
Spanner: Google’s Globally-Distributed Database
Corbett, Dean, et al.

Jinliang Wei

CMU CSD

October 20, 2013

Jinliang Wei (CMU CSD) Spanner: Google’s Globally-Distributed Database Corbett, Dean, et al.October 20, 2013 1 / 21



What? - Key Features

I Globally distributed

I Versioned data

I SQL transactions + key-value read/writes

I External consistency

I Automatic data migration across machines (even across datacenters)
for load balancing and fautl tolerance.

Jinliang Wei (CMU CSD) Spanner: Google’s Globally-Distributed Database Corbett, Dean, et al.October 20, 2013 2 / 21



External Consistency

I Equivalent to linearizability

I If a transaction T1 commits before another transaction T2 starts,
then T1’s commit timestamp is smaller than T2.

I Any read that sees T2 must see T1.

I The strongest consistency guarantee that can be achieved in practice
(Strict consistency is stronger, but not achievable in practice).

Jinliang Wei (CMU CSD) Spanner: Google’s Globally-Distributed Database Corbett, Dean, et al.October 20, 2013 3 / 21



Why Spanner?

I BigTable
I Good performance
I Does not support transaction across rows.
I Hard to use.

I Megastore
I Support SQL transactions.
I Many applications: Gmail, Calendar, AppEngine...
I Poor write throughput.

I Need SQL transactions + high throughput.

Jinliang Wei (CMU CSD) Spanner: Google’s Globally-Distributed Database Corbett, Dean, et al.October 20, 2013 4 / 21



Spanserver Software Stack

Figure: Spanner Server Software Stack

Jinliang Wei (CMU CSD) Spanner: Google’s Globally-Distributed Database Corbett, Dean, et al.October 20, 2013 5 / 21



Spanserver Software Stack Cont.

I Spanserver maintains data and serves client requests.

I Data are key-value pairs.

(key:string, timestamp:int64) -> string

I Data is replicated across spanservers (could be in different
datacenters) in the unit of tablets.

I A Paxos state machine per tablet per spanserver.

I Paxos group: the set of all replicas of a tablet.

Jinliang Wei (CMU CSD) Spanner: Google’s Globally-Distributed Database Corbett, Dean, et al.October 20, 2013 6 / 21



Transactions Involving Only One Paxos Group

I A long lived Paxos leader
I Timed leases for leader election (more details later).
I Need only one RTT in failure-free situations.

I A lock table for concurrency control
I Multiple transactions may happen concurrently – need concurrency

control.
I Maintained by Paxos leader.
I Maps ranges of keys to lock states.
I Two-phase locking.
I Wound-wait for dead lock avoidance.
I Older transactions are aborted for retry if a younger transaction holds

the lock (handled internally).

I This is the case for most transactions.

Jinliang Wei (CMU CSD) Spanner: Google’s Globally-Distributed Database Corbett, Dean, et al.October 20, 2013 7 / 21



Transactions Involving Multiple Paxos Groups

I Participant leader: transaction manager, leader within group.
I Implemented on Paxos leader.

I Coordinator leader: Chosen among participant leaders involved in the
transaction.

I Initiates two-phase commit for atmoicity.
I Prepare message is logged as a Paxos action in each Paxos group (via

participant leader).
I Within each group, the commit is dealt with Paxos.

I This logic is bypassed for transactions involving only one Paxos group.

I Running two-phase commit over Paxos mitigates availability problem.

I Question: Why not Paxos over Paxos? My guess: scalability.

Jinliang Wei (CMU CSD) Spanner: Google’s Globally-Distributed Database Corbett, Dean, et al.October 20, 2013 8 / 21



Data Model

I Semi-relational data model.

I The relational part:
Data organized as tables;
support SQL-based query language.

I The non-relational part:
Each table is required to have an ordered set of primary-key columns.

I Primary-key columns allows applications to control data locality
through their choices of keys.

I Tablets consist of directories.
I Each directory contains a contiguous range of keys.
I Directory is the unit of data placement.

Jinliang Wei (CMU CSD) Spanner: Google’s Globally-Distributed Database Corbett, Dean, et al.October 20, 2013 9 / 21



TrueTime

I Used to implement major logic in Spanner.

I

TT.now() TTinterval: [earlist, latest]

TT.after() true if t has definitely passed

TT.before() true if t has definitely not arrived

I Two kinds of data references: GPS and atomic clocks – different
failure causes.

I A set of time master machines per datacenter. Others are daemons.

I Masters synchronize themselves.

I Daemons poll from master periodically.

I Increasing time unvertainty within each poll interval.

Jinliang Wei (CMU CSD) Spanner: Google’s Globally-Distributed Database Corbett, Dean, et al.October 20, 2013 10 / 21



Transactions supported by Spanner

Operation Concurrency Control Replica Required

Read-Write Transaction pessimistic leader

Read-Only Transaction lock-free leader, any

Snapshot Read, client-provided timestamp lock-free any

Snapshot Read, client-provided bound lock-free any

I Standalone writes are implemented as read-write transactions.

I Standalone reads are implemented as read-only transactions.

