2019 IEEE World Congress on Services (SERVICES)

Dynamic Service Composition Orchestrated by
Cognitive Agents in Mobile & Pervasive Computing

Oscar J. Romero
Machine Learning Department
Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, USA

Abstract—Automatic service composition in mobile and per-
vasive computing faces many challenges due to the complex
nature of the environment. Common approaches address service
composition from optimization perspectives which are not feasible
in practice due to the intractability of the problem, limited
computational resources of smart devices, service host’s mobility,
and time constraints. Our main contribution is the development
of a cognitively-inspired agent-based service composition model
focused on bounded rationality rather than optimality, which
allows the system to compensate for limited resources by selec-
tively filtering out continuous streams of data. The evaluation of
our approach shows promising results when compared against
state-of-the-art service composition models.

Index Terms—Service composition, Middleware, Mobile and
Pervasive Computing, Artificial Cognition

I. INTRODUCTION

Service composition refers to the technique of creating
composite services by the aggregation of atomic services.
Despite the existence of Mobile/Pervasive Computing (MPC)
middleware for service composition [4], [10], [11], there are
still some challenges that need to be tackled. Thus, we claim
that service composition should: (1) consider requests from
multiple users; (2) consider resource scarcity in smart devices;
(3) perform dynamic adaptation to unpredictable changes; and
(4) deal with both short and long-term user’s goals. Performing
service composition while taking into account the myriad of
variable factors mentioned above makes the problem become
intractable even for approaches that use dynamic composi-
tion and focus on optimality-based (e.g, graph-, rule-, and
workflow-based) solutions, which do no consider limitations
imposed by the decision-making process (specially on smart
devices). Thus, we propose a cognitively-inspired, bounded-
rationality-based approach so-called COPERNIC, which seeks
satisfactory solutions rather than optimal ones, allowing com-
position to be performed even on resource-constrained devices.

L. II. APPROACH
A. Preliminaries
wmn
b

A concrete service cs; is defined as a tuple [1] (csi™, cs
csfrec,csf"StC,cs?"S,csf“> that performs a task by acting
on input data in to produce output data out, with pre-
conditions prec, post-conditions postc, Quality of Service
values QQoS, and context information ctx; and an abstract
service as; defined as a tuple (as?”®, as?**", as$*) and realized
by several concrete services that offer the same functionality
e {CS(Z-J),...,CS(Z-’”)}) such that VCS(Z-J), CS(ik) €

(ass

1

e e t post post

as®/(as?® = csP7C NestT asP®® U Nest?o).
i°/(as; (i) N €5(i,k)) /(a8 (i) Sy

out
7)

= CS

978-1-7281-3851-0/19/$31.00 ©2019 IEEE
DOI 10.1109/SERVICES.2019.00118

390

B. System Architecture

The COPERNIC Agent is a cognitive module inspired by
architectural principles defined by the Common Model of
Cognition (CMC) [5], [8], a computational model that captures
a consensus about the structures and processes that are similar
to those found in human cognition. Cognitive modules are
(see detailed description in [9]): 1. Perception: it perceives
agent’s current state by processing both external (e.g., user
requests) and internal (i.e., user’s context, sensor readings, and
QoS) sensory inputs. It outputs a set of percepts (symbolic
representation units) such P = {p1...p,,} | Vp; € PR, where
PR is a set of premises such that as’™ U csP™ C PR.
2. Working Memory (WM): WM holds previous percepts
not yet decayed away, and local associations from declarative
memories that are combined with the percepts to understand
the current state of the service composition. WM defines a
limited storage capacity and a recency-based decay function
that keeps active a limited number of units, expressed as a
base-level activation function. Contents of WM are used as
inputs for service matching, i.e., w; C (asP™® U csP™) C
PR. 3. Declarative Memories: the WM cues the declarative
memories (i.e., Episodic Memory (EM) that retrieves informa-
tion about services’ historic performance, context, etc., and
Semantic Memory (SM) that retrieves service descriptions,
user preferences, etc.) and stores local associations. EM is a
content-addressable associative memory represented through a
Sparse Distributed Memory; and SM is implemented using a
Slipnet, an activation passing semantic network. This module
outputs a set of premises D = {dy...d,} | Vd; € PR.
4. Selective Attention (SA): SA filters out a continuous
stream of content from WM so the agent only focuses on
the most relevant information needed for matching abstract
services. Goals are decomposed and abstract services compete
and cooperate among them in order to get the focus of
attention. SA uses a Behavior Network (BN) [6], [7], a hybrid
system that integrates both spreading activation dynamics and
a symbolic, structured representation. Each behavior of the BN
maps to a single abstract service as, and “service discovery”
emerges from the activation/inhibition dynamics among all
services. Abstract services (behaviors) distinguish between
expected/non-expected (positive/negative) postconditions (in
terms of an “add” and a “delete” list) and define a level of
activation as{*. Also, the model defines 5 parameters to tune
the global behavior of the network: 7 is the mean level of acti-

vation, 6 is the threshold for becoming active, ¢ is the amount
of activation energy a WM unit injects into the network, ~y is
the amount of energy a goal injects into the network, and
0 is the amount of activation energy a protected goal takes
away from the network. 5. Procedural Memory (PM): PM
defines a set of heuristics to: 1) discover concrete services
based on QoS attributes; and 2) adjust the BN parameters
to make the global behavior be more adaptive. PM applies
the following heuristics [7] to keep the balance between:
(1) goal-orientedness vs. situation-orientedness, v > ¢; (2)
deliberation vs. reactivity, ¢ > v A ¢ > 6; and (3) bias
towards ongoing plan vs. adaptivity, ¢ > m > ~. The
values are dynamically adapted using a utility-based learning
mechanism. 6. Action Selection (AS): AS processes both
internal actions (such as goal setting) and and external actions
(such as triggering a device’s effector/actuator, and invoking
the discovery mechanism to execute concrete services). 7.
Cognitive Cycle: unlike traditional approaches that create
upfront composition plans which are prone to inadaptability, in
our approach, plans emerge from the interaction of cascading
sequences of cognitive cycles corresponding to perception-
action loops (modules 1-6) where compositional conditions
are validated and reasoning and planning take place. This
contribution allows service composition to be more reactive,
robust, and adaptive to dynamic changes while composition
plans are generated on-the-fly by using minimal resources as
a result of filtering out a continuous stream of information.
III. EVALUATION

