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Abstract—Current approaches for service composition (as-
semblies of atomic services) require developers to use: (a)
domain-specific semantics to formalize services that restrict the
vocabulary for their descriptions, and (b) translation mechanisms
for service retrieval to convert unstructured user requests to
strongly-typed semantic representations. In our work, we claim
that the effort to developing service descriptions, request transla-
tions, and service matching could be reduced using unrestricted
natural language; allowing both: (1) end-users to intuitively
express their needs using natural language, and (2) service devel-
opers to develop services without relying on syntactic/semantic
description languages. Although there are some natural language-
based service composition approaches, they restrict service re-
trieval to syntactic/semantic matching. With recent developments
in Machine learning and Natural Language Processing, we
motivate the use of Sentence Embeddings by leveraging richer
semantic representations of sentences for service description,
matching and retrieval. Experimental results show that service
composition development effort may be reduced by more than
36% while keeping a high precision/recall when matching high-
level user requests with low-level service method invocations.

Index Terms—Service composition, Middleware, Sentence Em-
beddings, Named-Entity Recognition, Effort Estimation. NLP.

I. INTRODUCTION AND RELATED WORK

Service is any software component, data, or hardware re-

source on a device that is accessible by others [7]. Service
composition is the process of aggregating such reusable atomic

services to create complex compositions. Existing research

can be seen in two directions, where, (a) both atomic and

composite services are defined using description languages

(such as BPEL4WS, OWL-S, and WSDM) in terms of service

input/output, pre- and post-conditions, fault handling and

invocation mechanisms. Such service descriptions serve as

inputs to orchestration engines [30], [32] that generate declar-

ative specification of workflows to compose different services;

and (b) architectural middlewares [7], [14], [33] that assume

a declarative specification of a composition. A substantial

amount of effort is required in both directions to define and

integrate services, mainly due to: (a) the use of domain-

specific languages and semantics for service descriptions and

compositions; (b) strongly-typed orchestration languages (e.g.,

BPEL, WSDL, OWL-S, etc.) restricting heterogeneous service

composition; (c) statically specified compositions that create

design-time couplings preventing dynamic adaptation; and

(d) there is more than one composite service description

languages: different ontologies have been designed resulting in

different vocabularies, thwarting true semantic interoperability,

so technologies have yet to converge and standardize [31]. In

natural language-based service composition middleware, end-

users interact instinctively with systems in natural language

and expect the system to identify services that meet their

goals. These kind of middleware can be broadly categorized

as those that: (a) apply restrictions on how the user expresses

the goal with sentence templates and then use structured

parsing to match against service descriptions [5], [21]; (b)

construct semantic graphs to represent service descriptions and

match against a lexical database such as WordNet to compute

concept similarity [10], [13], [23]; and (c) match partially-

observable natural language request with semantics of service

description expressed using semantic web services (OWL-S,

VDL) [9], [24]. Limitations with these approaches include: (a)

complex linguistic processing that requires additional natural

language processing (NLP) techniques: structured parsing,

extracting parts-of-speech, stop-word removal, spell-checking,

stemming, and text segmentation; (b) inclusion of lexical

databases such as WordNet or domain-specific ontologies; and

(c) a weaker concept representation and similarity score for

semantic matching that does not account for sentence context.

Research Questions: to overcome the above, we address:

RQ1: How to reduce the amount of development effort and
complexity to develop service compositions?
RQ2: How can both end-users and developers create service
compositions in an intuitive, efficient, and dynamic way using
natural language-based descriptions?

Main Contributions: we address RQ1 by removing effort-

consuming engineering practices, such as: (a) formal service

descriptions that use syntactic/semantic representations; and

(b) orchestration processes that use domain-specific languages.

Additionally, we provide an automated OSGi-based toolchain

for service modularity, service discovery, service deployment,

and service execution. Our toolchain allows transparently de-

ploying OSGi components to either cloud-based applications

or mobile Android-based apps. And we addresses RQ2 by

developing NLSC, a Natural Language-based Service Compo-

sition Middleware that: (a) allows users to express template-

free service requests using natural language without complex

linguistic processing; (b) avoids the need for lexical databases,

semantic graphs, and domain-specific ontologies; (c) generates

dynamic service compositions by directly binding high-level



user requests to low-level service invocations without having to

define ontological service descriptions or strongly-typed well-

defined interfaces; and (d) uses a stronger representation of

sentence semantics to characterize words and concepts that

account for word usage in context to the sentence by applying

a state-of-the-art pre-trained semantic representation model of

English language. The remaining of this paper is organized

as follows: Section II presents the background and motivating

example. Section III details the design and implementation

and Section IV reports the experimental results. We introduce

the related work and conclude the paper in Section V and

Section VI, respectively.

