Exploring Threshold-based Policies for Load Sharing*

Takayuki Osogami Mor Harchol-Balter
Computer Science Department Computer Science Department
Carnegie Mellon University Carnegie Mellon University
osogami@cs.cmu.edu harchol@cs.cmu.edu

Alan Scheller-Wolf Li Zhang
Tepper School of Business Thomas J. Watson Research Center
Carnegie Mellon University IBM Research
awolf@andrew.cmu.edu zhangli@Qus.ibm.com
Abstract

We consider the problem of how to design resource allocation policies that both
provide good performance at predicted environmental conditions and are robust
against changes or misprediction of the environmental conditions. We evaluate
various common threshold-based allocation policies within a simple model, where
there is a clear tradeoff between the (conflicting) goals of good performance and
robustness. We then propose and evaluate a new threshold-based policy, ADT
(adaptive dual thresholds), that achieves both the desired goals.

1 Introduction

A common problem in computer and communication systems is deciding how to allocate
resources (e.g. CPU time and bandwidth) among jobs. A good (resource) allocation
policy that maximizes system performance, e.g. with respect to mean response time and
throughput, often has parameters that need to be tuned to achieve the best performance.
Since the optimal settings of the parameters typically depend on environmental condi-
tions such as system loads, an allocation policy whose parameters are chosen to achieve
the best performance in a certain environment can provide poor performance when the
environment changes or when the prediction of the environment was wrong.

The objective of this paper is to design and study characteristics of various allocation
policies in a simple model, where there is a clear tradeoff between good performance and
robustness against changes and misprediction in loads. The study in this simple model
provides lessons that are useful in designing allocation policies in more complex systems.

Our model consists of two servers and two queues, as shown in Figure 1. Jobs arrive
at queue 1 and queue 2 according to Poisson processes with rates A\; and \g, respectively.
Jobs have exponentially distributed service demands; however, the running time of a
job may also depend on the affinity between the particular server and the particular
queue. Hence, we assume that server 1 processes jobs in queue 1 (type 1 jobs) with rate

*This work was supported by NSF Career Grant CCR-0133077, by NSF Grant CCR-0311383, NSF
Grant-0313148, and by IBM via 2003 Pittsburgh Digital Greenhouse Grant.

A

— #
p1+p12(1—p2)

P1

H1

Figure 1: A two server model.

i1 (jobs/sec), while server 2 can process type 1 jobs with rate p5 (jobs/sec) and can
process jobs in queue 2 (type 2 jobs) with rate ps (jobs/sec). We define p; = Ay/uq,
p2 = Ao/ o, and p; = A1/(p1 + p12(1 — p2)). Note that ps < 1 and p; < 1 are necessary
for the queues to be stable under any allocation policy, since the maximum rate at which
type 1 jobs can be processed is juq, from server 1, plus ui2(1 — po), from server 2.

In this paper, we design and evaluate allocation policies in the model in Figure 1
with respect to two objectives. First, we seek to minimize the weighted average mean
response time, ¢1py E[Ry| + copo E[Rs], where ¢; is the weight (importance) of type i
jobs, pi = Ai/(A1 + A2) is the fraction of type i jobs, and E[R;] is the mean response
time! of type i jobs, for i = 1,2. Second, we want our policy to be robust against
misprediction and changes in loads, p; and ps. In this paper, we focus on threshold-
based allocation policies, since these are common and natural in our model. Note that
the optimal allocation policy is not known in our model, despite the fact that it has been
investigated in numerous papers [1, 3, 4, 5, 7, 8] (see also references in [6]).

