CrowdWeaver: Visually Managing Complex Crowd Work

Aniket Kittur, Susheel Khamkar, Paul André, Robert E. Kraut
Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA, 15213
{nkittur, pandre, kraut} @cs.cmu.edu, susheelkhamkar2@gmail.com

222

Divide-3

View Stop (0/40)

)
o,

Create
Combine Thre..

a2

View Stop (8/8)
Permute

» m—

Create

|
H] |
2 |
E |
Y100 !
M |
E

® 12345678910
Judgments

™~
o
3

Notification Settings (8/8)

() < 50 | % Gold matching

O > 60 |Minutes without
accepted task

Combine () < 50 % Agreement
P
£ s
a
§ 25 % D)
3 (Apply .
2 sl & -

Charts Notifications Notification Settings

PR 222

Add Task(+) Refresh Save Load

/| Create

Human Task | Status: finished | Job 28139

Outputs:

what_is_your_highest_level_of education

what_iswas_your_major

View Stop (0/100) do_you_have_any_suggestions_to_make_this_task_better

Il

news_lead

-

. It is difficult to predict the success of a
song; researchers have found that the
success of a song has is determined only
partly by quality.

2. While experts have difficulty predicting
which songs, movies, and books will be
successful, research has suggested that
social influence can effect success, and
that quality is not the only determining
factor in a song's success.

3. Peer pressure and social support play a

large role in our music choices, one study

\
}
)
)
:
)
)
)
\
\
}
)
_

Figure 1. The CrowdWeaver workflow management interface. (A) The workflow consisting of human tasks (&°&), e.g., “create (news
leads)”, and machine tasks (e.g., divide, permute). (B) The Task Summary pane details the selected task, with the “news lead” field
expanded showing worker outputs. (C) Graphs to track ‘crowd factors’ such as arrival of workers to a task. (D) Settings to alert the
requester if crowd factors such as uptake, quality or time to complete become cause for concern, allowing the requester to edit task

design or instructions in real-time to optimize time and quality of results.

ABSTRACT

Though toolkits exist to create complex crowdsourced
workflows, there is limited support for management of
those workflows. Managing crowd workers and tasks
requires significant iteration and experimentation on task
instructions, rewards, and flows. We present CrowdWeaver,
a system to visually manage complex crowd work. The
system supports the creation and reuse of crowdsourcing
and computational tasks into integrated task flows, manages
the flow of data between tasks, and allows tracking and
notification of task progress, with support for real-time
modification. We describe the system and demonstrate its
utility through case studies and user feedback.

Author Keywords
Crowdsourcing, workflow, visualization, coordination.

ACM Classification Keywords
HS5.m. Information interfaces and presentation (e.g., HCI).

General Terms
Design

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

CSCW’12, February 11-15, 2012, Seattle, Washington.

Copyright 2012 ACM 978-1-4503-1086-4/12/02...$10.00.

INTRODUCTION

Crowdsourcing has become a powerful mechanism for
online production, but is currently mostly used for simple,
independent tasks. Recently, a number of toolkits have been
created to programmatically support more complex tasks
and workflows [4,5,6]. However, though a requester of
work now has advanced tools and algorithms to create
workflows, there remains limited support for management
of those workflows. Managing workflows can be as or even
more challenging than their creation: requesters must
experiment and iterate with different tasks, instructions,
rewards, and flows to optimize the process. For example, in
interviews we conducted with employees of CrowdFlower
(a commercial crowdsourcing platform), they noted that
when working with a crowd “a major issue is stringing
tasks together.” To achieve successful output requires a
“significant cost in time, [and involves experimentation
with] what’s the right [task] that gets to the most effective
results most quickly and cheaply.”

This discussion points to the unique challenges posed by
managing crowdsourced workflows. In other forms of
computational task flow management (e.g., visual
programming languages [2], online mashups [7])
experimentation and execution is essentially free,
instantaneous, and deterministic. In contrast, each run of a
crowdsourced workflow requires an investment of time and

money, and may give different results each time. This
suggests that crowd-based computational task flow systems
should not only manage tasks but also address crowd-
specific factors such as: latency, the delay between
requesting and commencing work; price, understanding
what price is appropriate, and how varying prices may
affect work [1]; the varying quality of worker and output;
and the varying time to completion of a unit of work.

To address these challenges we present CrowdWeaver, a
system to visually manage complex crowdsourcing tasks,
with no need for programming knowledge. Our
contributions include:

* A visual interface for task and workflow creation and
monitoring that serves as an external mental model of a
task flow;

* The management and reuse of templates, including
both human and machine tasks;

* Tracking and notification of crowd factors (e.g.,
latency, price, time and quality);

* Support for real-time experimentation.

