MillWheel: Fault-Tolerant Stream
Processing at Internet Scale

Presented by Rui Zhang
October 28, 2013

What is MillWheel?

e Stream processing framework

e Simple programming models

e User-specified directed computation graph
e Fault-tolerance guarantees

e Scalability

Requirements by example

e Persistent Storage
e Short-term and long-term

e Low Watermarks
 Distinguish late records

e Duplicate Prevention

Maodel
S Calculator
&
V)

Web Window
Search) Counter
Spike/Dip -
Detector Anomalies
Notifications

Overview

e Input and output triple
 (key, value, timestamp)

("britney", [bytes], 10:59:10
("britney", [bytes], 10:59:11)
("britney", [bytes], 10:59:10)
("carly", [bytes], 10:59:10)

Overview

 Computation
e Triggered upon receipt of record
e Dynamically topology
e Run in the context of a single ke
 Parallel per-key processing

Window Model ‘ Spike/Dip Anomaly
Counter Calculator Detector Notifications

("britney", [bytes], 10:59:10
("britney", [bytes], 10:59:11)
("britney", [bytes], 10:59:10)
("carly", [bytes], 10:59:10)

Overview

* Keys
e Abstraction for record aggregation and comparison
e Computation can only access state for the specific key

e Key extraction function
» Specified by each consumer

("britney", [bytes], 10:59:10 ; : :

("britney”, [bytes], 10:59:11) ‘ Window ‘ Model ‘ Spike/Dip ‘ Anomaly

("britney", [bytes], 10:59:10) A= 3
("cariy". [bytes], 10:50-10) Counter Calculator Detector Notifications

-stream basis

Stream:Q
ueries

computation SpikeDetector ({
input_streams {
stream model_updates {
key_extractor = ’SearchQuery’

Overview

}
stream window_counts {
key_extractor = ’SearchQuery’
}
}
output_streams {
stream anomalies {
record_format = ‘AnomalyMessage’

e Streams

e Delivery mechanism between computations
e Computation can get input from multiple strea
and also produce records to multiple

Window \Y/[eYe =] ‘
Counter Calculator

("britney", [bytes], 10:59:10
("britney", [bytes], 10:59:11)
("britney", [bytes], 10:59:10)
("carly", [bytes], 10:59:10)

Spike/Dip
Detector

Anomaly
Notification

Overview

e Persistent State
e Managed on per-key basis
e Stored in Bigtable or Spanner

e Common use
e Aggregation, buffered data f

Window Model ﬂ Computation Computation
Counter Calculator A C

britney: (10:59:10, 2) . X
(10:59:11, 1) britney: \NW\/
carly: (10:59:10, 1) carly: AMAN

— T

("britney", [bytes], 10:59:10
("britney", [bytes], 10:59:11)
("britney", [bytes], 10:59:10)
("carly", [bytes], 10:59:10)

AP]

* Computation API
* ProcessRecord
e Triggered when receiving a record

* ProcessTimer
* Triggered at a specific value or low watermark value

e Timers are stored in persistent state

e Not necessary class Computation {
// Hooks called by the system.

vold ProcessRecord(Record data);
vold ProcessTimer (Timer timer);

// Accessors for other abstractions.
volid SetTimer (string tag, inté64 time);
volid ProduceRecord(

Record data, string stream);
StateType MutablePersistentState();

}i

MilWhe! System Binary

ProcessRecord

Process Timer

User Code: Computation

i

State

Timer Produce

Persistent State

pon receipt of a record, update the running
ptal for its timestamp bucket, and set a
imer to fire when we have received all

of the data for that bucket.

void Windower: :ProcessRecord(Record input) {
WindowState state (MutablePersistentState());
state.UpdateBucketCount (input.timestamp());
string id = WindowID (input.timestamp())
SetTimer (1d, WlndowBoundary(1nput.t1me5tamp{)))4

Once we have all of the data for a given
Y/ window, produce the window.
void Windower::ProcessTimer (Timer timer) {
Record record =

WindowCount (timer.tag (),

MutablePersistentState ());

record.SetTimestamp (timer.timestamp ());
// DipDetector subscribes to this stream.
ProduceRecord (record, "windows"};|

Given a bucket count, compare it to the
/ expected traffic, and emit a Dip event
// if we have high enough confidence.
vold DipDetector::ProcessRecord (Record input) {
DipState state (MutablePersistentState());
int prediction =
state.GetPrediction (input.timestamp());
int actual = GetBucketCount (input.data());
state.UpdateConfidence (prediction, actual);
if (state.confidence () =
kConfidenceThreshold) {
Record record =
Dip(kevy (), state.confidence());
record.SetTimestamp (input .timestamp());
ProduceRecord(record, "dip-stream");

}

AP]