We start, in Section 2, by considering two common allocation policies. The first
policy (T1 policy) places a threshold, T3, on queue 1, whereby server 2 serves type 1
jobs only when the length of queue 1 exceeds T; (or serve 2 is idle). The second policy
(T2 policy) places a threshold, T, on queue 2, whereby server 2 serves type 1 jobs only
when the length of queue 2 is below T5. Only coarse approximations exist for analyzing
response time under the T1 and T2 policies. Hence, we introduce a near-exact analysis
technique in [6], which is also applicable to all the allocation policies that we investigate
in this paper. Our analysis demonstrates a tradeoff between good performance (low
response time) at predicted load and robustness across loads in the T1 and T2 policies.
This tradeoff motivates us, in Section 3, to introduce two new allocation policies (the
T1T2 policy and the ADT policy), both of which are based on the idea of using multiple
thresholds. While these two new allocation policies appear similar in their definition, it
turns out that their characteristics are very different. In particular, we show that the
ADT policy is able to achieve both good performance at predicted load and robustness.

2 Evaluating simple threshold-based policies

2.1 T1 and T2 policies

The T1 policy is motivated by some shortcomings of the cu rule [2]. Recall that the cpu
rule biases in favor of jobs with high ¢ (high importance) and high p (small expected

'Here response time refers to the total time from when a job is requested until the job is completed
— this includes queueing time and service time.

01 N2 0 T2 N2

0 0
work on queue 2
T1 work on
queue 2
work on queue 1
N1 N1
(a) T1 policy (b) T2 policy

Figure 2: Figures show whether server 2 works on jobs from queue 1 or queue 2 as a
function of Ny and Ny, under (a) the T1 policy and (b) the T2 policy.

size). Applying the cu rule to our setting translates to letting a server process jobs from
the nonempty queue with the highest cu value. Under the cp rule, server 2 serves type
1 jobs (rather than type 2 jobs) if c¢iu12 > cope, or queue 2 is empty. The cu rule is
provably optimal when server 1 does not exist [2]. However Squillante et. al. [7] as well
as Harrison [4] have shown that cu rule may lead to instability even if p; < 1 and py < 1.
For example, the cu rule may force server 2 to process type 1 jobs even when many jobs
are built up at queue 2, leading to instability in queue 2 and under-utilization of server 1.
Squillante et. al. [7] and Williams [8] have independently proposed a threshold-based
policy that, under the right choice of threshold value, improves upon the cu rule and
guarantees stability whenever p; < 1 and py < 1. We refer to this threshold-based policy
as the T'1 policy, since it places a threshold value, 7%, on queue 1, so that server 2 only
processes type 1 jobs when there are at least T3 jobs of type 1, or if queue 2 is empty.
The rest of the time server 2 works on type 2 jobs. The motivation behind placing the
threshold on queue 1 is that it “reserves” a certain amount of work for server 1, preventing
server 1 from being under-utilized and server 2 from being overloaded. More formally,

Definition 1 Let Ny (respectively, No) denote the number of jobs at queue 1 (respec-
tively, queue 2). The T1 policy with parameter T} is characterized by the following set of
rules, all of which are enforced preemptively (preemptive-resume):

o Server 1 serves only its own jobs.

o Server 2 serves jobs from queue 1 if either (i) Ny > Ty or (ii) No =0 € Ny > 2.
Otherwise, server 2 serves jobs from queue 2.

Figure 2(a) shows the jobs processed by server 2 as a function of Ny and N, under the T1
policy. Note that the T'1 policy with T} = 1 is the same as the cu rule when ¢y 19 > oo,
and the T1 policy with T} = oo is the same as the cu rule when ¢y 19 < cops. Bell and
Williams prove the optimality of the T1 policy for a model closely related to ours in the
heavy traffic limit, where p; and py are close to 1 from below [1]. In the T1 policy, the
higher 77 values yield the larger stability region, and in the limit of 77 = oo, the queues
under the T1 policy are stable as long as p; < 1 and py < 1. More formally, we prove
the following theorem in [6]:

2To achieve maximal efficiency, we assume the following exceptions. When N; = 1 and Ny = 0, the
job is processed by server 2 if and only if p1 < p12. Also, when 73 = 1 and N7 = 1, the job in queue 1
is processed by server 2 if and only if u1 < pi19 regardless of the number of type 2 jobs.

