
F1: A Distributed SQL
Database That Scales

Presentation by:
Alex Degtiar (adegtiar@cmu.edu)

15-799
10/21/2013

What is F1?

• Distributed relational database
• Built to replace sharded MySQL back-end of

AdWords system
• Combines features of NoSQL and SQL
• Built on top of Spanner

Presenter
Presentation Notes
NoSQL - scalability/availabilty
SQL - consistency/usability
Spanner - uses a number of features, adds several new ones

Goals

• Scalability
• Availability
• Consistency
• Usability

Presenter
Presentation Notes
Scalability
sharded MySQL hard to scale, rebalance, and reshard w/out breaking app
Availability
Google’s core business, lots of money loss with downtime
Consistency
Financial data, data integrity and consistency
Don’t want app to deal with concurrency and difficult consistency model
ACID transactions
Usability
Full SQL query support
indexes
ad-hoc query

Features Inherited From Spanner

● Scalable data storage, resharding, and
rebalancing

● Synchronous replication
● Strong consistency & ordering

New Features Introduced

● Distributed SQL queries, including joining
data from external data sources

● Transactionally consistent secondary indexes
● Asynchronous schema changes including

database reorganizations
● Optimistics transactions
● Automatic change history recording and

publishing

Architecture

Architecture - F1 Client

● Client library
● Initiates reads/writes/transactions
● Sends requests to F1 servers

Presenter
Presentation Notes
SQL, programatic

Architecture

Architecture - F1 Server

● Coordinates query execution
● Reads and writes data from remote sources
● Communicates with Spanner servers
● Can be quickly added/removed

Presenter
Presentation Notes
Spanner servers might be in different DC
stateless

Architecture

Architecture - F1 Slaves

● Pool of slave worker tasks
● Processes execute parts of distributed query

coordinated by F1 servers
● Can also be quickly added/removed

Architecture

Architecture - F1 Master

● Maintains slave membership pool
● Monitors slave health
● Distributes list membership list to F1 servers

Architecture

Architecture - Spanner Servers

● Hold actual data
● Re-distribute data when servers added
● Support MapReduce interaction
● Communicates with CFS

Presenter
Presentation Notes
CFS in same DC

Data Model

● Relational schema (similar to RDBMS)
● Tables can be organized into a hierarchy
● Child table clustered/interleaved within the

rows from its parent table
○ Child has foreign key as prefix of p-key

Data Model

Presenter
Presentation Notes
Clustering improves physical locality & reduces number/cost of RPCs to remote data

Secondary Indexes

● Transactional & fully consistent
● Stored as separate tables in Spanner
● Keyed by index key + index table p-key
● Two types: Local and Global

Local Secondary Indexes

● Contain root row p-key as prefix
● Stored in same spanner directory as root

row
● Adds little additional cost to a transaction

Presenter
Presentation Notes
much like child table

Global Secondary Indexes

● Does not contain root row p-key as prefix
● Not co-located with root row

○ Often sharded across many directories
and servers

● Can have large update costs
● Consistently updated via 2PC

Schema Changes - Challenges

● F1 massively and widely distributed
● Each F1 server has schema in memory
● Queries & transactions must continue on all

tables
● System availability must not be impacted

during schema change

Presenter
Presentation Notes
2: atomic update not practical
3 even those undergoing schema changes

Schema Changes

● Applied asynchronously
● Issue: concurrent updates from different

schemas
● Solution:

○ Limiting to one active schema change at a
time (lease on schema)

○ Subdivide schema changes into phases
■ Each consecutively mutually compatible

Presenter
Presentation Notes
Can cause database corruption, e.g. index addition
Server M1 insert -> index entry
Server M2 delete -> index entry unaffected
Subdivision
Introduce index with delete support
Update index for writes

Transactions

• Full transactional consistency
• Consists of multiple reads, optionally

followed by a single write
• Flexible locking granularity

Presenter
Presentation Notes
motivated by hard requirements on data integrity and consistency (financial data)
Row level lock -> column-level lock

Transactions - Types

• Read-only: fixed snapshot timestamp
• Pessimistic: Use Spanner’s lock transactions
• Optimistic:

o Read phase (Client collects timestamps)
o Pass to F1 server for commit
o Short pessimistic transaction (read + write)

 Abort if conflicting timestamp
 Write to commit if no conflicts

Optimistic Transactions:
Pros and Cons

Pros
• Tolerates misbehaving clients
• Support for longer transactions
• Server-side retryability
• Server failover
• Speculative writes
Cons
• Phantom inserts
• Low throughput under high contention

Presenter
Presentation Notes
(long held lock, abandoned xaction)
retry against transient Spanner errors
failover: state on client
one transaction selects a set of rows, then another transaction inserts rows that meet the same criteria, when the first transaction re-executes the query, a different set results. [http://www.jguru.com/faq/view.jsp?EID=59028]

Change History

● Supports tracking changes by default
● Each transaction creates a change record
● Useful for:

○ Pub-sub for change notifications
○ Caching

Presenter
Presentation Notes
Existing mechanisms to log changes
trigger
application code
Key, timestamp, before/after

