
Invisible loading: Access-Driven Data Transfer 
from Raw Files into Database Systems

Presenter: Hefu Chai



• Problems with database systems
• High “time-to-first-analysis”

• Large scientific datasets and social networks datasets

• Non-trivial data preparation

• Advantages of database systems
• Optimized data layout and query execution plan

Motivation



• Problems with Hadoop
• Poor cumulative long-term performance

• Advantages of Hadoop
• Scalable

• Low “time-to-first” analysis

Motivation



HadoopDB



• To achieve low time-to-first analysis of MapReduce jobs over a 
distributed file system 

• To yield the long-term performance benefits of database system

Goals



• Piggyback on MapReduce jobs
• Incrementally loading data into databases with almost no marginal cost.

• Simultaneously processing the data.

Basic Ideas



• Move data from a file system to a database system, with minimal 
human intervention and human detection (Invisible)

• User should not be forced to specify a complete schema, or database loading 
operations

• User should not notice the additional performance overhead of loading work

Specific Goal



Work Flows

Query 1

HDFS

HDFS

HDFS

MonetDB



Work Flows

Query 1

HDFS

HDFS

HDFS

MonetDB



Work Flows

Query 2

HDFS

HDFS

HDFS

MonetDB

Redirect



• Abstract, polymorphic Hadoop job (InvisibleLoadJobBase)
• Parser object reads in input tuple to extract the attributes

• Generate flexible schema

Invisible Loading



• Catalog
• Address Column enables alignment of partially loaded cols with other cols

• If table does not exist

Invisible Loading

HDFS file-splitsLoaded data
Map

TablesData set
Map

SQL CREATE TABLE 

[0, x)

[x, 2x)

Address col



• Loading attributes that are actually processed
• SQL ALTER TABLE…

• Size of Partition loaded per IL could be configured

• Use Column store to avoid physically restructuring

Incrementally Loading Attributes

Table {a,b}

Job with {b ,c}

Table {a,b,c}
ALTER TABLE…ADD COLUMN(c…)



• Pre-sorting is expensive and inflexible
• Bad index results in poor query execution plans

• All or nothing service

• Take long time creating a complete index

Incremental Data Reorganization



Incremental Merge Sort

Based on basic two-way external merge sort algorithm

Basic two-way external features:
• Twice the amount of merge work than previous phase

• Defeats the key feature of any incremental strategy
• Keep equal or less effort for any query in comparison to previous queries



Incremental Merge Sort

Goal: perform a bounded # of comparisons

• Split-bit

• Go through logk phases of k/2 merge/split 
operations on average 2*n/k tuples

• Disjoint ranges



Incremental Merge Sort

• Split-bit

• Go through logk phases of k/2 merge/split 
operations on average 2*n/k tuples

• Disjoint ranges

Goal: perform a bounded # of comparisons



Incremental Merge Sort

Not contiguous

• Split-bit

• Go through logk phases of k/2 merge/split 
operations on average 2*n/k tuples

• Disjoint ranges

Goal: perform a bounded # of comparisons



Incremental Merge Sort

• Create physical copy of columns with no
GC

• Data skew

• Not query driven, all tuples are equally 
important 

Problem with this algorithm



• Frequency of access of a particular attribute determines how much it 
is loaded 
• Tuple-identifier(OIDs): determine how much of a column has been loaded

• Filtering operations on a particular attribute cause sort on the 
attribute’s column
• Address Columns: track the movement of tuples due to sorting

Integration Invisible Loading with Incremental Reorganization



• Rules for reorganization at different loading states
• Columns are completely loaded and sorted in the same order

• Simple linear merge

• Reconstruct a partially loaded columns with other columns. 
• Join on address column of primary column with OIDs of partially loaded columns

• Sort a column to a different order
• A copy for that column is created and use address column to track the movements

Integration Invisible Loading with Incremental Reorganization



• Case 0: XXXX-YYYY
• b is positionally aligned with a, no need OID

• Tuple-identifier matching

• C drops OID after complete loading, and align with a

Integration Invisible Loading with Incremental Reorganization

X: {a, b}
Y: {a, c}
Z: {b, d}
At most one split is loaded per job per node



• Case 1: XX-YYYY-XX
• b is positionally aligned with a

• Tuple-identifier matching

• a is immediately sort

• b create OID after third Y

• c drops OID after fourth Y

Integration Invisible Loading with Incremental Reorganization

X: {a, b}
Y: {a, c}
Z: {b, d}
At most one split is loaded per job per node



• Case 2: {case 0 | case 1} - ZZZZ
• A copy of b is created as b’

• Addr{b} keeps track of b’ 

Integration Invisible Loading with Incremental Reorganization

X: {a, b}
Y: {a, c}
Z: {b, d}
At most one split is loaded per job per node



• Case 3: XX-ZZZZ-XX
• Addr{a} for a and Addr{b} for b’

• The following X load a from HDFS, and copy b within database

to keep alignment with a

Integration Invisible Loading with Incremental Reorganization

X: {a, b}
Y: {a, c}
Z: {b, d}
At most one split is loaded per job per node



Experiments

Two extreme Example
• SQL Pre-load
• MapReduce

Two Dimensions:
• Vertically
• Horizontally



Loading Experiments

Invisible Loading(2/5)
The response time is almost the same
With MR, but has a better improvement
In the next 10 jobs



Invisible Loading:
• Low upfront cost of pre-loading
• Performs better when data are completely loaded

Incremental reorganization
• Approximately the same with pre-load

Sort in one go has little cumulative benefit

(2/5)Incremental reorganization
• Best cumulative effort if the other 3 

attributes are not accessed

Loading Experiments



Summary

Strong Points:
• Almost no burden on MapReduce jobs
• Optimized data access for future analysis
• Relatively low cumulative cost in comparison to no data access

Weak Points:
• Data duplication cost, no GC
• Suitable for short-lived data



Thanks


