
to ensure that all changes are durable has dominated the design of
systems with both types of architectures. This has involved opti-
mizing the layout of data for each storage layer depending on how
fast it can perform random accesses. Further, the system needs to
propagate updates that the transactions make on tuples stored in
memory to an on-disk representation for durability.

NVM technologies, like phase-change memory [67] and memris-
tors [73], remove these tuple transformation and propagation costs
through byte-addressable loads and stores with low latency. This
means that they can be used for efficient architectures that are used
in memory-oriented DBMSs. But unlike DRAM, all writes to the
NVM are potentially durable and therefore a DBMS can access the
tuples directly in the NVM after a restart or crash without needing
to reload the database first. As shown in Table 1, NVM differs from
other storage technologies in the following ways:
• Byte-Addressability: NVM supports byte-addressable loads

and stores unlike other non-volatile devices that only support
slow, bulk data transfers as blocks.

• High Write Throughput: NVM delivers two orders of mag-
nitude higher write throughput compared to SSD and HDD.
More importantly, the gap between sequential and random
write throughput of NVM is much smaller.

• Read-Write Asymmetry: In certain NVM technologies, writes
take longer to complete compared to reads. Further, excessive
writes to a single memory cell can destroy it.

Although the advantages of NVM are obvious, making full use
of them in an DBMS is non-trivial. Previous comparisons of disk-
oriented and memory-oriented DBMSs with NVM show that the
two architectures achieve almost the same performance when using
NVM because of the overhead of logging [33]. This is because
current DBMSs assume that memory is volatile, and thus their
architectures are predicated on making redundant copies of changes
on durable storage. Thus, it is important to reexamine the design of
different components of the database system to leverage the unique
properties of NVM.

We now describe the three layers of a DBMS architecture that are
affected by NVM. Figure 1 provides an overview of these layers.
Table 2 presents a summary of prior research on the impact of NVM
on different components of a DBMS. We first describe the interfaces
for accessing NVM that are used across the entire DBMS. We then
discuss how a DBMS manages data on a storage-hierarchy contain-
ing NVM, followed by how it executes queries and transactions on
a NVM-resident database.

PLAN EXECUTOR QUERY OPTIMIZER SQL EXTENSIONS

EXECUTION ENGINE

ACCESS METHODS LOGGING & RECOVERY

REPLICATION

STORAGE MANAGER

ALLOCATOR INTERFACE FILESYSTEM INTERFACE

ACCESS INTERFACES

DATA PLACEMENT

Figure 1: NVM-Aware Components – The main components of a DBMS
that are affected by NVM.

RESEARCH AREA COMPONENTS

Access Interfaces Allocator Interface
[70, 79, 59, 29, 78, 62, 14]
Filesystem Interface
[37, 5, 21, 30, 48, 1]

Storage Manager Access Methods
[61, 81, 55, 25, 28, 75]
Logging and Recovery
[15, 50, 14, 12, 64, 40, 62, 80]
Data Placement
[49, 51, 57]
Replication
[68, 82, 10, 15]

Execution Engine Plan Executor
[27, 76, 42, 20, 22]
Query Optimizer
[19, 65]
SQL Extensions
[11, 7]

Table 2: Classification of NVM research – A summary of prior research
on the impact of NVM on different components of a DBMS.

3. ACCESS INTERFACES
In this section, we describe the two interfaces that a DBMS

uses for accessing NVM. The first interface is through byte-level
memory allocation and the second is through a filesystem API. This
discussion is in the context of how the latest versions of the Linux
and Windows OSs support NVM [3, 1, 52, 48].

3.1 Allocator Interface
An NVM-aware memory allocator allows the DBMS to allocate

chunks of memory through a persistent memory programming li-
brary [6]. Such an allocator differs from a volatile memory allocator
in three ways [70, 79, 17, 29, 78].

The first difference is that it provides a durability mechanism to
ensure that modifications to data stored on NVM are persisted [59].
This is necessary because the changes made by a transaction to
a location on NVM may still reside in volatile processor caches
when the transaction commits. If a power failure happens before
the changes reach NVM, then these changes are lost. The allocator
exposes a special API call to provide this durability. Internally, the
allocator first writes out the cache lines containing the data from
any level of the cache hierarchy to NVM using CLWB, the optimized
cache flushing instruction that is part of the newly proposed NVM-
related instruction set extensions [9]2. Then, it issues a SFENCE

2The CLWB instruction writes back a cache line to NVM similar to the CLFLUSH in-
struction. But it differs in two ways: (1) it is weakly-ordered and thus perform better
than the strongly-ordered CLFLUSH, and (2) it retains a copy of the line in the cache
hierarchy in exclusive state, thereby reducing the possibility of cache misses during
subsequent accesses. In contrast, the CLFLUSH instruction always invalidates the cache
line, which means that the DBMS has to retrieve the data again from NVM.