In the remainder of this paper we provide a brief overview
of the architecture of the system, illustrate its features
through an example task flow, and discuss feedback from
task designers using the system.

THE CROWDWEAVER SYSTEM

CrowdWeaver is built on top of CrowdFlower, a
commercial crowdsourcing platform that provides certain
advantages over platforms such as Mechanical Turk,
including the ability to post tasks on multiple markets
(including MTurk), a rich API, and a robust template editor.
The CrowdWeaver system consists of a MySQL database
that stores information about the tasks, data, and
connections between tasks; a JQuery-based web visual
interface with which users view, create and manage tasks;
and a Ruby controller that powers the interface, manages
the database, and synchronizes with CrowdFlower.

Scenario

Imagine a task designer is trying to generate a news lead for
a newspaper article as part of a larger task crowdsourcing
the writing of the article. She wants to determine whether
voting to select the best lead or merging leads together is a
better task design. In one method, she has workers each
generate a news lead, splits them into groups of three (to
simplify the voting), and has workers vote on the best. In
another method, she takes the same generated leads, splits
them into groups of three, and has workers generate a new
lead that merges the best aspects of the three they are given.
Finally, she compares each combination of original and
merged news lead and has workers vote on which is better.

Throughout the process, she wishes to monitor the
workflow and be alerted if there are problems such as poor
uptake or lack of agreement between workers. If so, she
may step in and review the work to understand where the

problem lies, and modify the task design or instructions.
(This task is similar to that used in Kittur et al. [4].)

Figure 1-A presents this task flow as created and managed
by CrowdWeaver, with the top path corresponding to the
voting method and the bottom path the merging method,
including permutation with the original leads and voting.
The interface integrates both crowdsourced and machine
tasks, and reflects all key data collection and manipulation
steps, including the flow of data between tasks. Monitoring
is achieved through real-time update of the number of
completed assignments, and details of the task including
outputs are shown in the Task Summary pane (Figure 1-B).
Since manually keeping track of every detail could be
overwhelming, notifications can be triggered (Figure 1-C)
when crowd factors such as latency or worker agreement
generate cause for concern. We discuss CrowdWeaver’s
core functionality and design in more detail below.

Task and Workflow Creation

Visual Representation

A key challenge is choosing how to visually represent a
task, data fields, inputs, and worker outputs. For example, a
simple image labeling task could include multiple data
fields (e.g., each label, demographics), thousands of input
images, and tens of thousands of worker outputs. Complex
flows may involve many such tasks, each with potentially
thousands of interconnected inputs and outputs. With
workflows such as these, approaches which visually
represent each input and output (e.g., [5]) can quickly get
overwhelming. Instead, we chose a higher-level
representation, visually depicting each task and the data
flow between them, with details about inputs and outputs
available on demand in a dynamic pane (Figure 1-B).

Another important consideration was to enable the interface
to act as a user’s external mental representation of the
workflow. To support this, users can alter the spatial
arrangement of tasks to match their mental model of the
workflow, with spatial positions saved across sessions,
enabling the construction of a persistent task landscape.

Creating and Reusing Templates

One of the most significant costs in time, effort, and money
for crowdsourcing complex tasks is in experimenting and
iterating with the instructions and materials. Even small
changes in instructions can lead to dramatic differences in
output quality [3]. To help with this costly process of
iteration, CrowdWeaver saves each human task created and
allows the user to create and modify (via the CrowdFlower
editor) new instances of it for future tasks. Properties such
as instructions and HTML, answer fields, pricing, market
choice, and worker qualifications are inherited from the
original template, while new input streams can be selected.
A basic set of common human tasks are included as starter
templates, including generate, vote, and merge tasks.

In addition to crowdsourced tasks completed by humans,
CrowdWeaver supports tasks performed by machines, such
as data manipulation, which use the same data structure

Add a task:

Select Fields: Select/Unselect Select Task Type:

U, whatis your_highest_level_of_education > HIT

¥ Machine

0

what_iswas_your_major
Concatenate Data

» do_you_have_any_suggestions_to_make_this_task_better Divide-1

& » news_lead Divide-2

Divide-4

Add fieldnames from Task Divide-5
28139 |+) | Add pair

Permute

P -
Divide
-
This will divide the responses
field selected into groups of 3

Figure 2. The Add Task screen, with the “news_lead” data
field from the previous task selected as input, and a machine
“divide” task chosen.

