
Dynamic Service Composition Orchestrated by
Cognitive Agents in Mobile & Pervasive Computing

Oscar J. Romero
Machine Learning Department

Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, USA

Abstract—Automatic service composition in mobile and per-
vasive computing faces many challenges due to the complex
nature of the environment. Common approaches address service
composition from optimization perspectives which are not feasible
in practice due to the intractability of the problem, limited
computational resources of smart devices, service host’s mobility,
and time constraints. Our main contribution is the development
of a cognitively-inspired agent-based service composition model
focused on bounded rationality rather than optimality, which
allows the system to compensate for limited resources by selec-
tively filtering out continuous streams of data. The evaluation of
our approach shows promising results when compared against
state-of-the-art service composition models.

Index Terms—Service composition, Middleware, Mobile and
Pervasive Computing, Artificial Cognition

I. INTRODUCTION

Service composition refers to the technique of creating

composite services by the aggregation of atomic services.

Despite the existence of Mobile/Pervasive Computing (MPC)

middleware for service composition [4], [10], [11], there are

still some challenges that need to be tackled. Thus, we claim

that service composition should: (1) consider requests from

multiple users; (2) consider resource scarcity in smart devices;

(3) perform dynamic adaptation to unpredictable changes; and

(4) deal with both short and long-term user’s goals. Performing

service composition while taking into account the myriad of

variable factors mentioned above makes the problem become

intractable even for approaches that use dynamic composi-

tion and focus on optimality-based (e.g, graph-, rule-, and

workflow-based) solutions, which do no consider limitations

imposed by the decision-making process (specially on smart

devices). Thus, we propose a cognitively-inspired, bounded-

rationality-based approach so-called COPERNIC, which seeks

satisfactory solutions rather than optimal ones, allowing com-

position to be performed even on resource-constrained devices.

II. APPROACH
A. Preliminaries

A concrete service csi is defined as a tuple [1] 〈csini , csouti ,
cspreci , cspostci , csQoS

i , csctxi 〉 that performs a task by acting

on input data in to produce output data out, with pre-

conditions prec, post-conditions postc, Quality of Service

values QoS, and context information ctx; and an abstract
service asi defined as a tuple 〈asprei , asposti , ascsi 〉 and realized

by several concrete services that offer the same functionality

(ascsi ∈ {cs(i,1), ..., cs(i,n)}) such that ∀cs(i,j), cs(i,k) ∈
ascsi /(asprei = cspre(i,j) ∩ cspre(i,k)) ∧ (asposti = cspost(i,j) ∩ cspost(i,k)).

B. System Architecture
The COPERNIC Agent is a cognitive module inspired by

architectural principles defined by the Common Model of

Cognition (CMC) [5], [8], a computational model that captures

a consensus about the structures and processes that are similar

to those found in human cognition. Cognitive modules are

(see detailed description in [9]): 1. Perception: it perceives

agent’s current state by processing both external (e.g., user

requests) and internal (i.e., user’s context, sensor readings, and

QoS) sensory inputs. It outputs a set of percepts (symbolic

representation units) such P = {p1...pn} | ∀pi ∈ PR, where

PR is a set of premises such that aspre ∪ cspre ⊆ PR.

2. Working Memory (WM): WM holds previous percepts

not yet decayed away, and local associations from declarative

memories that are combined with the percepts to understand

the current state of the service composition. WM defines a

limited storage capacity and a recency-based decay function

that keeps active a limited number of units, expressed as a

base-level activation function. Contents of WM are used as

inputs for service matching, i.e., wi ⊆ (aspre ∪ cspre) ⊆
PR. 3. Declarative Memories: the WM cues the declarative

memories (i.e., Episodic Memory (EM) that retrieves informa-

tion about services’ historic performance, context, etc., and

Semantic Memory (SM) that retrieves service descriptions,

user preferences, etc.) and stores local associations. EM is a

content-addressable associative memory represented through a

Sparse Distributed Memory; and SM is implemented using a

Slipnet, an activation passing semantic network. This module

outputs a set of premises D = {d1...dn} | ∀di ∈ PR.