1754

instruction to ensure that the stores are ordered ahead of subsequent
instructions. At this point, the stores may reside in the memory
controller’s write-pending queue (WPQ). In case of a power failure
or shutdown, the asynchronous DRAM refresh (ADR) instructions of
newer NVM platforms automatically flushes the WPQ [69], thus
ensuring that the data is durable.

The second variation is that the allocator provides a naming mech-
anism for allocations so that pointers to memory locations are valid
even after the system restarts [62, 17]. The allocator ensures that
the virtual memory addresses assigned to a memory-mapped region
never change. With this mechanism, a pointer to a NVM location is
mapped to the same virtual location after the OS or DBMS restarts.
We refer to these pointers as non-volatile pointers. They provide the
foundation for building crash-consistent data structures [14].

Lastly, the allocator ensures the atomicity of all the memory
allocations so that after a system failure all memory regions are
either allocated or available for use [70]. Allocator guarantees that
there are no torn data writes, dangling references, and persistent
memory leaks by decoupling memory allocations into two steps:
(1) reserve and (2) activate. After the reserve step, the DBMS can
use the reserved memory region for storing ephemeral data. In case
of a failure, however, the allocator reclaims this memory region.
To ensure that it owns a memory region even after a failure, the
DBMS must request the allocator to separately activate the memory
region by updating the meta-data associated with that region. Under
this two-step process, the DBMS first initializes the contents of a
memory region after the reserve step but before it activates it.

3.2 Filesystem Interface
A DBMS can also access NVM through a special filesystem that

is optimized for non-volatile memory [37, 5, 21, 30]. This interface
allows it to use the POSIX filesystem interface to read/write data to
files (e.g., logs and auxiliary files). The filesystem relies on write-
ahead logging to preserve meta-data consistency and uses shadow
paging only for data. Normally, in a block-oriented filesystem (e.g.,
EXT4) that is designed for disks, file I/O requires two copies; one
involving the block device and another involving the user buffer.
The efficiency of the I/O stack within the OS is not critical when it
is hidden by the disk latency. However, NVM is byte-addressable
and supports I/O in the sub-microsecond range.

To cope with these shorter NVM latencies, Microsoft and Linux
are adding support for direct access storage (DAX) in Windows
Server 2016 [48] and Linux 4.7 [1], respectively. With DAX, a
DBMS directly allocates and uses NVM without an intervening
filesystem. This requires only one copy between the file and the
user buffers, thus improving the file I/O performance by an order of
magnitude compared to block-oriented filesystems.

4. STORAGE MANAGER
With the access interfaces that we described above, the next step

is to implement the DBMS’s storage manager.

4.1 Access Methods
Given the read-write asymmetry in NVM, it is important to re-

design the persistent data structures that are used as access methods
in a DBMS so that they perform fewer writes to NVM [61, 81, 55,
25, 28]. In a persistent NVM-aware B+tree index, the foremost
change is to keep the entries in the leaf node unsorted so that the
tree performs fewer writes and cache line flushes when it is mu-
tated [54, 74]. Unsorted key-value entries in the leaf node require an
expensive linear scan. This operation is sped up by hashing the keys,
and using the hashes as a filter to avoid comparing the keys [61].

Another design optimization is to selectively enforce persistency
where the tree only persists its leaf nodes and reconstructs its in-
ner nodes during recovery [81]. In a storage hierarchy containing
DRAM and NVM, the tree can persist the leaf nodes on NVM and
maintain the inner nodes on DRAM. During recovery from a system
failure, the tree rebuilds all the inner nodes that it placed in DRAM.
Although this approach increases the recovery latency of the tree,
the associated improvements in search and update operations during
regular processing justify it [61].

A DBMS can also leverage the asymmetric I/O property by tem-
porarily relaxing the balance of the B+tree [75]. Such imbalance
(potentially) causes extra reads to access the tree but reduces the
number of writes. This is a good trade-off for NVM because reads
are less expensive than the writes and reduces wear-down of the
storage device. By periodically re-balancing the tree and reduc-
ing the number of writes, an NVM-aware B+tree outperforms the
regular B+tree across different workloads. We note that other data
structures used as access methods in a DBMS, such as hash tables,
must also be redesigned for NVM.

