Invisible loading: Access-Driven Data Transfer
from Raw Files into Database Systems

Presenter: Hefu Chai

Motivation

* Problems with database systems
* High “time-to-first-analysis”

* Large scientific datasets and social networks datasets

* Non-trivial data preparation

* Advantages of database systems
* Optimized data layout and query execution plan

Motivation

* Problems with Hadoop
* Poor cumulative long-term performance

* Advantages of Hadoop
* Scalable

* Low “time-to-first” analysis

HadoopDB

=

Goals

* To achieve low time-to-first analysis of MapReduce jobs over a v
distributed file system

* To yield the long-term performance benefits of database system v

Basic Ideas

* Piggyback on MapReduce jobs
* Incrementally loading data into databases with almost no marginal cost.

* Simultaneously processing the data.

Specific Goal

* Move data from a file system to a database system, with minimal
human intervention and human detection (Invisible)

* User should not be forced to specify a complete schema, or database loading
operations

* User should not notice the additional performance overhead of loading work

Work Flows

MonetDB

HDFS

Work Flows

.

MonetDB

HDFS

Work Flows

HDFS

. MonetDB
HDFS

HDFS

Invisible Loading

* Abstract, polymorphic Hadoop job (/nvisibleLoadJobBase)
* Parser object reads in input tuple to extract the attributes

e Generate flexible schema

Table name:l{file_ﬂame>Lkparser_name}l
Schema: (1 <type>, 2 <type>, ...,
n <type>);

Invisible Loading

 Catalog
* Address Column enables alignment of partially loaded cols with other cols

M
Loaded data | et HDFS file-splits

[0, x)

Ma
Data set —LD Tables

* |f table does not exist [X, 2x)
SQL CREATE TABLE

Address col

Incrementally Loading Attributes
Job with {b,c}

* Loading attributes that are actually processed
* SQL ALTER TABLE...

* Size of Partition loaded per IL could be configured

* Use Column store to avoid physically restructuring
ALTER TABLE...ADD COLUMN(c...)
Table {a,b,c}

Incremental Data Reorganization

* Pre-sorting is expensive and inflexible
* Bad index results in poor query execution plans

* All or nothing service

» Take long time creating a complete index

Incremental Merge Sort

Based on basic two-way external merge sort algorithm

Basic two-way external features:
 Twice the amount of merge work than previous phase

* Defeats the key feature of any incremental strategy
* Keep equal or less effort for any query in comparison to previous queries

Incremental Merge Sort

. Load & Ph 1 Ph 2
Goal: perform a bounded # of comparisons Sort _Splithit. 10006 Split-bit: 0100b
11 0 0
0 5 1 2 }
5, ... 11 4 5 0:0-3
L !
e Split-bit — 1 >< . 3
8, ... a4 | 8
. Z’ > fo 190 1:811
* Go through logk phases of k/2 merge/split |4 0 11 1
operations on average 2*n/k tuples o) [Tel 2 7
9, .. —=| 9 3 2 2:4-7
12, ... 12 “>< g .
* Disjoint ranges R) 5 7
13,. 3 12 12 .
7, ... 13 15 15
15, ... 15
Splits in HDFS Slices of the column in Simple index

File System database

Incremental Merge Sort

Goal: perform a bounded # of comparisons

* Split-bit

* Go through logk phases of k/2 merge/split
operations on average 2*n/k tuples

* Disjoint ranges

Load &
Sort

7, ...
15, ...
Splits in HDFS

File System

Phase 1 Phase 2
Split-bit: 1000b__ Split-bit: 0100b
g 0
1 "
11 5 0:0-3
3
1
1 8
5 9 a
g 10 1:8-11
10 11
6 4
> 2:4-7
192 > o
6
) 7
3 12 _
2 13 3:12-15
13 15
15
Slices of the column in Simple index

database

Incremental Merge Sort

Goal: perform a bounded # of comparisons

* Split-bit

* Go through logk phases of k/2 merge/split
operations on average 2*n/k tuples

* Disjoint ranges

Load &
Sort

—

11, ...

0,.. —»
5, ..
./
—_—

1, ...

8, ...

5 .. |I—m
4, ..

10, ...
S

6, ...

9, .. E—
12, ...

| —
—

3, ...

13, ...

2, ... ——
7, ...

15, ...

Splits in HDFS

File System

Phase 1 Phase 2
Split-bit: 1000b Split-bit: 0100b Nt contiguous
0
0 1 0
5 1
11 4 5 0:0-3
5 4 3
1 5
8
: g 9
. 10 10 1:8-11
10 11 y| 11
4
6 % 5
9 . 5 2:4-7
12 ><: 7 6
2 9 ?
3 12 12 ,
? 13 13 3:12-15
13 15 15
15

Slices of the column in
database

Simple index

Incremental Merge Sort

Problem with this algorithm

e Create physical copy of columns with no
GC

e Data skew

* Not query driven, all tuples are equally
important

Load &
Sort

—

11, ...

0,.. —»
5, ..
./
—_—

1, ...

8, ...

5 .. |I—m
4, ..

10, ...
S

6, ...

9, .. E—
12, ...

| —
—

3, ...

13, ...

2, ... ——
7, ...

15, ...