* Low Watermark
e At the system layer
e Compute the low watermark value for all the pending work
e Computation code rarely communicate with low watermarks

AP]

* |[njectors
* Bring external data into MillWheel
e Publish the injector low watermark

e Distributed across many processes
* Injector low watermark is determined among those processes

// Upon finishing a file or receiving a ne
// one, we update the low watermark to be
// minimum creation time.
vold OnFileEvent ()
inted watermark = kintédmax;
for (file : files) {
if (1 file ALtEQF())
watermark =
min (watermark, file.GetCreationTime());
}
if (watermark != kint6dmax)
UpdateInjectorWatermark (watermark);

Key Features

* Low Watermark
* Min(oldest work of A, low watermark of C) |:>

e Late records
e Records behind the low watermark
* Process them according to application (discard or correct the result)

e Monotonic in the face of late data

Key Features

e Low Watermark

P nding Work

F@ .
t = timestamp

Completed Work

.ﬂw -

swil llem

b

Key Features

e Delivery Guarantees

e Exactly-Once Delivery
e Unique ID for every record
e Bloom filter to provide fast path

e Garbage collection for record IDs
e Delay for those frequently delivering late data
* Duplicate checking can be disabled

Sender

request sending

Duplicate
Record?

Process

Discard
Record

Send Acks

Commit

pending
changes

Send
productio
ns

Key Features

e Delivery Guarantees

e Strong Productions
* Checkpoint before delivering productions
e Checkpoint data will be deleted once productions succeed

Key Features

e Delivery Guarantees

 Weak Productions
* For computations inherently idempotent
e Broadcast downstream without checkpointing
e End-to-end latency
e Partial checkpointing

Key Features

e Delivery Guarantees
e Weak Productions

Computation A

Computation B

Computation C

1 sec

|
|
|
|
|
|
|
|
|
|
l
|
— 1.3 sec !
|
|
|
|
|
|
|
|
|
|

P

checkpoint

| |
Produce : :
= Produce !
l l
| |
|
! checkpaint !
ACK ! !
A - m - T I
X B restarts |
| Replay production |
L |
| ACK |
e i I

i delete

|

Key Features

e State Manipulation

* Wrap all per-key updates into an atomic operation in case of crash
* Per-key consistency
e timer, user state, production checkpoints

e Single-writer guarantee
e Avoid zombie writers and network remnants issuing stale writes

e Sequencer token
* Check the validity before committing writes
 Critical for both hard state and soft state

Key Features

e State Manipulation

Computation A Computation B BackIng Store
T T T
| |
! Produce ! B: !
= fimer transaction I
: | (delayed on wire) |
| ! |
I I I
! B-prime started, }() !
I leaving zombie B B-prime: I
| | scans for timers |
: A = timer
: : ! transaction
| ! ! starts
| | |
: : l timer
| B: ACK ! ! transaction
el —— —— e e ! succeeds
h I |
|
|
|
|

timer lost 7

Implementation

e Architecture
e Each computation runs on one or more machines
e Streams are delivered through RPC

e On each machine:
* Marshals incoming work
* Manages process-level metadata
* Delegates to corresponding computation

Implementation

e Architecture

e Load distribution and balancing
* Handled by replicated master

e Key intervals
* Keep changing according to CPU load and memory pressure

@0 @0
Interval n

Interval 1 | Interval 2 Interval 3

< ¥ @

9

Machin Machin Machin Machin Machin Machin

es es es

es es (S

Implementation

e Architecture

* Persistent state
» Bigtable or Spanner
e Data for a particular key are stored in the same row
* Timers, pending productions, persistent state
* Recover from failure efficiently by scanning metadata
* Consistency is important

Implementation

e Low Watermark

e Central authority
e Track all low watermark values across the system
e Store them in persistent state in case of failure

e Each process aggregates their own timestamp information and send to central authority
* Bucketed into key intervals

Interval 1:k Interval 2:zm Interval 3:n Interval 4;j

mis;
]

machines machines machines machines

Implementation

e Low Watermark

e Central authority
* Minima are computed by workers
e Sequencer for low watermark updates

e Scalability
* Sharded across multiple machines

Evaluation

e Output latency
* |[dempotent guarantee can increase latency a lot

e Watermark lag
e Proportional to the pipeline distance from the injector

 Framework-level caching
* Increasing available cache improves the CPU usage linearly

Comparison

e Punctuation-based system

e Use special annotations embedded in data streams to specify the end of a subset of
data

* Indicate no more records will come which match the punctuation

* Gigascope
e Heartbeat based system
e Heartbeats carry temporal update tuples
e Heartbeats monitor the system performance and check the node failure

* Drawbacks of these systems
* Need to generate artificial messages even though there are no new records

e Utilize a more aggressive checkpointing protocol where they track every record
processed