4.2 Logging & Recovery
The write-ahead logging (WAL) protocol supports efficient trans-

action processing when memory is volatile and durable storage
cannot support fast random writes [58, 39, 33]. But this assump-
tion causes unnecessary performance degradations in a DBMS with
NVM storage [14]. Consider a transaction that inserts a tuple into a
table. A DBMS first records the tuple’s contents in the log, and it
later propagates the change to the database. With NVM, a DBMS
can employ a logging protocol that avoids this unnecessary data
duplication. The reason why NVM enables a better logging protocol
than WAL is two-fold. The write throughput of NVM is more than
an order of magnitude higher than that of an SSD or HDD. Further,
the gap between sequential and random write throughput of NVM
is smaller than that in SSD and HDD. Hence, a DBMS can flush
changes directly to the database in NVM during regular transaction
processing [15, 14, 12, 64, 40, 62, 80].

For example, when a transaction inserts a tuple into a table, the
DBMS records the tuple’s contents in the database even before it
writes any associated meta-data in the log. Thus, the log is always
slightly behind the contents of the database, and this technique is
referred to as write-behind logging (WBL) [15]. The DBMS can
still restore the database to the correct state after a restart by keeping
track of the transactions active in the current group commit interval.

The WBL recovery algorithm comprises of only an analysis phase.
During the analysis phase, the DBMS scans the log backward till
the most recent checkpoint log record to determine the transactions
active in the failed group commit interval. There is no need for a redo
phase because all the modifications of committed transactions are
already present in the database. WBL also does not require an WAL-
style undo phase. Instead, the DBMS only tracks the transactions
active in the current group commit interval as determined by the
analysis phase, so that it can ignore the effects of the associated
uncommitted transactions [15, 44, 46]. In case of a transaction
failure, the transaction manager rolls back any dirty changes flushed
to NVM using the meta-data that it records in the dirty tuple table.

We expect that the first NVM products will initially be more
expensive than current technologies, and thus using less storage
means a lower procurement cost. As WBL only records minimal
meta-data in the log, it shrinks the storage footprint of the DBMS
on NVM, thereby improving its storage utilization in comparison to
the WAL protocol.

Another design choice is for the DBMS to use NVM only for
storing the log and manage the database still on disk [50]. This

1755

is a more cost-effective solution, as the cost of NVM devices are
expected to be higher than that of disk. But this approach only
leverages the low-latency sequential writes of NVM, and does not
exploit its ability to efficiently support random writes and fine-
grained data access.

4.3 Data Placement
In a two-tier storage hierarchy with DRAM and NVM, the DBMS

places objects that incur frequent row buffer misses on DRAM, and
stores those that do not on NVM [51, 57]. We note that nearly all
the loads and stores are directed to less than 1% of the objects [49].
These include the hot tuples in the database, hot tuples in intermedi-
ate results, and global variables. The OS policies for page migration,
unfortunately, do not work well for database systems [72]. This
is because the OS keeps track of page access statistics at the gran-
ularity of virtual memory pages. Migrating such pages may lead
to sub-optimal data placement decisions when DBMS objects with
different access patterns are placed on the same page [49]. Thus, it is
always better if the DBMS manages data placement and migration.

In a three-tier storage hierarchy with DRAM, NVM, and SSDs,
the DBMS ensures that the “hot” data resides on DRAM. It then
migrates the “cold” data to the NVM and SSD layers over time
as the data ages and is likely to be updated. The latency of a
transaction that accesses a cold tuple will be higher in a three-tier
storage hierarchy. This is because NVM supports faster reads than
SSD. During update operations, however, the DBMS quickly writes
to the log and database on NVM. Eventually, the DBMS migrates
the cold data to SSD.

We note that WBL can be used even in such a three-tier storage
hierarchy. In this case, the DBMS uses a SSD to store the less
frequently accessed tuples in the database. It stores the log and
the more frequently accessed tuples on NVM. As bulk of the data
is stored on SSD, the DBMS only requires a less expensive NVM
device with smaller storage capacity. We note that the impact of
dynamic data placement on a three-tier storage hierarchy containing
NVM must be explored in future work.