II. BACKGROUND AND MOTIVATION

A. Service Composition Middleware Model

According to the Service Composition Middleware (SCM)

model [16] (a high-level abstraction model that does not

consider a particular service technology, language, platform

or algorithm used in the composition process), middleware for

service composition can be largely classified into four main

modules as follows: Translation, Generation, Evaluation, and

Execution. In SCM, applications may send requests to middle-

ware using diverse specification languages or techniques, and

the Translator converts these request descriptions into a system

comprehensible language (i.e., formal languages and models)

that can be used by the middleware. Once translated, the

request specification is sent to the Generator, which provides

the needed functionality by composing the available services,

and generating one or several composition plans. This service

composition is technically performed by chaining interfaces

using either a syntactic or semantic method matching (or both).

Then, the Evaluator chooses the most suitable composition

plan depending strongly on many criteria like application

context, the service technology model, the non functional

service QoS (Quality of Service) properties, etc. Finally, the

Builder executes the selected composition plan and produces

an implementation corresponding to the required composite

service. Once the composite service is available, it can be

executed by the application that required its functionality.

B. Motivational Example

Suppose the user is planning a trip to Paris on a specific

range of dates (main goal) using a smartphone that does not

have a trip planner service or app installed. This main goal

can be decomposed into sub-goals such as: (1) check schedule

availability on dates, (2) look for flights cheaper than $700, (3)

book the chosen flight, (4) search for hotels under $100/night

near downtown, (5) book the selected hotel, (6) check the

weather conditions for given dates, (7) if weather conditions

are bad, look for indoor activities to do, (8) otherwise, look for

outdoor activities to do. To address this scenario (see Figure 1),

a service developer would create atomic service interfaces

and implementations for services such as Maps, Calendar,

FlightBooking etc.; a service modeler would define the service

interface contracts using WSDL; an ontology engineer would

maintain the trip-planning ontologies and ensure consistency

Figure 1. Motivating Example: Plan a trip scenario

with OWL-S models; and a process flow designer would in-

vestigate explicit declarative alternatives to generate a service

composition that addresses user’s goal.

C. Problem Statement

In the example above, the total effort required is the

sum of partial efforts. Let ET =
∑n

i=1 Ei, where, Ei ∈
{Edev, Edesc, Eont, Ewf} such that Edev , Edesc, Eont, Ewf

are effort amounts to develop a service implementation, gen-

erate a WSDL service description, create/maintain an OWL-

S ontology, and maintain a BPEL4WS workflow, respectively

(for simplicity, we ignore additional efforts for testing, CI/CD,

etc.) These efforts increase exponentially when service re-

quirements change continuously, there are inconsistencies on

service contracts, or developers don’t have the proper skillset.

D. Goals

Our scientific intuition leads us to hypothesize that a data-

driven approach (using large text corpus and datasets of

common-sense sentences) not only could minimize the effort

of developing service compositions by removing the need

of specifying strongly-typed, syntactically/semantically well-

defined, domain-dependent service descriptions, but also could

outperform traditional semantic-driven approaches that require

continuous validation of consistency due to human designers’

biased models. Therefore, driven by our RQs, our goal is

two-fold: (a) to reduce the total effort of integrating new

services into a composition by merging/replacing some of

the development tasks previously described without affecting

either system performance or the quality of service com-

positions; and (b) to automatically bind unrestricted natural

language user requests to unstructured natural language service

descriptions with control structures for composition.

E. OSGi

OSGi (Open Services Gateway initiative) technology [1] is

a set of specifications that define a dynamic component system

for Java. These specifications enable a development model

where an application is composed of several components that

are packaged as bundles. Components communicate locally

and across the network through services. Services have an API

that is defined in a Java package. Some of the most known



OSGi-based middleware for service composition are: [15],

[18], [25], [26]. We use OSGi as a backbone for connecting

multiple service implementations, providing a mean for the

exchange of information between them.