Theorem 1 Under the T1 policy with parameter T} < co, queue 1 is stable if and only
if A1 < p1 + a2, and queue 2 is stable if and only if
1—ph
P2 < T (pllfpl)pﬁ*l)
L—p1'+)

i SN
P1+ A1

when Ty > 1 and p; # 1. (See [6] for the case of Ty =1 or py =1.)

An alternative threshold-based policy that guarantees stability whenever p; < 1 and
p2 < 1 is the T2 policy. The T2 policy places a threshold value, 75, on queue 2, such
that server 2 processes type 1 jobs only when there are less than Ts jobs of type 2, thus
preventing server 2 from being overloaded. More formally,

Definition 2 The T2 policy with parameter Ty is characterized by the following set of
rules, all of which are enforced preemptively (preemptive-resume):

o Server 1 serves only its own jobs.

o Server 2 serves jobs from queue 1 if No < Ty. Otherwise server 2 serves jobs from
queue 2.3

Figure 2(b) shows the jobs processed by server 2 as a function of N; and Ny under the
T2 policy. Recall that the T1 policy guarantees stability whenever p; < 1 and py < 1
provided that T} is chosen appropriately. By contrast, the T2 policy guarantees stability
whenever p; < 1 and p; < 1 for any finite T,. More formally, the following theorem
holds, which we state without proof:

Theorem 2 Under the T2 policy with Ty < 0o, queue 1 is stable if and only if p1 < 1,
and queue 2 is stable if and only if ps < 1.

2.2 Comparison of T1 and T2 policies

In this section, we study characteristics of the T1 policy and the T2 policy by evaluating
the weighted mean response time under various settings. In [6], we introduce a compu-
tationally efficient and near-exact analysis of the mean response time under the T1 and
T2 policies, and this analysis enables us to study the T'1 and T2 policies extensively. In
this paper, we limit our focus on the case where type 1 jobs and type 2 jobs have the
same weight, i.e. ¢; = ¢y = 1; for a general case of ¢ # ¢s, see [6].

When ¢; = ¢ and g2 < pg, we prove in [6] that T3 = oo is the optimal choice for
the T1 policy and T, = 1 is the optimal choice for the T2 policy with respect to both
performance at the estimated load and robustness. Thus, the T1 and T2 policies with
the optimal threshold values become the same under this setting (i.e. they both follow
the cu-rule: server 2 works on jobs from queue 1 only when queue 2 is empty). Hence,
below, we limit our attention to the case of 15 > ps. Note that condition pio > o is
achieved when type 1 jobs are small and type 2 jobs are large (in the general case of
c1 # ¢g, condition ci1a > coug is also achieved when type 1 jobs are more important
than type 2 jobs) and/or in the pathological case when type 1 jobs have good affinity
with server 2.

Figure 3 shows the weighted mean response time (overall mean response time) under
the T1 policy (top row) and the T2 policy (bottom row). Different columns correspond
to different p1’s. Here, cipu10 = 1 and copg = % are fixed. The overall mean response time

3When N; =1 and N; = 0, we allow the same exception as in the T1 policy.

T1 policy

80— 40— : : 10
60/ ! 30 8
H i 6y
40t ! 200
4l
o] —$,=095] | . e —_ $,=0.95
20r - 10F el ll--mmTT 1 1
— L e ‘ ... D709 2 e D09 |
 p,=08 . p,=08
0 0 0
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
oo 1 1
(a) cipn = g (b) crpn =1 (c) crpn =4
T2 policy
80 N — 40 : : 10
60f .- e 30} 8
‘ 6
40 e 207
; a
— p,=0.95 I — p,=095 e — p,=0.95
20 .. p,=0.9 0 .. D709 2t ... D,=09
=08 . p,=08 =08
% 10 20 30 0 % 10 20 30 w0 % 10 20 30 40
o 2 ™
(d) crpn = 3 (e) cipn =1 (f) cipn =4

Figure 3: The overall mean response time under the T1 and T2 policies as a function
of Ty and Ty. Here, ¢y = co = 1, ciji10 = 1, cops = i, and ps = 0.6 are fired. When
ciily = i (in the left column) and p; = 0.95, the overall mean response time under the
T2 policy is over 100 for all Ts, and does not appear in the figure.

is evaluated at three loads, p; = 0.8,0.9,0.95 (only A is changed)?, and p, is fixed at 0.6
throughout. See [6] for discussion on the other values of p,.