A related line of research focuses on the problem of evicting
cold data to disk in main memory DBMSs [56]. The anti-caching
architecture for H-Store [2] moves cold tuples from DRAM to a
disk-resident hash table [34, 71]. To evict data, the DBMS invokes
a special system transaction that blocks other transactions while it
combines the coldest tuples into a block and writes them out to the
anti-cache. When a transaction attempts to access an evicted tuple,
the DBMS aborts the transaction and then asynchronously fetches
the requested tuple in a separate thread.

Microsoft’s Project Siberia [38, 35] for Hekaton takes a different
approach. It identifies what tuples to evict in a background thread
that analyzes the DBMS’s logs, thereby avoiding the overhead of
having to maintain a tracking data structure that is updated during
execution [53]. The cold tuples are moved to secondary storage
using a special migration transaction that is composed of insert and
delete operations. An evicted tuple is merged back into memory
only when it is updated by a transaction, otherwise it is stored in a
private cache and then released after that transaction terminates.

4.4 Replication
With the WBL logging protocol described in Section 4.2, the

DBMS can recover from system and transaction failures. However,
it cannot cope up with media failures or corrupted data. This is
because it relies on the integrity of durable data structures (e.g., the
log) during recovery. These failures are instead overcome through
replication, wherein the DBMS propagates changes made by transac-
tions to multiple servers [68, 45]. When the primary server incurs a

media failure, replication ensures that there is no data loss since the
secondary servers can be configured to maintain a transactionally
consistent copy of the database.

The round trip latency between the primary and secondary server
is on average a couple of orders of magnitude higher than the durable
write latency of NVM. The networking cost is, thus, the major per-
formance bottleneck in replication. A faster replication standard,
such as the NVMe over Fabrics [10], is required for efficient trans-
action processing in a replicated environment containing NVM [82].
With this technology, the additional latency between a local and
remote NVM device is expected to be less than a few microseconds.
As every write must be replicated in most usage models, we expect
a logging scheme designed for NVM to outperform WAL in this
replicated environment because it incurs fewer writes.

5. EXECUTION ENGINE
We now describe the changes necessitated by the advent of NVM

in different components of the execution engine. This the part of the
DBMS that is responsible for generating query plans and executing
them on the database.

5.1 Plan Executor
The algorithms backing the relational operators in main-memory

DBMSs are designed to have low computational complexity and to
exploit the processor caches in modern multi-core chips [23, 41, 47,
13]. We now need to redesign these algorithms to also reduce the
number of writes to durable storage, given the read-write asymmetry
and limited write-endurance of NVM [27, 76, 42, 20, 22].

The cache-friendly implementation of the hash-join algorithm
partitions the input tables so that every pair of partitions can fit
within the CPU caches. Unfortunately, the partitioning phase neces-
sitates writing out the entire tables back on NVM in their partitioned
form [27]. One can avoid this by keeping track of virtual partitions
of the tables that only contain the identifiers of the tuples that belong
to a given partition, and accesses the records in place during the join
phase. In this manner, virtual partitioning avoids data copying to
reduce the number of writes at the expense of additional reads.

For sorting NVM-resident data, the DBMS can use a hybrid
write-limited sorting algorithm called segment sort [76, 22]. This
algorithm sorts a fraction of the input using the write-intensive faster
external merge-sort algorithm, and the remaining fraction using the
write-limited slower selection sort algorithm. The selection sort
algorithm involves multiple read passes over the input, and writes
each element of the input only once at its final location. The DBMS
uses the fraction as a knob for constraining the write-intensiveness
of the algorithm with respect to its symmetric-I/O counterpart at the
cost of lower performance.

Like with sorting, there are also join algorithms that are designed
for asymmetric NVM storage. The segmented Grace hash-join,
which unlike the regular Grace join, materializes only a fraction
of the input partitions, and continuously iterates over the rest of
the input to process the remaining partitions [76]. The associated
read-amplification does not hurt performance given the read-write
asymmetry. We note that it is important that write-limited algorithms
converge to the I/O-minimal behavior of their counterparts that are
designed for symmetric I/O at lower write-intensity levels.

5.2 Query Optimizer
Cost-based query optimizers in modern DBMSs are designed to

take into consideration the gap between sequential and random I/O
costs of durable storage devices. They, however, do not account
for read/write asymmetry exhibited by NVM while performing
sequential and random I/O [19, 65]. The optimizer must, therefore,

1756

differentiate between reads and writes, and take into consideration
the convergence of sequential and random accesses in NVM.