III. APPROACH

A. Preliminaries

As it is generally considered in the literature [3], [32],

we distinguish two types of services [3], [32]: abstract and

concrete services. Formally, a concrete service csi is a tuple

〈csini , csouti , cspreci , cspostci , csQoS
i 〉 that performs a function-

ality by acting on input data (csini ) to produce output data

(csouti ), with pre-conditions (cspreci ), post-conditions (cspostci )

and Quality of Service (csQoS
i ) requirements. An abstract

service asi is a tuple 〈asini , asouti , ascsi 〉 realized by several

concrete services ascsi ∈ {cs(i,1), cs(i,2), ..., cs(i,n)} that offer

the same functionality with input parameters (asini ), output

parameters (asouti ) such that ∀cs(i,j), cs(i,k) ∈ ascsi /(asini =
csin(i,j) ∩ csin(i,k)) ∧ (asouti = csout(i,j) ∩ csout(i,k)).

B. Reference Architecture

Figure 2 presents a reference architecture for service com-

position that will help highlight where our contributions lie.

Step 1: service developers continuously implement, integrate,

deploy and publish service components (either abstract or con-

crete). Developers add unstructured and unrestricted natural

language descriptions (in the form of plain code annotations)

to each single service component and its atomic methods. In

comparison, traditional approaches would include additional

steps (i.e., service description using WSDL, creation and

validation of OWL-S ontology, etc.). Step 2: an automated

process extracts those descriptions from the code annotations

and puts them on a separate repository. Step 3: the end-user,

an application developer, or a top-tier application makes a

service request (e.g., “I want to plan a trip to Paris from Sept.
29 to Oct. 11”). Step 4: a coordination system is in charge

of orchestrating the high-level assembly of abstract services

by chaining service pre- and post-conditions and matching

data types (traditional approaches would include additional

steps for creating complex graph-based, workflow-based or

rule-based plans). Step 5: the service matching is performed

using two NLP techniques: Sentence embeddings and Named-

Entity Recognition, and returns a set of abstract services and

their corresponding concrete service candidates. Steps 4 and

5 are repeated until a composition plan is tailored. Step 6:
a mechanism validates the QoS requirements by selecting a

sub-set of candidate concrete services that are to be executed.

Step 7: using a service discovery mechanism, the sub-set of

concrete service candidates are looked up in the registry and

service availability for those is confirmed. Step 8: lastly, a

composite service is generated and executed. Compared to

the SCM model, we suppress the Translator module and only

keep the remaining ones (Generator, Evaluator, and Builder).

We overcome the need for the Translator as our approach

does not use intermediate representations such as ontologies,

graph-based models, and so forth, rather, we provide a direct

Figure 2. Reference Architecture for a NLSCM

correlation between the request and the service description

which are both expressed using unrestricted natural language.

C. Service Development Process

NLSC was architected to be deployed on distributed envi-

ronments and to support different kind of client applications

(e.g., standalone, web, mobile, etc.). This requirement, along

with dynamicity, low-latency, high-performance, modularity,

and support to Android Runtime Environment (ART), were

the main architectural significant requirements we took into

consideration over its implementation [29]. Extending our

initial definition of “service”, we consider that an Android-

based service can be a device sensor, a local service (installed

on the Android device), or an app, hence, we avoid making the

assumption that only a web service model should be applicable

to NLSC. Given these requirements, a suitable solution for de-

veloping dynamic service components for Android is the OSGi

technology [17]. Most of the OSGi-Android approaches [6],

[8] are based on Apache Felix [2], an implementation of the

OSGi Framework and Service platform. In NLSC, composite

services are created from a dynamic assembly of black box

components, executing in a local Felix container, which does

not provide mandatory non-functional services. Services do

not contain any reference between them at design-time, and

respect black box and late-binding concepts. We tried to keep

the intervention of application developers to the minimum,

automating as much as possible the discovery, composition,

invocation and interoperability of services and, therefore, re-

ducing the development effort. To that purpose, we developed

a set of tools to simplify the process of service development,

and promote agile development and continuous integration into

NLSC. This process is shown in Figure 3 and described next.

1) Abstract Services Description: Common OSGi-based

approaches for service composition provide modularity,

though still a Translator is required to guarantee interop-

erability between semantic and syntactic service description

languages that are both heterogeneous. Prior work shows

the heavy cost of the syntactic and semantic matching [16].