The top row of Figure 3 shows that the overall mean response time under the T1
policy is minimized at some finite 7, and that the optimal 77 depends on environmental
conditions such as load (p;) and job sizes (u1). By Theorem 1, a larger value of T} leads
to a larger stability region, and hence there is a tradeoff between good performance at
the estimated load, (p1, p2), which is achieved at smaller T, and stability at higher p;
and/or po, which is achieved at larger T;. Note also that the curves have sharper “V
shapes” in general at higher p;, which make it difficult to choose the right 77, since the
overall mean response time quickly diverges to infinity, as 77 becomes smaller.

The bottom row of Figure 3 shows that the overall mean response time under the
T2 policy is minimized at To = 1 or small 7. Since choosing either T; = 1 or small T3
minimizes the overall mean response time at the estimated load and still provides the
maximum stability region, there is no tradeoff. However, observe that the overall mean
response time under the T2 policy with the optimal 75 can be much higher than that
under the T1 policy with the optimal T7.

4Note that p; = 0.8,0.9,0.95 corresponds to p; = 2.08,2.34,2.47 when p; = 1/4 (column 1), p; =
1.12,1.26,1.33 when p; = 1 (column 2), and p; = 0.88,0.99,1.045 when p; = 4 (column 3).

10% S — — 10 : .
“““““ T1 policies : — T2 policy
S | T1 policies
10°f ; 10°
T1=6 (opt at p2=0.6)
10%} S 107
o T1=20
101’”‘” “““] lOljw‘
055 0.6 065 0.7 075 0.8 085 055 06 065 0.7 075 08 085
2 2
(a) T1 policy (b) T2 policy

Figure 4: Overall mean response time under the T1 policy and the T2 policy (T = 1) as

a function of py, where cy = co =1, c1piy = cipi12 = 1, copis = %, and p; = 1.12 are fized.

Figure 4(a) highlights the tradeoff between the performance at the estimated load
and the robustness against changes and misprediction in load in the T1 policy, plotting
the overall mean response time as a function of py (only Ay is changed). When ps = 0.6,
T1 = 6 is the optimal choice, and overall mean response time is lower with 7} = 6 than
with 77 = 20. If it turns out that ps = 0.8 is the actual load, then the T1 policy with
T; = 6 leads to instability (infinite overall mean response time), while the T1 policy with
T, = 20 still gives finite and low overall mean response time. In the above sense, the T1
policy is not robust against misprediction or changes in load. One can choose a higher T}
(=20) to guarantee stability at higher loads, but this will result in worse performance at
the estimated load. Thus, the T1 policy exhibits a tradeoff between good performance
at the estimated load and robustness against changes and misprediction of load.

Since the T2 policy is typically optimal with 75, = 1 and the maximum stability
region is guaranteed with T, = 1, one might expect that the T2 policy has robustness
against misprediction or changes in load. Figure 4(b) shows the overall mean response
time under the T2 policy with T, = 1 as a function of py. Although the T2 policy is more
robust than the T1 policy in the sense that it can guarantee finite overall mean response
time for a wider range of load, the figure suggests that the finite overall mean response
time can be very high under the T2 policy.