The table and index scan algorithms retrieve the tuples satisfying
a given predicate by scanning through the associated table and index
respectively. The original cost functions of these algorithms in the
optimizer only distinguish between sequential and random accesses.
We adapt these functions to indicate that these accesses are reads.
Similarly, when the result of a sub-tree in an execution plan is
needed multiple times by the associated parent node, the DBMS
materializes it. The cost function for this materialization operation
should indicate that the associated accesses are writes.

We adapt the cost function of a join algorithm by considering the
two phases of the algorithm. The function should account for writing
and reading all the data one time each. All the reads during the join
phase tend to be sequential, while the writes in the partitioning phase
are random. We note that these adapted cost functions still do not
account for the byte-addressability of NVM [77].

5.3 SQL Extensions
The DBMS contains certain SQL extensions to allow the user to

control data placement on NVM [11, 7]. For instance, the user can
indicate that certain performance-critical tables and materialized
views should reside on NVM using the ON_NVM attribute. When
this attribute is specified for a tablespace, the DBMS creates all the
tables and materialized views within this tablespace on NVM.

ALTER TABLESPACE nvm_table_space DEFAULT ON_NVM;

By default, the DBMS stores all the columns in a table tagged
with the ON_NVM attribute on NVM. However, the user can choose to
store only a subset of the columns on NVM if desired. For instance,
the following SQL statement excludes the ORDER_TAX column in the
ORDERS table from being stored on NVM.

ALTER TABLE orders ON_NVM EXCLUDE(order_tax);

6. LESSONS LEARNED
The advent of NVM invalidates the long-held assumption that

durable storage is several orders of magnitude slower relative to the
CPU. The shrinking I/O gap makes it challenging for the DBMS to
saturate these devices even with an efficient storage manager [60,
32, 18]. Hence, it is important to reexamine the design choices made
in different components of the DBMS to leverage the raw device
performance differential. Our own experience with redesigning
the logging and recovery protocols for NVM has shown that it is
useful to reflect on the changes required for a storage hierarchy
comprising of only NVM, which is an interesting point in the design
space [14, 15]. We have highlighted only a subset of open research
problems. Given that the performance of the storage layer has
improved by several orders of magnitude over a short period of time,
we anticipate high-impact research in this space.

7. ACKNOWLEDGEMENTS
This work was supported (in part) by the Intel Science and Tech-

nology Center for Big Data, the U.S. National Science Foundation
(CCF-1438955), and the Samsung Ph.D. Fellowship Program.

8. BIOGRAPHIES
Joy Arulraj is a Ph.D. candidate at Carnegie Mellon University.

His research focuses on the design and implementation of non-
volatile memory database management systems. He interned at the
Microsoft Research Database Group in 2016. He is a recipient of
the 2016 Samsung Ph.D. Fellowship.

Andrew Pavlo is an Assistant Professor of Databaseology in the
Computer Science Department at Carnegie Mellon University. At
CMU, he is a member of the Database Group and the Parallel Data
Laboratory. His work is also in collaboration with the Intel Science
and Technology Center for Big Data.

References
[1] Direct access for files (DAX). https:

//www.kernel.org/doc/Documentation/filesystems/dax.txt.
[2] H-Store. http://hstore.cs.brown.edu.
[3] LIBNVDIMM: Non-volatile devices. https:

//www.kernel.org/doc/Documentation/nvdimm/nvdimm.txt.
[4] Peloton Database Management System. http://pelotondb.org.
[5] Persistent memory file system (PMFS).

https://github.com/linux-pmfs/pmfs.
[6] Persistent memory programming library. http://pmem.io/.
[7] SAP HANA administration guide: Load/unload a column table

into/from memory.
http://help.sap.com/saphelp_hanaplatform/helpdata/en/
c1/33165bbb57101493c5fb19b5b8607f/content.htm.

[8] JEDEC announces support for NVDIMM hybrid memory modules.
https://www.jedec.org/news/pressreleases/
jedec-announces-support-nvdimm-hybrid-memory-modules,
2015.

[9] Intel Architecture Instruction Set Extensions Programming Reference.
https://software.intel.com/sites/default/files/managed/
b4/3a/319433-024.pdf, 2016.

[10] NVM Express over Fabrics specification.
http://www.nvmexpress.org/specifications, 2016.

[11] Oracle In-Memory Database White Paper.
http://www.oracle.com/technetwork/database/in-memory/
overview/twp-oracle-database-in-memory-2245633.html,
2016.

[12] R. Agrawal and H. V. Jagadish. Recovery algorithms for database
machines with nonvolatile main memory. IWDM, pages 269–285,
1989.