Jinliang Wei (CMU CSD) Spanner: Google’s Globally-Distributed Database Corbett, Dean, et al.October 20, 2013 11 / 21



Paxos Leader Leases

I A spanserver sends request for timed lease votes.

I Leadership is granted when it receives acknowledgements from a
quorum.

I Lease is extended on successful writes.

I Everyone agrees on when the lease expires. No need for fault
tolerance master to detect failed leader.

Jinliang Wei (CMU CSD) Spanner: Google’s Globally-Distributed Database Corbett, Dean, et al.October 20, 2013 12 / 21



Read-Write Transactions - Timestamp Invariants

I Recall the two types of transactions discussed before.
I Invariant #1: timestamps must be assigned in monotonically

increasing order.
I Leader must only assign timestamps within the interval of its leader

lease.

I Invariant #2: if transaction T1 commits before T2 starts, T1’s
timestamp must be greater than T2’s.

Jinliang Wei (CMU CSD) Spanner: Google’s Globally-Distributed Database Corbett, Dean, et al.October 20, 2013 13 / 21



Read-Write Transactions - Details

I Wait-wound for dead lock avoidance of reads.

I Clients buffer writes.

I Client chooses a coordinate group, which initiates two-phase commit.

I A non-coordinator-participant leader chooses a prepare timestamp
and logs a prepare record through Paxos and notifies the coordinator.

I The coordinator assigns a commit timestamp si no less than all
prepare timestamps and TT.now().latest (computed when receiving
the request).

I The coordinator ensures that clients cannot see any data commited
by Ti until TT.after(si ) is true. This is done by commit wait (wait
until absolute time passes si to commit).

Jinliang Wei (CMU CSD) Spanner: Google’s Globally-Distributed Database Corbett, Dean, et al.October 20, 2013 14 / 21



Serving Reads at a Timestamp

I tsafe = min(tPaxossafe , tTMsafe ). Serves read only if read timestamp no larger
than tsafe .

I tPaxossafe : the timestamp of highest Paxos write.

I tTMsafe : ∞ if there are zero prepared transactions;
mini (s

prepare
i ,g )− 1 if there are prepared transactions.

I Does not know if the transaction will be eventually commited.
I Prevents clients from reading it.

I Problem: What if tTMsafe does not advance (no multiple-group
transactions)?

Jinliang Wei (CMU CSD) Spanner: Google’s Globally-Distributed Database Corbett, Dean, et al.October 20, 2013 15 / 21



Read-Only Transactions - Assigning Timestamp

I Leader assigns a timestamp - obeying external consistency. Then it
does a snapshot read on any replica.

I External consistency requires the read to see all transactions
commited before the read starts - timestamp of the read must be no
lesss than that of any commited writes.

I Let sread = TT.now().latest may cause blocking. Reduce it!

I If the read involves only one Paxos group, let sread be the timestamp
of last committed write (LastTS()).

I If the read involves multiple Paxos group, sread = TT.now().latest –
avoid negotiation.

I What if there are no more write transactions? Blocking infinitely?

Jinliang Wei (CMU CSD) Spanner: Google’s Globally-Distributed Database Corbett, Dean, et al.October 20, 2013 16 / 21



Refinement #1

I tTMsafe may prevent tsafe from advancing.

I Solution: lock table maps key ranges to prepared-transaction
timestamps.

Jinliang Wei (CMU CSD) Spanner: Google’s Globally-Distributed Database Corbett, Dean, et al.October 20, 2013 17 / 21



Refinement #2

I Commit wait causes commits to happen some time after the commit
timestamp.

I LastTS() causes reads to wait for commit wait.

I Solution: lock table maps key range to commit timestamps. Read
timestamp only needs to be the maximum timestamp of conflicting
writes.

Jinliang Wei (CMU CSD) Spanner: Google’s Globally-Distributed Database Corbett, Dean, et al.October 20, 2013 18 / 21



Refinement #3

I tPaxossafe cannot advance in the absence of Paxos writes. May cause
reads to block infinitely.

I Solution: as leader must assign timestamps no less than the starting
time of its lease, tPaxossafe can advance as new lease starts.

Jinliang Wei (CMU CSD) Spanner: Google’s Globally-Distributed Database Corbett, Dean, et al.October 20, 2013 19 / 21



What does TrueTime Buy You?

I Murat Demirbas: TrueTime benefits snapshot reads the most.
Otherwise, there’s no easy way to specify an old snapshot.

I TrueTime allows replicas to know expired leadership without a fault
tolerance master.

I How would you guarantee timestamp monotonically increase across
leaders without TrueTime? New leader needs to figure out the
highest timestamp assigned by the old leader.

I Avoid the negotiation round for assigning timestamp for read that
involves multiple Paxos groups.

Jinliang Wei (CMU CSD) Spanner: Google’s Globally-Distributed Database Corbett, Dean, et al.October 20, 2013 20 / 21



Criticisms

I Same as previous Google papers, poor experiments.

I How is old data cleaned?

Jinliang Wei (CMU CSD) Spanner: Google’s Globally-Distributed Database Corbett, Dean, et al.October 20, 2013 21 / 21