4. Selective Attention (SA): SA filters out a continuous

stream of content from WM so the agent only focuses on

the most relevant information needed for matching abstract

services. Goals are decomposed and abstract services compete

and cooperate among them in order to get the focus of

attention. SA uses a Behavior Network (BN) [6], [7], a hybrid

system that integrates both spreading activation dynamics and

a symbolic, structured representation. Each behavior of the BN

maps to a single abstract service as, and “service discovery”
emerges from the activation/inhibition dynamics among all

services. Abstract services (behaviors) distinguish between

expected/non-expected (positive/negative) postconditions (in

terms of an “add” and a “delete” list) and define a level of

activation asαi . Also, the model defines 5 parameters to tune

the global behavior of the network: π is the mean level of acti-

390

2019 IEEE World Congress on Services (SERVICES)

978-1-7281-3851-0/19/$31.00 ©2019 IEEE
DOI 10.1109/SERVICES.2019.00118

vation, θ is the threshold for becoming active, φ is the amount

of activation energy a WM unit injects into the network, γ is

the amount of energy a goal injects into the network, and

δ is the amount of activation energy a protected goal takes

away from the network. 5. Procedural Memory (PM): PM

defines a set of heuristics to: 1) discover concrete services

based on QoS attributes; and 2) adjust the BN parameters

to make the global behavior be more adaptive. PM applies

the following heuristics [7] to keep the balance between:

(1) goal-orientedness vs. situation-orientedness, γ > φ; (2)

deliberation vs. reactivity, φ > γ ∧ φ > θ; and (3) bias

towards ongoing plan vs. adaptivity, φ > π > γ. The

values are dynamically adapted using a utility-based learning

mechanism. 6. Action Selection (AS): AS processes both

internal actions (such as goal setting) and and external actions

(such as triggering a device’s effector/actuator, and invoking

the discovery mechanism to execute concrete services). 7.
Cognitive Cycle: unlike traditional approaches that create

upfront composition plans which are prone to inadaptability, in

our approach, plans emerge from the interaction of cascading

sequences of cognitive cycles corresponding to perception-

action loops (modules 1-6) where compositional conditions

are validated and reasoning and planning take place. This

contribution allows service composition to be more reactive,

robust, and adaptive to dynamic changes while composition

plans are generated on-the-fly by using minimal resources as

a result of filtering out a continuous stream of information.

III. EVALUATION

We used the NS-3 simulator to compare the performance of

COPERNIC1 against two state-of-the-art decentralized service

composition models: GoCoMo, a goal-driven service model

based on a decentralized heuristic backward-chaining plan-

ning algorithm [2]; and CoopC, a decentralized goal-driven

cooperative composition model that does not support runtime

composite service adaptation [3]. We modified service density

(sparse (SD-S): 20, medium (SD-M): 40, dense (SD-D): 60);

composition length (5 services (CL-5) or 10 services (CL-10));

and node mobility (slow (M-S): 0-2m/s, medium (M-M): 2-

8m/s, and fast (M-F): 8-13m/s); and we measured 3 different

metrics: composition time (CT in seconds), average memory

used during the composition (MU in Kb), and a planning

failure rate PFR (# of failed planning processes / # of all the

issued requests). Table I shows the results (blue/red cells are

the best/worst measurements for each category, respectively).

In particular, GoCoMo’s failure rate was lower than COPER-
NIC (12-38%) when the mobility was slow. This difference

dropped to 7-13% in fast-mobility high-density scenarios be-

cause COPERNIC is less sensitive to mobility changes thanks

to service information is stored in the WM and gradually

fades away, which means that it can still be accessible even

when a service disappears and reappears later in time, allowing

the service to promptly participate again in the composition

without producing significant planning failures. In comparison

with CoopC, COPERNIC got 12-25% less failures due to

1https://github.com/ojrlopez27/copernic

CoopC does not support runtime adaptation and poorly handles

mobility changes. Regarding composition time, COPERNIC
tailored composite services up to 42% and 71% faster than

GoCoMo and CoopC, respectively; and it used up to 72%

and 84% less memory than GoCoMo and CoopC, respectively.

The reason for this significant reduction is that COPERNIC is

continuously filtering out the stream of incoming information,

which keeps it into reasonable margins of resources usage,

despite of the dynamism of the environment. It is worth

noting that COPERNIC did not show a significant difference

in memory usage when using a composition length of either

5 or 10 services (-4% - 11%) in comparison with GoCoMo

(60% - 190%) and CoopC (157% - 201%), which suggests

that our approach could be smoothly scaled up.