[13] A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis. Weaving
relations for cache performance. In VLDB, 2001.

[14] J. Arulraj, A. Pavlo, and S. Dulloor. Let’s talk about storage &
recovery methods for non-volatile memory database systems. In
SIGMOD, 2015.

[15] J. Arulraj, M. Perron, and A. Pavlo. Write-behind logging. In VLDB,
2017.

[16] M. M. Astrahan and et al. System R: relational approach to database
management. ACM Trans. Database Syst., 1(2):97–137, June 1976.

[17] A. Badam and V. S. Pai. SSDAlloc: hybrid SSD/RAM memory
management made easy. In NSDI, pages 211–224, 2011.

[18] P. Bailis, C. Fournier, J. Arulraj, and A. Pavlo. Research for Practice:
Distributed consensus and implications of NVM on database
management systems. volume 14 of Queue, July 2016.

[19] D. Bausch, I. Petrov, and A. Buchmann. Making cost-based query
optimization asymmetry-aware. In DaMoN, pages 24–32. ACM, 2012.

[20] N. Ben-David and et al. Parallel algorithms for asymmetric read-write
costs. In SPAA, 2016.

[21] K. Bhandari and et al. Implications of CPU caching on
byte-addressable non-volatile memory programming. 2012.

[22] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, Y. Gu, and J. Shun.
Sorting with asymmetric read and write costs. In SPAA, pages 1–12,
2015.

[23] P. Boncz and et al. Database architecture optimized for the new
bottleneck: Memory access. In VLDB, pages 54–65, 1999.

[24] G. W. Burr, B. N. Kurdi, J. C. Scott, C. H. Lam, K. Gopalakrishnan,
and R. S. Shenoy. Overview of candidate device technologies for
storage-class memory. IBM J. Res. Dev., 52(4):449–464, July 2008.

[25] A. Chatzistergiou, M. Cintra, and S. D. Viglas. REWIND: Recovery
write-ahead system for in-memory non-volatile data-structures.
PVLDB, 2015.

[26] F. Chen, M. P. Mesnier, and S. Hahn. A protected block device for
persistent memory. In MSST, pages 1–12, 2014.

1757

http://www.nsf.gov/awardsearch/showAward?AWD_ID=1438955
http://www.cs.cmu.edu/~jarulraj/
http://www.cs.cmu.edu/~pavlo/
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
http://hstore.cs.brown.edu
https://www.kernel.org/doc/Documentation/nvdimm/nvdimm.txt
https://www.kernel.org/doc/Documentation/nvdimm/nvdimm.txt
http://pelotondb.org
https://github.com/linux-pmfs/pmfs
http://pmem.io/
http://help.sap.com/saphelp_hanaplatform/helpdata/en/c1/33165bbb57101493c5fb19b5b8607f/content.htm
http://help.sap.com/saphelp_hanaplatform/helpdata/en/c1/33165bbb57101493c5fb19b5b8607f/content.htm
 https://www.jedec.org/news/pressreleases/jedec-announces-support-nvdimm-hybrid-memory-modules
 https://www.jedec.org/news/pressreleases/jedec-announces-support-nvdimm-hybrid-memory-modules
https://software.intel.com/sites/default/files/managed/b4/3a/319433-024.pdf
https://software.intel.com/sites/default/files/managed/b4/3a/319433-024.pdf
http://www.nvmexpress.org/specifications
http://www.oracle.com/technetwork/database/in-memory/overview/twp-oracle-database-in-memory-2245633.html
http://www.oracle.com/technetwork/database/in-memory/overview/twp-oracle-database-in-memory-2245633.html

[27] S. Chen, P. B. Gibbons, and S. Nath. Rethinking database algorithms
for phase change memory. In CIDR, pages 21–31, 2011.

[28] S. Chen and Q. Jin. Persistent b+-trees in non-volatile main memory.
Proceedings of the VLDB Endowment, 8(7):786–797, 2015.

[29] J. Coburn and et al. NV-Heaps: making persistent objects fast and safe
with next-generation, non-volatile memories. In ASPLOS, 2011.

[30] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and
D. Coetzee. Better I/O through byte-addressable, persistent memory.
In SOSP, pages 133–146, 2009.

[31] G. Copeland, T. Keller, R. Krishnamurthy, and M. Smith. The case for
Safe RAM. VLDB, pages 327–335, 1989.

[32] J. Corbet. LFCS: Preparing linux for nonvolatile memory devices.
LWN, April 2013.