3 Designing new robust threshold-based policies

3.1 T1T2 policy

One might argue that the stability issue of the T'1 policy with small optimal 77 is resolved
simply by placing an additional threshold, 75, on queue 2, so that if the length of queue
2, N, exceeds T,, server 2 works on type 2 jobs regardless of the length of queue 1, thus
preventing queue 2 from becoming unstable. We refer to this policy as the T1T2 policy,
since it operates as the T1 policy only when Ny < T,. More formally,

Definition 3 The T1T2 policy with parameters Ty and T} is characterized by the follow-
ing set of rules, all of which are enforced preemptively (preemptive-resume):

o Server 1 serves only its own jobs.

01 T, N 01 T, N2

work on queue 2 | work on queue 2

T T

L ==

N1 Ny __
(a) T1T2 policy (b) ADT policy

Figure 5: Figures show whether server 2 works on jobs from queue 1 or queue 2 as a
function of Ny and Ny under (a) the T1T2 policy and (b) the ADT policy.

e Server 2 serves jobs from queue 1 if either (i) Ny > Ty € Ny < Ty or (i) Ny =0
€ Ny > 2. Otherwise, server 2 serves jobs from queue 2.°

Figure 5(a) shows the jobs processed by server 2 a function of Ny and Ny under the T1T2
policy. The stability region of the T1T2 policy is the same as that of the T2 policy. We
state the following theorem without proof:

Theorem 3 Under the T1T2 policy with parameters Ty and Ty < oo, queue 1 1s stable
if and only if py < 1, and queue 2 is stable if and only if ps < 1.

Figure 6(a) shows the overall mean response time under the T1T2 policy as a function
of po, where T7 = 6 and T, = 10, 20, or 40. Recall that the T1 policy achieves its lowest
overall mean response time given ps = 0.6 when 7} = 6. The T1T2 policy with 77 = 6 is
designed to provide a wider stability region with the near-optimal overall mean response
time at ps = 0.6. In fact, when py = 0.6, the overall mean response time under the T1T2
policy with 77 = 6 is comparable to that under the T1 policy with T} = 6 for a range of
Ty. For higher p, (specifically, po > 0.76), the T1T2 policy (with 77 = 6) provides lower
overall mean response time than the T1 policy with 7} = 6, hence being more robust.
However, the range of load for which the T1T2 policy improves upon the T1 policy is
limited. For example, when py, = 0.8, the overall mean response time under the T1T2
policy with any value of T5 is significantly higher than the T1 policy with 77 = 20.

The inadequacy of the T1T2 policy is primarily due to the fact that the T1T2 policy
operates like the T2 policy at higher load, but the performance of the T2 policy is
typically poor at any load as compared to the optimal T1 policy. This motivates us to
introduce a new policy, the ADT policy, which always operates as a T1 policy.

3.2 ADT policy

The key idea in the design of the adaptive dual threshold (ADT) policy is the use of two
thresholds, Tl(l) and T1(2), both on queue 1 together with a threshold, 75, on queue 2. The
ADT policy behaves like the T1 policy with threshold Tl(l) if the length of queue 2 is less
than 75 and otherwise like the T1 policy with a higher threshold, T1(2). Thus, in contrast
to the T1T2 policy, the ADT policy is always operating as a T1 policy, but unlike the
standard T1 policy, the value of T} adapts, depending on the length of queue 2.

SWhen N; =1 and N; = 0, we allow the same exception as in the T1 policy.

100

100 : : : — ; : : : :
— TA1T2 policy (T2=10) | i : —— ADT policy (T2=10)
--- T1T2 policy (T2=20) ¢ | | T1 policies (T1=6,20) |
807 - - T1T2 policy (T2=40) { : 1 i :
““““ T1 policies (T1=6,20) !

00.55 06 065 0.7 075 08 0.85 00.55 0.6 0.65 0.7p0.75 0.8 0.85
2 2

(a) T1T2 policy (b) ADT policy

Figure 6: Overall mean response time under (a) the T1T2 policy and (b) the ADT policy
as a function of pa, where ¢y = co =1, i1 = c1pt1o = 1, Cofto = 1—16, and p; = 1.12.