Client Design

● MySQL-based ORM incompatible with F1
● New simplified ORM

○ No joins or implicit traversals
○ Object loading is explicit
○ API promotes parallel/async reads
○ Reduces latency variability

Presenter
Presentation Notes
obscured db operations
serial reads and for loops
implicit traversals: unwanted joins, unnecessary data loading

practical b/c of fewer tables & hierarchical primary keys used to load children via range
Users make heavy use of batching, parallelism, and async reads

Client Design

● NoSQL interface
○ Batched row retrieval
○ Often simpler than SQL

● SQL interface
○ Full-fledged
○ Small OLTP, large OLAP, etc
○ Joins to external data sources

Query Processing

● Centrally executed or distributed
● Batching/parallelism mitigates latency
● Many hash re-partitioning steps
● Stream to later operators ASAP for pipelining
● Optimized hierarchically clustered tables
● PB-valued columns: structured data types
● Spanner’s snapshot consistency model

provides globally consistent results

Presenter
Presentation Notes
Centralized query execution
useful for short OLTP queries
entire query runs on one F1 server
Distributed execution - high parallelism
useful for OLAP queries
spreads query workload over F1 slave pool workers
Use snapshot transactions
Query processing is challenging because of remote data sources
few useful ordering props

Query Processing Example

Presenter
Presentation Notes
AdGroup: collection of ads with shared config
Creative: ad text
AdGroupCreative: link table between AdGroup and Creative; Creatives can be shared by multiple AdGroups
AdClick: records the Creative the user was shown and the AdGroup from which the Creative was chosen
Query: takes adclicks, finds GroupCreative and Creative, then aggregates clicks grouped by campaig, region, and language

Query Processing Example

• Scan of AdClick table
• Lookup join operator (SI)
• Repartitioned by hash
• Distributed hash join
• Repartitioned by hash
• Aggregated by group

Distributed Execution

● Query splits into plan parts => DAG
● F1 server: query coordinator/root node and

aggregator/sorter/filter
● Efficiently re-partitions the data

○ Can’t co-partition
○ Hash partitioning BW: network hardware

● Operate in memory as much as possible
● Hierarchical table joins efficient on child table
● Protocol buffers utilized to provide types

Presenter
Presentation Notes
Organized into a DAG
receives sql query, streams back to client
co-partitioning: because of random partitioning & remote Spanner nodes
bandwidth: network switch hardware
merge join
Can query on fields and use repeated fields as array, proto join on it

Evaluation - Deployment

● AdWords: 5 data centers across US
● Spanner: 5-way Paxos replication
● Read-only replicas

Evaluation - Performance

● 5-10ms reads, 50-150ms commits
● Network latency between DCs

○ Round trip from leader to two nearest replicas
○ 2PC

● 200ms average latency for interactive
application - similar to previous

● Better tail latencies
● Throughput optimized for non-interactive

apps (parallel/batch)
○ 500 transactions per second

Presenter
Presentation Notes
2PC for multi-group commits

Issues and Future work

● High commit latency
● Only AdWords deployment show to work

well - no general results
● Highly resource-intensive (CPU, network)
● Strong reliance on network hardware
● Architecture prevents co-partitioning

processing and data

Presenter
Presentation Notes
Latency: 2pc - synchronous replication, regionally separated, commit wait
Hardware bottleneck

Conclusion

● More powerful alternative to NoSQL
● Keep conveniences like SI, SQL,

transactions, ACID but gain scalability and
availability

● Higher commit latency
● Good throughput and worst-case latencies

Presenter
Presentation Notes
latency better than original in some cases

References

• Information, figures, etc.: J. Shute, et al., F1: A
Distributed SQL Database That Scales, VLDB, 2013.

• High-level summary:
http://highscalability.com/blog/2013/10/8/f1-and-
spanner-holistically-compared.html

http://www.cs.cmu.edu/~pavlo/courses/fall2013/static/papers/p769-shute.pdf
http://www.cs.cmu.edu/~pavlo/courses/fall2013/static/papers/p769-shute.pdf
http://highscalability.com/blog/2013/10/8/f1-and-spanner-holistically-compared.html
http://highscalability.com/blog/2013/10/8/f1-and-spanner-holistically-compared.html

	F1: A Distributed SQL Database That Scales
	What is F1?
	Goals
	Features Inherited From Spanner
	New Features Introduced
	Architecture
	Architecture - F1 Client
	Architecture
	Architecture - F1 Server
	Architecture
	Architecture - F1 Slaves
	Architecture
	Architecture - F1 Master
	Architecture
	Architecture - Spanner Servers
	Data Model
	Data Model
	Secondary Indexes
	Local Secondary Indexes
	Global Secondary Indexes
	Schema Changes - Challenges
	Schema Changes
	Transactions
	Transactions - Types
	Optimistic Transactions:
Pros and Cons
	Change History
	Client Design
	Client Design
	Query Processing
	Query Processing Example
	Query Processing Example

	Distributed Execution
	Evaluation - Deployment
	Evaluation - Performance
	Issues and Future work
	Conclusion
	References