We used the NS-3 simulator to compare the performance of
COPERNIC' against two state-of-the-art decentralized service
composition models: GoCoMo, a goal-driven service model
based on a decentralized heuristic backward-chaining plan-
ning algorithm [2]; and CoopC, a decentralized goal-driven
cooperative composition model that does not support runtime
composite service adaptation [3]. We modified service density
(sparse (SD-S): 20, medium (SD-M): 40, dense (SD-D): 60);
composition length (5 services (CL-5) or 10 services (CL-10));
and node mobility (slow (M-S): 0-2m/s, medium (M-M): 2-
8m/s, and fast (M-F): 8-13m/s); and we measured 3 different
metrics: composition time (CT in seconds), average memory
used during the composition (MU in Kb), and a planning
failure rate PFR (# of failed planning processes / # of all the
issued requests). Table I shows the results (blue/red cells are
the best/worst measurements for each category, respectively).
In particular, GoCoMo’s failure rate was lower than COPER-
NIC (12-38%) when the mobility was slow. This difference
dropped to 7-13% in fast-mobility high-density scenarios be-
cause COPERNIC is less sensitive to mobility changes thanks
to service information is stored in the WM and gradually
fades away, which means that it can still be accessible even
when a service disappears and reappears later in time, allowing
the service to promptly participate again in the composition
without producing significant planning failures. In comparison
with CoopC, COPERNIC got 12-25% less failures due to

'https://github.com/ojrlopez27/copernic

391

CoopC does not support runtime adaptation and poorly handles
mobility changes. Regarding composition time, COPERNIC
tailored composite services up to 42% and 71% faster than
GoCoMo and CoopC, respectively; and it used up to 72%
and 84% less memory than GoCoMo and CoopC, respectively.
The reason for this significant reduction is that COPERNIC is
continuously filtering out the stream of incoming information,
which keeps it into reasonable margins of resources usage,
despite of the dynamism of the environment. It is worth
noting that COPERNIC did not show a significant difference
in memory usage when using a composition length of either
5 or 10 services (-4% - 11%) in comparison with GoCoMo
(60% - 190%) and CoopC (157% - 201%), which suggests
that our approach could be smoothly scaled up.

TABLE I
FLEXIBILITY OF SERVICE COMPOSITION

M-M
SD-M

SD-S
17.5
1.1
67
17.7
12 12
70
16.1
1.3
78
24.7
22
201
21.9
1.9
121
252
45
332

PFR (%)
CT (sec)
MU (Kb)

copernic | C8

PFR (%)
CT (sec)
MU (Kb)
PFR (%)
CT (sec)
MU (Kb)
PFR (%)
CT (sec)
MU (Kb)

CL-10

GoCoMo CL-s

CL-10

PFR (%)
CT (sec)
MU (Kb)
PFR (%)
CT (sec)
MU (Kb)

IV. CONCLUSIONS AND FUTURE WORK
We propose a cognitive model that efficiently and dynam-
ically orchestrates distributed services under highly changing
conditions. Our approach focuses on bounded rationality rather
than optimality, allowing the system to compensate for limited
resources by filtering out a continuous stream of incoming in-
formation. We tested our model against state-of-the-art service
composition models while modifying mobility, service density
and composition complexity features, and the results were
promising demonstrating that our approach may be suitable

for MPC environments where resources are scarce.

REFERENCES

CoopC CL-5

240
4.1
325

CL-10

345 497

[1]
[2]
[3]

S. Balzer, “Bridging the gap between abstract and concrete services a
semantic approach for grounding owl-s,” in Semantic WS, 2004.

N. Chen and S. Clarke, “Goal-driven service composition in mobile and
pervasive computing,” Services Computing, vol. 11, no. 1, 2018.

A. Furno, “Efficient cooperative discovery of service compositions in
unstructured p2p networks,” in Parallel Processing, 2013.

A. Immonen and D. Pakkala, “A survey of methods and approaches for
reliable dynamic service compositions,” SOA, vol. 8, 2014.

J. Laird, “A Standard Model of the Mind: Toward a common com-
putational framework across artificial intelligence, cognitive science,
neuroscience, and robotics,” Al, no. 4, 2017.

P. Maes, “How to do the right thing,” Connection Science, 1989.

O. J. Romero, “An evolutionary behavioral model for decision making,”
Adaptive Behavior, vol. 19, no. 6, pp. 451-475, 2011.

, “CogArch-ADL: Toward a Formal Description of a Reference
Architecture for the Common Model of Cognition,” PCS, 2018.

, “Dynamic Service Composition Orchestrated by Cognitive Agents
in Mobile & Pervasive Computing,” in AIMS, 2019, p. In press.

O. J. Romero and S. Akoju, “An efficient mobile-based middleware
architecture for building robust, high-performance apps,” in ICSA, 2018.
O. J. Romero and A. Dangi, “NLSC: Unrestricted Natural Language-
based Service Composition through Sentence Embeddings,” in SCC, 19.

[4]
[5]
[6]
[7]
[8]
[9]

[10]

(1]