We will see that the ADT policy is more robust than the T1 policy against changes and
misprediction in loads due to the dual thresholds on queue 1. First, the dual thresholds
on queue 1 allow server 2 to help queue 1 less when there are more type 2 jobs, preventing
server 2 from becoming overloaded. This leads to the increased stability region. Second,
the dual thresholds make the ADT policy adaptive to changes in load (p; and ps), in
that it operates like the T1 policy with threshold Tl(l) at the estimated load and like the
T1 policy with a higher threshold Tl(z) at a higher load.

Formally, the ADT policy is characterized by the following rule.

Definition 4 The ADT policy with parameters Tl(l), 1(2), and Ty operates as the T1
policy with parameter T} = Tl(l) if Ny < 'T5; otherwise, it operates as the T1 policy with

parameter T) = T1(2).

Figure 5(b) shows the jobs processed by server 2 under the ADT policy as a function of
N; and N,. At high enough p; and ps, No usually exceeds T;, and the policy behaves
similarly to the T1 policy with T} = Tl(z). Thus, the stability condition for the ADT
policy is the same as that for the T1 policy when T} is replaced by T1(2). In [6], we prove
the following theorem:

Theorem 4 The stability condition (necessary and sufficient) for the ADT policy with
parameters Tl(l), 1(2), and Ty is given by the stability condition for the T1 policy with
parameter Ty = T? (Theorem, 1).

Figure 6(b) illustrates the robustness of the ADT policy, showing the overall mean
response time under the ADT policy as a function of ps. It is observed that (i) perfor-
mance at the estimated load (p2 = 0.6 in Figure 6(c)) is well characterized by 7Y, and
(ii) stability is characterized by T (recall Theorem 4). Also, the ADT policy achieves
at least as good performance as the better of the T1 policies with two different T} values
throughout the range of p;. We show in [6] that the ADT policy is also robust against
changes in p;.

Since the ADT policy requires specifying three thresholds, Tl(l), 1(2), and T5, one
might want to avoid searching the space of all possible triples for the optimal settings.
In choosing the thresholds of the ADT policy in Figure 6, we have followed the following

sequential heuristic:

1. Set T; 1(1) as the optimal 77 value for the T1 policy at the estimated load.
2. Choose T1(2) so that it achieves stability in a desired range of load.

3. Find T, such that the policy provides both good performance and stability.

We find that the performance at the estimated load is relatively insensitive to 7' 1(2), and
hence we can choose a high T}” to guarantee a large stability region (see [6] for details).
Also, since the stability region is insensitive to Tl(l) and T5, we can choose these values so
that the performance at the estimated load is optimized. Determining the appropriate
T, is a nontrivial task. If Ty is set too low, the ADT policy behaves like the T1 policy
with threshold T} = Tl(Q), degrading the performance at the estimated load, since Tl(g)
is larger than the optimal 7} in the T1 policy. If 75 is set too high, the ADT policy
behaves like the T1 policy with threshold 77 = Tl(l). This worsens the performance at
loads higher than the estimated load. Although a larger stability region is guaranteed by
setting T1(2) higher than the optimal 7} in the T1 policy, the overall mean response time
at higher loads can be quite high, albeit finite. In plotting Figure 6, we find “good” T%
values manually by trying a few different values, which takes only a few minutes.

4 Conclusion

In this paper, we design and evaluate various threshold-based resource allocation policies
in a simple model of two servers and two queues. This provides us with lessons that are
useful in designing resource allocation policies in more complex systems. The study of
simple allocation policies, the T1 policy and the T2 policy, reveals the tradeoff between
good performance at the estimated environmental conditions versus robustness against
changes and misprediction of the environmental conditions. For example, we have seen
that when the threshold value is chosen appropriately, the performance of the T1 policy
is no worse than or very close to the best performance achieved by all the other allo-
cation policies studied in this paper. However, the optimal threshold value for the T1
policy depends on the environmental conditions, and a threshold value that works for the
current load may cause instability under higher loads. On the other hand, the T2 policy
guarantees the maximum stability region and has more robustness, but its performance is
usually poor. The superiority in performance of the T1 policy over the T2 policy brings
up another interesting point: it is better to determine when help is provided based on
the “beneficiary” queue length rather than the “donor” queue length.

