
On Brewing Fresh Espresso:
LinkedIn’s Distributed Data Serving 

Platform

Thomas Marshall



Motivation

● Better performance and horizontal scalability 
than traditional RDBMS.

● Better consistency, transactions, and 
schema support than NoSQL.

● Integration into LinkedIn’s data ecosystem.



Data Model

● Nested entities and independent entities.
● Relational

○ Documents - the equivalent of rows
● Hierarchical

○ Document groups - share same partitioning key, 
span tables, largest unit of transactions



Secondary Indexes

● Allow for efficient lookup based on values 
other than the primary key.

● Local secondary indexes - apply to one 
document group.

● Global secondary indexes - apply across doc 
groups, implemented as derived tables.



Secondary Indexes

● Lucene
○ Inverted index.
○ Log structured.

● Prefix
○ Inverted index, prefixed 

by the partition key.



Architecture
● Client - submit requests 

via REST API.
● Router - send request to 

appropriate node based 
on partitioning protocol.



Architecture
● Helix

○ Cluster management 
system

○ Assigns partitions



Architecture
● Fault tolerance

○ When a master 
partition fails, a slave 
is promoted by Helix.

○ Zookeeper heartbeat 
and performance 
metrics determine 
failure.



Overpartitioning

● Shard data into 
many more 
partitions than 
there are nodes.

● Eases 
failover/cluster 
expansion.



Architecture
● Storage node

○ Stores partitions.
○ Performs queries.
○ Maintains log.
○ Performs background 

tasks.



Architecture
● Databus

○ Achieves replication 
via pub/sub

○ Ensures timeline 
consistency

○ Replicated for fault 
tolerance



Future Work

● Transactions across document groups.
● OLAP workloads.
● Multiple data center deployment.



Conclusion

● Espresso attempts to find a nice medium 
between traditional RDBMS and NoSQL.

● LinkedIn particularly emphasized operability 
- ease of schema changes, horizontal 
scalability, etc.