(data fields, inputs and outputs). A basic set of machine
tasks are included, such as divide, concatenate, pair, and
permute; users can add new machine tasks by adding a
wrapper function within the controller code, and a class to
implement the new machine task.

Data Flow Between Tasks

CrowdWeaver uses a dataflow paradigm [2] supporting the
visualization and flow of data between tasks. For example,
in our scenario, the designer wishes to determine whether
voting on news leads or merging them together is a better
workflow. To create the voting flow (top path in Figure 1),
the designer passes the news leads generated by workers in
the original task to new divide and vote steps. She wants to
group the data into sets of three, so she selects the “news
lead” data field and the divide task. For convenience,
descriptive text and images of machine tasks are shown in a
preview when selected (see Figure 2). The designer creates
the vote task in a similar way, passing through data from
divide and repurposing the generic vote template.

The system also supports branching and combining
multiple data flows. As illustrated in the scenario, the
designer creates the alternate branch in which workers
merge the best aspects of three news leads and vote on the
merged version (bottom path in Figure 1). These results are
compared to the originally generated leads by combining
the original and alternate data flow branches (specifically,
by adding additional fields from the original task; see
bottom left of Figure 2).

Tracking and Notification of Task Progress

As identified in the Introduction, crowd work poses
challenges in terms of latency, price, time, and quality.
Rather than wait for a task to complete (or never attract
enough workers) to determine if there is a problem,
CrowdWeaver offers a task progress system to easily view
and be alerted of common signifiers of task problems.

Monitoring

As data comes in, summary statuses are viewable at a
glance. The bottom of each task shows the number of
outputs collected, and graphs updated in real-time (Figure

1-C) help monitor crowd factors. To drill down into the
data, one can expand the Task Summary pane (Figure 1-B).
This makes it easy to trace data across tasks and to compare
different task versions as all data is immediately available
from the main interface.

Notifications

Figure 1-D shows the current notifications available in
CrowdWeaver. In terms of latency, if a task does not attract
new workers for a period of time, it may be that the
instructions are unclear or unattractive, or the task is
incorrectly priced [1]. Identifying this early could save
hours or days waiting for workers. Similarly, quality can
either be compared against a gold standard (as
CrowdFlower currently does) or inferred from the
percentage of workers whose answers agree with each
other. In cases where a problem occurs in a task, the
requester can stop a poorly functioning flow and create a
new branch to fix the problem while preserving their
existing work.

SYSTEM USAGE

We have experimented with creating and managing a
variety of tasks using CrowdWeaver, including product
research, article generation, and science journalism.
Furthermore, functionality from crowdsourcing frameworks
such as CrowdForge [4] including partitioning, map, and
reduce tasks can be replicated in CrowdWeaver. For
example, Figure 3 shows a flow involving two create tasks
(generating eReader models and features to evaluate them);
a permute task creating all combinations of models and
features; a find information task gathering evidence about
each combination; and a divide task splitting the data into
groups relevant to each model (in this example, two).

Interviews and Usage

To gather initial feedback about the usefulness of
CrowdWeaver for complex workflow management, and
reaction to and usage of the tool in a workflow creation
task, we conducted two interviews and recruited two
participants for a formative study.

In interviews with two CrowdFlower employees who create
workflows for corporate clients, the general approach of
CrowdWeaver for dealing with time-consuming workflow
creation and management was appreciated (“awesome
concept!”). The employees were particularly enthusiastic
about the potential to “string jobs together, visualize all
running jobs, and [see] stats on a given workflow.”

To gather feedback about the usefulness of CrowdWeaver,
we recruited two participants (graduate students) familiar
with designing tasks for MTurk but with no prior exposure
to CrowdWeaver. Participants were assigned the example
problem described earlier: given a set of news leads, decide
whether a vote or a merge task resulted in better outcomes.
They were asked to draw a flow indicating how they would
complete the task using MTurk and their current tools. They
were also given a 10 minute tutorial on CrowdWeaver’s

Create a lis..

a3

Permute gy Find informa.. Dvide2
View Stop (1/1) o

== > 222 ——>1 ==
b abuadsusy (4/4) View Stop (4/4) (2/2)
223 |

View Stop (1/1)

Figure 3. Task flow for researching an eReader.

functions, then asked to create the flows in CrowdWeaver,
and finally to fill out a questionnaire.