[33] J. DeBrabant, J. Arulraj, and et al. A prolegomenon on OLTP database
systems for non-volatile memory. In ADMS@VLDB, 2014.

[34] J. DeBrabant, A. Pavlo, S. Tu, M. Stonebraker, and S. Zdonik.
Anti-caching: A new approach to database management system
architecture. Proc. VLDB Endow., 6(14):1942–1953, Sept. 2013.

[35] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal,
R. Stonecipher, N. Verma, and M. Zwilling. Hekaton: SQL Server’s
Memory-optimized OLTP Engine. In SIGMOD, 2013.

[36] A. Driskill-Smith. Latest advances and future prospects of STT-RAM.
In Non-Volatile Memories Workshop, 2010.

[37] S. R. Dulloor, S. K. Kumar, A. Keshavamurthy, P. Lantz,
D. Subbareddy, R. Sankaran, and J. Jackson. System software for
persistent memory. In EuroSys, 2014.

[38] A. Eldawy, J. Levandoski, and P.-Å. Larson. Trekking through siberia:
Managing cold data in a memory-optimized database. PVLDB,
7(11):931–942, 2014.

[39] M. Franklin. Concurrency Control and Recovery. The Computer
Science and Engineering Handbook, pages 1058–1077, 1997.

[40] S. Gao, J. Xu, B. He, B. Choi, and H. Hu. PCMLogging: Reducing
transaction logging overhead with PCM. In CIKM, 2011.

[41] H. Garcia-Molina and K. Salem. Main memory database systems: An
overview. IEEE TKDE, pages 509–516, Dec. 1992.

[42] V. Garg, A. Singh, and J. R. Haritsa. On improving write performance
in PCM databases. Technical report, TR-2015-01, IISc, 2015.

[43] D. Gawlick and D. Kinkade. Varieties of concurrency control in
IMS/VS Fast Path. Technical report, Tandem, 1985.

[44] G. Graefe and et al. Instant recovery with write-ahead logging: Page
repair, system restart, and media restore. Synthesis Lectures on Data
Management, 2015.

[45] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of
replication and a solution. SIGMOD Record, 25(2):173–182, 1996.

[46] T. Härder, C. Sauer, G. Graefe, and W. Guy. Instant recovery with
write-ahead logging. Datenbank-Spektrum, pages 235–239, 2015.

[47] S. Harizopoulos and et al. Performance tradeoffs in read-optimized
databases. In VLDB, pages 487–498, 2006.

[48] R. Harris. Windows leaps into the NVM revolution.
http://www.zdnet.com/article/
windows-leaps-into-the-nvm-revolution/, Apr. 2016.

[49] A. Hassan and et al. Energy-efficient in-memory data stores on hybrid
memory hierarchies. In DaMoN, page 1. ACM, 2015.

[50] J. Huang, K. Schwan, and M. K. Qureshi. Nvram-aware logging in
transaction systems. Proc. VLDB Endow., pages 389–400, Dec. 2014.

[51] H. Kim and et al. Evaluating phase change memory for enterprise
storage systems: A study of caching and tiering approaches. In FAST,
2014.

[52] T. Klima. Using non-volatile memory (NVDIMM-N) as
byte-addressable storage in windows server 2016.
https://channel9.msdn.com/events/build/2016/p470, 2016.

[53] J. J. Levandoski, P.-Å. Larson, and R. Stoica. Identifying hot and cold
data in main-memory databases. In ICDE, pages 26–37, 2013.

[54] J. J. Levandoski, D. B. Lomet, and S. Sengupta. The bw-tree: A b-tree
for new hardware platforms. ICDE, pages 302–313, 2013.

[55] R.-S. Liu, D.-Y. Shen, C.-L. Yang, S.-C. Yu, and C.-Y. M. Wang.
NVM Duet: Unified working memory and persistent store architecture.
SIGARCH Computer Architecture News, 42(1):455–470, 2014.

[56] L. Ma and et al. Larger-than-memory data management on modern
storage hardware for in-memory oltp database systems. In DaMoN,
2016.

[57] J. Meza, Y. Luo, S. Khan, J. Zhao, Y. Xie, and O. Mutlu. A case for
efficient hardware/software cooperative management of storage and
memory. 2013.

[58] C. Mohan and et al. ARIES: a transaction recovery method supporting
fine-granularity locking and partial rollbacks using write-ahead
logging. ACM Trans. Database Syst., 17(1):94–162, 1992.