An obvious “fix” for the lack of robustness in the T1 policy is to use an additional
threshold to guarantee stability at higher load. This is the idea behind the design of the
T1T2 policy. It turns out, however, that the improvement in robustness in the T1T2
policy is marginal. This is primarily due to the fact that the T1T2 policy operates like
the T2 policy at higher load, and the performance of the T2 policy is typically poor at any
load. That is, letting the both queues have control (the T1T2 policy) is not much better
than letting the beneficiary queue alone have control (the T1 policy). The inadequacy of
the T1T2 policy motivates us to propose a new allocation policy, the ADT policy.

Unlike the T1T2 policy, the ADT policy always operates as a T1 policy, adapting its
threshold value to changes in environmental conditions. A difficulty in designing such
an adaptive allocation policy is detection of changes in the environmental conditions or
precise prediction of the environmental conditions. In our model, we are able to “detect”
the changes or misprediction in the environmental conditions by observing the length of

queue 2, N,. In particular, the ADT policy uses a threshold value that is appropriate at
low load when N, is low, and it uses a threshold value that is appropriate at high load
when Ny is high. It turns out that the performance of the ADT policy is better than
or very close to the two T1 policies with different threshold values; that is, the ADT
policy can provide good performance at estimated environmental conditions and is also
robust. We conjecture that a policy that uses more thresholds on queue 1 and chooses
an appropriate threshold depending on N, would provide better performance across a
wider range of load, at the expense of additional complexity.

Finally, we provide some guidelines for designing resource allocation policies with good
performance and robustness for more complex computer and communication systems. A
first step would be to design an allocation policy that can provide good performance at
the estimated environmental conditions (the T1 policy in our model). It may help to
consider a simpler approximate model. A second step would be to find some indicator,
within the system, of the changes/misprediction of the environmental conditions (N5 in
our model). If there is no such internal indicator, we would need to design one. A last
step would be to find an appropriate mapping from the internal state (e.g., N3) to the
parameter (e.g., T7) of the good allocation policy (e.g., the T1 policy). Towards this
end, it would be helpful to have analysis technique (e.g., our analysis technique in [6]
used throughout this paper) that allows us to evaluate the allocation policy swiftly and
accurately at various environmental conditions.

References

[1] S. Bell and R. Williams. Dynamic scheduling of a system with two parallel servers in
heavy traffic with complete resource pooling: Asymptotic optimality of a continuous
review threshold policy. Annals of Applied Probability, 11:608-649, 2001.

2] D. Cox and W. Smith. Queues. Kluwer Academic Publishers, 1971,

[3] L. Green. A queueing system with general use and limited use servers. Operations
Research, 33(1):168-182, 1985.

[4] J. M. Harrison. Heavy traffic analysis of a system with parallel servers: Asymptotic
optimality of discrete review policies. Annals of Applied Probability, 8(3):822-848,
1998.

[5] J. M. Harrison and M. Lopez. Heavy traffic resource pooling in parallel server systems.
Queueing Systems, 33(4):339-368, 1999.

[6] T. Osogami, M. Harchol-Balter, A. Scheller-Wolf, and L. Zhang. An adaptive
threshold-based policy for sharing servers with affinities. Technical Report CMU-
(CS-04-112, School of Computer Science, Carnegie Mellon University, 2004.

[7] M. Squillante, C. Xia, D. Yao, and L. Zhang. Threshold-based priority policies for
parallel-server systems with affinity scheduling. In Proceedings of the IEEE American
Control Conference, pages 2992-2999, June 2001.

[8] R. Williams. On dynamic scheduling of a parallel server system with complete re-
source pooling. In D. McDonald and S. Turner, editors, Analysis of Communication
Networks: Call Centers, Traffic and Performance. American Mathematical Society,
2000.