In the drawing task, both sketched flows very similar to
Figure 1, although their projected data manipulation steps
were done either through scripting (e.g., Python) or by hand
(copy-paste). Both participants were able to generate the
entire working flow, including splitting and merging tasks
with multiple connections. Participants rated the usefulness
of CrowdWeaver very highly, with answers between 6 and
7 on a 7-point Likert scale for “viewing and managing tasks
visually was helpful”, “connecting tasks to each other was
helpful”, “I enjoyed using CrowdWeaver”, and “I would
like to use software like CrowdWeaver in the future”. One
participant noted that it “fit [his] intuition about workflows
nicely”, and that “the visual component helps me model
what I'm doing with workers and data”, suggesting that it
did support his mental model of the task flow.

DISCUSSION AND FUTURE WORK

One of our design goals was to visualize task flows such
that they provided wuseful externalized mental
representations. To do so we chose to represent tasks at the
level of the subtask rather than visualizing each individual
workers’ output. However, an important lesson we learned
is that even this level of representation may be too low level
for many users, suggesting an opportunity for future
research to better visually represent multiple levels of detail
(i.e., task, data fields, inputs/outputs). A related challenge is
that both participants found it difficult to adapt to the
CrowdFlower nomenclature, editing interface, and task
structure, giving CrowdWeaver relatively low scores on
ease of use (mean = 4.5 on a 7-point Likert scale) and
suggesting that making a visual task management system
such as CrowdWeaver easier to use for those less
experienced with existing crowdsourcing paradigms may be
a valuable area for future research.

We further investigated these issues with employees of
CrowdFlower who were responsible for managing the
design of tasks for corporate clients but not actually
programming the tasks themselves. We found that for these
users, the level of abstraction presented in CrowdWeaver
was lower-level than they desired. While our system
enables the user to stay “close to the data”, these employees
thought about flows in higher-level steps such as
“generate”, “vote”, etc., without the intermediate linking
data manipulation tasks.

This suggests that instead of the visualization of individual
workers’ outputs or even of subtasks, a fruitful area of
research may be how to enable the aggregation and
visualization of subtasks as meaningful patterns of work
(e.g., combining divide, vote, match and filter into a single
useful pattern for interacting with the crowd). Such an
approach could be instantiated as a “simple” interface for
CrowdWeaver in which users create and manage entire
subflows, with data manipulation steps (such as splitting the
data into threes) surfaced as user-configurable parameters.
Supporting interaction at both the pattern level and the task
level could be helpful for more advanced users who need
greater customization, and enable sharing and
customization of useful patterns.

CONCLUSION

We present CrowdWeaver, a system for visually creating
and managing crowd workflows. CrowdWeaver functions
as a “mental model” for the task designer, integrates human
and machine tasks, supports template reuse, manages
dataflow, and does not require programming knowledge. In
particular we address unique factors of crowd work,
allowing monitoring and alerting based on task progress in
terms of: latency, price, time to completion and quality.

CrowdWeaver can benefit task designers through easier
iteration and experimentation for complex flows, leading to
time and cost savings. We describe how the system can be
used for a variety of tasks, gather feedback from
participants using CrowdWeaver, and discuss future
opportunities for research on the visual management of
crowdsourcing flows, notably in the level of representation,
and aggregating subtasks into reusable patterns of work.

ACKNOWLEDGMENTS

This research was supported by NSF grants OCI-09-43148,
I1S-0968484, 1IS-1111124 and a grant from Carnegie
Mellon's Center for the Future of Work.

REFERENCES

1. Faridani, S., Hartmann, B., & Ipeirotis, P. G. What’s the Right
Price? Pricing Tasks for Finishing on Time. Proc. HCOMP
2011.

2. Johnston, W.M., Hanna, J.R., & Millar, R.J. Advances in
dataflow programming languages. ACM Computing Surveys
(CSUR) 36, 1 (2004), 1-34.

3. Kittur, A., Chi, E., & Suh, B. Crowdsourcing user studies with
Mechanical Turk. Proc. CHI 2008.

4. Kittur, A., Smus, B., Khamkar, S. & Kraut, R. E. CrowdForge:
Crowdsourcing complex work. Proc. UIST 2011.

5. Kulkarni, A., Can, M., & Hartmann, B. Collaboratively
Crowdsourcing Workflows with Turkomatic. Proc. CSCW
2012.

6. Little, G., Chilton, L.B., Goldman, M., & Miller, R.C. Turkit:
Human computation algorithms on Mechanical Turk. Proc.
UIST 2010, 57-66.

7. Yu, J., Benatallah, B., Casati, F., & Daniel, F. Understanding

mashup development. /EEE Internet Computing, (2008), 44—
52.