TABLE I
FLEXIBILITY OF SERVICE COMPOSITION

M-S M-M M-F
SD-S SD-M SD-D SD-S SD-M SD-D SD-S SD-M SD-D

COPERNIC CL-5
PFR (%)
CT (sec)
MU (Kb)

18.2
0.9
63

3.7
0.5

81

1.1
0.8
93

17.5
1.1
67

1.4
1.2
86

1.4
1.2
93

21.1
1.1
73

3.3
1.4
88

1.1
1.4
98

CL-10
PFR (%)
CT (sec)
MU (Kb)

17.8
1.2
70

3.7
0.6
86

1.1
0.8
92

17.7
1.2
70

1.5
1.2
73

0.5
1.1
85

19.7
1.2
78

3.8
1.3
89

1.4
1.9
94

GoCoMo CL-5
PFR (%)
CT (sec)
MU (Kb)

13.1
1.3
79

3.3
0.7
93

0.6
0.9
112

16.1
1.3
78

1.2
1.4
93

0.3
1.4
110

18.0
1.3
80

3.1
1.3
94

0.9
1.4
114

CL-10
PFR (%)
CT (sec)
MU (Kb)

16.2
2.1
213

2.3
2.2
273

0.8
2.2
314

24.7
2.2
201

1.1
2.3
287

0.4
2.3
308

22.1
2.3
221

3.5
2.4
286

1.3
2.4
345

CoopC CL-5
PFR (%)
CT (sec)
MU (Kb)

16.2
1.8
114

2.4
1.9
245

0.8
1.9
367

21.9
1.9
121

1.3
1.8
239

2.3
2.1
353

24.5
1.9
117

3.7
2.1
275

1.2
2.2
359

CL-10
PFR (%)
CT (sec)
MU (Kb)

24.0
4.1
325

2.3
4.2
476

1.3
4.2
593

25.2
4.5
332

2.4
4.7
488

1.2
4.9
605

31.8
5.0
345

4.2
5.1
497

1.6
5.5
657

IV. CONCLUSIONS AND FUTURE WORK

We propose a cognitive model that efficiently and dynam-

ically orchestrates distributed services under highly changing

conditions. Our approach focuses on bounded rationality rather

than optimality, allowing the system to compensate for limited

resources by filtering out a continuous stream of incoming in-

formation. We tested our model against state-of-the-art service

composition models while modifying mobility, service density

and composition complexity features, and the results were

promising demonstrating that our approach may be suitable

for MPC environments where resources are scarce.

REFERENCES

[1] S. Balzer, “Bridging the gap between abstract and concrete services a
semantic approach for grounding owl-s,” in Semantic WS, 2004.

[2] N. Chen and S. Clarke, “Goal-driven service composition in mobile and
pervasive computing,” Services Computing, vol. 11, no. 1, 2018.

[3] A. Furno, “Efficient cooperative discovery of service compositions in
unstructured p2p networks,” in Parallel Processing, 2013.

[4] A. Immonen and D. Pakkala, “A survey of methods and approaches for
reliable dynamic service compositions,” SOA, vol. 8, 2014.

[5] J. Laird, “A Standard Model of the Mind: Toward a common com-
putational framework across artificial intelligence, cognitive science,
neuroscience, and robotics,” AI, no. 4, 2017.

[6] P. Maes, “How to do the right thing,” Connection Science, 1989.
[7] O. J. Romero, “An evolutionary behavioral model for decision making,”

Adaptive Behavior, vol. 19, no. 6, pp. 451–475, 2011.
[8] ——, “CogArch-ADL: Toward a Formal Description of a Reference

Architecture for the Common Model of Cognition,” PCS, 2018.
[9] ——, “Dynamic Service Composition Orchestrated by Cognitive Agents

in Mobile & Pervasive Computing,” in AIMS, 2019, p. In press.
[10] O. J. Romero and S. Akoju, “An efficient mobile-based middleware

architecture for building robust, high-performance apps,” in ICSA, 2018.
[11] O. J. Romero and A. Dangi, “NLSC: Unrestricted Natural Language-

based Service Composition through Sentence Embeddings,” in SCC, 19.

391

