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What is MillWheel?

e Stream processing framework

e Simple programming models

e User-specified directed computation graph
e Fault-tolerance guarantees

e Scalability



Requirements by example

e Persistent Storage
e Short-term and long-term

e Low Watermarks
 Distinguish late records

e Duplicate Prevention
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Overview

e Input and output triple
 (key, value, timestamp)
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Overview

 Computation
e Triggered upon receipt of record
e Dynamically topology
e Run in the context of a single ke
 Parallel per-key processing
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Overview

* Keys
e Abstraction for record aggregation and comparison
e Computation can only access state for the specific key

e Key extraction function
» Specified by each consumer
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computation SpikeDetector ({
input_streams {
stream model_updates {
key_extractor = ’SearchQuery’

Overview

}
stream window_counts {
key_extractor = ’SearchQuery’
}
}
output_streams {
stream anomalies {
record_format = ‘AnomalyMessage’

e Streams

e Delivery mechanism between computations
e Computation can get input from multiple strea
and also produce records to multiple
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Overview

e Persistent State
e Managed on per-key basis
e Stored in Bigtable or Spanner

e Common use
e Aggregation, buffered data f
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AP]

* Computation API
* ProcessRecord
e Triggered when receiving a record

* ProcessTimer
* Triggered at a specific value or low watermark value

e Timers are stored in persistent state

e Not necessary class Computation {
// Hooks called by the system.

vold ProcessRecord(Record data);
vold ProcessTimer (Timer timer);

// Accessors for other abstractions.
volid SetTimer (string tag, inté64 time);
volid ProduceRecord(

Record data, string stream);
StateType MutablePersistentState();

}i




MilWhe! System Binary

ProcessRecord

Process Timer

User Code: Computation
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Persistent State

pon receipt of a record, update the running
ptal for its timestamp bucket, and set a
imer to fire when we have received all

of the data for that bucket.

void Windower: :ProcessRecord(Record input) {
WindowState state (MutablePersistentState());
state.UpdateBucketCount (input.timestamp());
string id = WindowID (input.timestamp())
SetTimer (1d, WlndowBoundary(1nput.t1me5tamp{)))4

Once we have all of the data for a given
Y/ window, produce the window.
void Windower::ProcessTimer (Timer timer) {
Record record =

WindowCount (timer.tag (),

MutablePersistentState ());

record.SetTimestamp (timer.timestamp ());
// DipDetector subscribes to this stream.
ProduceRecord (record, "windows"};|

Given a bucket count, compare it to the
/ expected traffic, and emit a Dip event
// if we have high enough confidence.
vold DipDetector::ProcessRecord (Record input) {
DipState state (MutablePersistentState());
int prediction =
state.GetPrediction (input.timestamp());
int actual = GetBucketCount (input.data());
state.UpdateConfidence (prediction, actual);
if (state.confidence () =
kConfidenceThreshold) {
Record record =
Dip(kevy (), state.confidence());
record.SetTimestamp (input .timestamp());
ProduceRecord(record, "dip-stream");

}




AP]

* Low Watermark
e At the system layer
e Compute the low watermark value for all the pending work
e Computation code rarely communicate with low watermarks



AP]

* |[njectors
* Bring external data into MillWheel
e Publish the injector low watermark

e Distributed across many processes
* Injector low watermark is determined among those processes

// Upon finishing a file or receiving a ne
// one, we update the low watermark to be
// minimum creation time.
vold OnFileEvent ()
inted watermark = kintédmax;
for (file : files) {
if (1 file ALtEQF())
watermark =
min (watermark, file.GetCreationTime());
}
if (watermark != kint6dmax)
UpdateInjectorWatermark (watermark);




Key Features

* Low Watermark
* Min(oldest work of A, low watermark of C) |:>

e Late records
e Records behind the low watermark
* Process them according to application (discard or correct the result)

e Monotonic in the face of late data



Key Features

e Low Watermark
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Key Features

e Delivery Guarantees

e Exactly-Once Delivery
e Unique ID for every record
e Bloom filter to provide fast path

e Garbage collection for record IDs
e Delay for those frequently delivering late data
* Duplicate checking can be disabled
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Key Features

e Delivery Guarantees

e Strong Productions
* Checkpoint before delivering productions
e Checkpoint data will be deleted once productions succeed



Key Features

e Delivery Guarantees

 Weak Productions
* For computations inherently idempotent
e Broadcast downstream without checkpointing
e End-to-end latency
e Partial checkpointing



Key Features

e Delivery Guarantees
e Weak Productions
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Key Features

e State Manipulation

* Wrap all per-key updates into an atomic operation in case of crash
* Per-key consistency
e timer, user state, production checkpoints

e Single-writer guarantee
e Avoid zombie writers and network remnants issuing stale writes

e Sequencer token
* Check the validity before committing writes
 Critical for both hard state and soft state



Key Features

e State Manipulation
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Implementation

e Architecture
e Each computation runs on one or more machines
e Streams are delivered through RPC

e On each machine:
* Marshals incoming work
* Manages process-level metadata
* Delegates to corresponding computation



Implementation

e Architecture

e Load distribution and balancing
* Handled by replicated master

e Key intervals
* Keep changing according to CPU load and memory pressure
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Implementation

e Architecture

* Persistent state
» Bigtable or Spanner
e Data for a particular key are stored in the same row
* Timers, pending productions, persistent state
* Recover from failure efficiently by scanning metadata
* Consistency is important



Implementation

e Low Watermark

e Central authority
e Track all low watermark values across the system
e Store them in persistent state in case of failure

e Each process aggregates their own timestamp information and send to central authority
* Bucketed into key intervals
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Implementation

e Low Watermark

e Central authority
* Minima are computed by workers
e Sequencer for low watermark updates

e Scalability
* Sharded across multiple machines



Evaluation

e Output latency
* |[dempotent guarantee can increase latency a lot

e Watermark lag
e Proportional to the pipeline distance from the injector

 Framework-level caching
* Increasing available cache improves the CPU usage linearly



Comparison

e Punctuation-based system

e Use special annotations embedded in data streams to specify the end of a subset of
data

* Indicate no more records will come which match the punctuation

* Gigascope
e Heartbeat based system
e Heartbeats carry temporal update tuples
e Heartbeats monitor the system performance and check the node failure

* Drawbacks of these systems
* Need to generate artificial messages even though there are no new records

e Utilize a more aggressive checkpointing protocol where they track every record
processed