[59] I. Moraru and et al. Consistent, durable, and safe memory
management for byte-addressable non volatile main memory. In
TRIOS, 2013.

[60] M. Nanavati, M. Schwarzkopf, J. Wires, and A. Warfield. Non-volatile
Storage: Implications of the datacenter’s shifting center. volume 13 of
Queue, January 2016.

[61] I. Oukid, J. Lasperas, A. Nica, T. Willhalm, and W. Lehner. Fptree: A
hybrid SCM-DRAM persistent and concurrent b-tree for storage class
memory. In SIGMOD, pages 371–386, 2016.

[62] I. Oukid and et al. SOFORT: A hybrid SCM-DRAM storage engine
for fast data recovery. DaMoN, 2014.

[63] A. Pavlo, G. Angulo, J. Arulraj, H. Lin, J. Lin, L. Ma, P. Menon, et al.
Self-driving database management systems. In CIDR, 2017.

[64] S. Pelley, T. F. Wenisch, B. T. Gold, and B. Bridge. Storage
management in the NVRAM era. PVLDB, 7(2):121–132, 2013.

[65] S. Pelley, T. F. Wenisch, and K. LeFevre. Do query optimizers need to
be ssd-aware? 2011.

[66] T. Perez and C. Rose. Non-volatile memory: Emerging technologies
and their impact on memory systems. PURCS Technical Report, 2010.

[67] S. Raoux and et al. Phase-change random access memory: A scalable
technology. IBM Journal of Research and Development,
52(4.5):465–479, 2008.

[68] D. Roberts. Efficient Data Center Architectures Using Non-Volatile
Memory and Reliability Techniques. PhD thesis, University of
Michigan, 2011.

[69] A. Rudoff. Deprecating the PCOMMIT instruction.
https://software.intel.com/en-us/blogs/2016/09/12/
deprecate-pcommit-instruction, 2016.

[70] D. Schwalb, T. Berning, M. Faust, M. Dreseler, and H. Plattner. nvm
malloc: Memory allocation for NVRAM. In ADMS, pages 61–72,
2015.

[71] R. Stoica and A. Ailamaki. Enabling efficient os paging for
main-memory oltp databases. In DaMon, 2013.

[72] M. Stonebraker. Operating system support for database management.
Communications of the ACM, 24(7):412–418, 1981.

[73] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams. The
missing memristor found. Nature, (7191):80–83, 2008.

[74] S. Venkataraman and et al. Consistent and durable data structures for
non-volatile byte-addressable memory. In FAST, 2011.

[75] S. D. Viglas. Adapting the b+-tree for asymmetric i/o. In ADBIS,
pages 399–412, 2012.

[76] S. D. Viglas. Write-limited sorts and joins for persistent memory.
PVLDB, 7(5), 2014.

[77] S. D. Viglas. Data management in non-volatile memory. SIGMOD,
pages 1707–1711, 2015.

[78] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne: lightweight
persistent memory. In ASPLOS, 2011.

[79] C. Wang and et al. NVMalloc: Exposing an aggregate SSD store as a
memory partition in extreme-scale machines. In IPDPS, pages
957–968. IEEE, 2012.

[80] T. Wang and R. Johnson. Scalable logging through emerging
non-volatile memory. PVLDB, 7(10):865–876, 2014.

[81] J. Yang, Q. Wei, C. Chen, C. Wang, K. L. Yong, and B. He. NV-Tree:
reducing consistency cost for NVM-based single level systems. In
FAST 15, pages 167–181, 2015.

[82] Y. Zhang, J. Yang, A. Memaripour, and S. Swanson. Mojim: A
reliable and highly-available non-volatile memory system. In
ASPLOS, 2015.

1758

http://www.zdnet.com/article/windows-leaps-into-the-nvm-revolution/
http://www.zdnet.com/article/windows-leaps-into-the-nvm-revolution/
https://channel9.msdn.com/events/build/2016/p470
https://software.intel.com/en-us/blogs/2016/09/12/deprecate-pcommit-instruction
https://software.intel.com/en-us/blogs/2016/09/12/deprecate-pcommit-instruction

	Introduction
	Background
	Access Interfaces
	Allocator Interface
	Filesystem Interface

	Storage Manager
	Access Methods
	Logging & Recovery
	Data Placement
	Replication

	Execution Engine
	Plan Executor
	Query Optimizer
	SQL Extensions

	Lessons Learned
	Acknowledgements
	Biographies