Splits in HDFS

File System

Phase 1 Phase 2
Split-hit: 1000b
0 0
5 1
11 4

5
1 5
4
5 8
3 10
10 11
6 :
9 b
12 >< 7
2 9
3 12
7 13
13 15
15

Slices of the column in
database

Split-bit: 0100b

e
PBwx|lwrnero

-~ o u

Y
(T

0:0-3

1:8-11

2:4-7

3:12-15

Simple index

Integration Invisible Loading with Incremental Reorganization

* Frequency of access of a particular attribute determines how much it
is loaded

* Tuple-identifier(OIDs): determine how much of a column has been loaded

* Filtering operations on a particular attribute cause sort on the
attribute’s column

* Address Columns: track the movement of tuples due to sorting

Integration Invisible Loading with Incremental Reorganization

* Rules for reorganization at different loading states

* Columns are completely loaded and sorted in the same order
* Simple linear merge

* Reconstruct a partially loaded columns with other columns.
* Join on address column of primary column with OIDs of partially loaded columns

* Sort a column to a different order
* A copy for that column is created and use address column to track the movements

Integration Invisible Loading with Incremental Reorganization

X: {a, b}
Y: {a, c}
Z: {b, d}
At most one split is loaded per job per node

* Case 0: XXXX-YYYY

* bis positionally aligned with a. no need OID
* Tuple-identifier matching Tac (0 (a)(@.addry)>(oid,))
e Cdrops OID after complete loading, and align with a

Integration Invisible Loading with Incremental Reorganization

X: {a, b}
Y: {a, c}
Z: {b, d}
At most one split is loaded per job per node
* Case 1: XX-YYYY-XX
* bis positionally aligned with a
Tuple-identifier matching Tac (0 (a)(a.addry)>(oid, c))
a is immediately sort
b create OID after third Y
c drops OID after fourth Y

Integration Invisible Loading with Incremental Reorganization

X: {a, b}

Y: {a, c}

Z: {b, d}

At most one split is loaded per job per node

e Case 2: {case O | case 1}-7777
* Acopyofbiscreatedasb’ mq(0sm)(b.addra)<i(oidg,d))
e Addr{b} keeps track of b’

Integration Invisible Loading with Incremental Reorganization

X: {a, b}
Y: {a, c}
Z: {b, d}
At most one split is loaded per job per node
* Case 3: XX-ZZZZ-XX
e Addr{a} for a and Addr{b} for b’
* The following X load a from HDFS, and copy b within database
to keep alighnment with a

Experiments

Strategy Description

Two extreme Example
 SQL Pre-load
 MapReduce

Pre-load the entire dataset into the database using SQL’s
‘ SQL Pre-load ‘ ‘COPY INTO’ command. Data are sorted after loading
using ‘ORDER BY".

)

Load the entire dataset into the database system upon its
Incremental Re- first access, but unlike Pre-load above. do not immedi-

[

Two Dimensions: organize (all) ately sort the data. Instead, data are incrementally reorga-
* Vertically nized as more queries access the data.
) Incremental Same as Incremental Reorganize (all). except that only
* Horizontally 3 Reorganize those attributes that are accessed by the current MapRe-
(subset) duce job are loaded.

The invisible loading algorithm described in Section 2,
Invisible Load- except that all attributes are loaded into the database (in-

4 ing (all) stead of the subset accessed by a particular MapReduce
job).
z [Invisible Load-| The complete invisible loading algorithm described in
© ing (subset) Section 2.
Process the data entirely in Hadoop without database
6 | MapReduce ‘ loading or reorganization. This is the performance the

user can expect to achieve if data are never loaded into a
database system

Table 1: Loading Strategies

Loading Experiments

200 . —_—
S0L Pre-load

Incremental Reorganization (3'5) -------

Incremental Reorganization (2/5) ———

Invisible Loading(2/5) o0 o —

The response time is almost the same o L MepReduce =
With MR, but has a better improvement s
In the next 10 jobs L% 500 - i

|:| 1 1 1 1 1 1 T | 1 1 1 1 1 1 Ll
1 10 100

Job Sequence

Figure 2: Response time of repeatedly executing selection queries over
attributes agp, a1.

Loading Experiments

Invisible Loading:
* Low upfront cost of pre-loading
* Performs better when data are completely loade:

Incremental reorganization
* Approximately the same with pre-load
Sort in one go has little cumulative benefit

(2/5)Incremental reorganization
* Best cumulative effort if the other 3
attributes are not accessed

100000 - | . . -
0L Pre-load
Incremental Recrganization (&5} -------
Incremental Reorganization (2/5)
Invisible Loading (5/5) =====--
Invisible Loadin
m .
B
10000 |- .
oh 2 _
E
E -
- --"'-'7'::-.1-.
IE- L= -_____'__‘__.'_.-;_-,_,-':':.:..:__h..
2 e |
2 1000 | : - __
-
L
0 .) ! oy .
100
1 10 100

Job Sequence

Figure 3: Cumulative cost of repeatedly executing selection queries

over attributes ag, a1 (Experiment 1).

Summary

Strong Points:

* Almost no burden on MapReduce jobs

* Optimized data access for future analysis

e Relatively low cumulative cost in comparison to no data access

Weak Points:
e Data duplication cost, no GC
e Suitable for short-lived data

Thanks