In our work, we replace effort-consuming syntactic/semantic

service descriptions (WSDL, OWL-S, etc.) by intuitive code

annotations that allow developers to add unrestricted natural



Figure 3. Workflow for Service Development using NLSC

language descriptions to each service component and its

methods. More specifically, we provide 2 code annotations:

@Description annotation allows developers to add a set of

possible capabilities for an atomic service method (in terms of

what the service method can do), and @ArgDesc let developers

add descriptions to method arguments that can be later used for

argument type disambiguation. Alternatively, NLSC can also

load these annotations from plain files in order to decouple

them from the programming language.

public interface CalendarService {
@Description(capabilities = {

"validates availability on calendar given a time slot",
"checks conflicts on calendar given a range of dates",
"checks calendar availability on a range of dates"

})
@ArgDesc(arguments = {

"fromDate : check calendar from date (yyyy-mm-dd)",
"toDate : check calendar to date (yyyy-mm-dd)"

})
Boolean checkAvailability(Date fromDate, Date toDate);

}

Listing 1: Abstract service description for CalendarService

From Listing 1, it is worth noting that: a) given an

abstract service asi exposes a set of methods mi =
{m(i,1)...m(i,n)}, where, a method is described as a tuple

〈capmi , argsmi , argdmi〉 where capmi is an arbitrary number

of capabilities such that |capmi
| ≥ 1, argsmi

is a set of

method arguments, and argdmi is a set of argument de-

scriptions corresponding to argsmi , such that |argsmi | =
|argdmi

| ≥ 0; b) the list of arguments in @ArgDesc maps

each description onto a method argument using the name of the

argument, a description in natural language, and (optional) the

format or type of the argument (used to disambiguate with the

user or when using the Named-entity Recognition technique).

c) developer does not need to do extra effort defining a service

description or ontology using WSDL, OWL-S, etc. (especially

when developers are unfamiliar with such languages, but even

if they are, using unrestricted natural language descriptions is

more intuitive and easy-to-deploy).

2) Concrete Services Implementation: A concrete service

csi inherits method descriptions from abstract service asi.
It defines non-functional, platform-specific QoS requirements

for methods to guarantee service execution if and only if

they are met. For illustration purposes, let’s continue with

our motivating example and assume the platform is An-

droid. An abstract service could be CalendarService (ascal)
whereas concrete services could be GoogleCalendarService
(csgc) and YahooCalendarService (csyc). NLSC provides a

set of pre-defined QoS annotations for Android, though they

can extended: @BatteryQoS is a categorical value for bat-

tery level consumption that indicates whether the service is

battery-intensive (e.g., LOW BATTERY, HALF CHARGED,

FULLY CHARGED), @ConnectivityQoS is a categorical

value that determines whether the service requires deveice’s

wifi connection or if it runs locally, etc. From Listing 2, we

public class YahooCalendarService implements CalendarService{

@BatteryQoS( minBattery = Constants.REQUIRES_HALF_CHARGED )

@ConnectivityQoS( wifiStatus = Constants.REQUIRES_WIFI )

public Boolean checkAvailability(Date from, Date to) {

Log4J.info("Executing YahooCalendarService....");

}

Listing 2: QoS-awareness for YahooCalendarService

observe that YahooCalendarService will be executed only if

its QoS features are met, that is, the smartphone’s battery

has to be at least half charged and it should be connected to

the WiFi, otherwise, another concrete service that implements

CalendarService is discovered.

3) Service Descriptions Extractor: Using Java reflection,

this tool automatically generates a plain file with all service

method descriptions which is further used by the Service

Matching module (Section III-D). Additionally, it generates

a metadata file with method argument descriptions and QoS

values that are used at the time of service execution after

services are grounded (Section III-F).

4) OSGi bundle self-registration: Both abstract and con-

crete services are deployed as OSGi bundles. This tool au-

tomatically generates an implementation of a BundleActivator

(an OSGi interface that manages bundle’s lifecycle) and injects

code on the start() and stop() methods to self-register or self-

unregister the bundle against the Felix Framework.

5) Dexifying bundles: Android Runtime does not use Java

bytecode, instead, Android programs are compiled into .dex

(Dalvik Executable) files. Thus, we developed Dexer, a tool

that automatically transforms the Java class files compiled

by a regular Java compiler into a class file format that can

be executed on the Android runtime. In other words, Dexer

automatically converts an OSGi bundle into an executable Jar

that can be later executed on the Android platform.

6) OSGi Maven Deployer: Transforms application Jars to

OSGi bundles that are then automatically deployed to a remote

Maven repository, which makes the artifacts accessible to

application developers and service runtime environment.

7) TAMO: This is a tool that automatically transforms

artifacts from a Maven repository (that holds OSGi bundle

artifacts) to an OSGi Bundle Repository (OBR). Felix OBR

provides a service that can automatically install a bundle,



with its deployment dependencies, from a bundle repository,

enabling location and discovery of the participating services

during the composition process.

8) ARW: The Automatic Resource Watcher (ARW) pulls

data periodically from an OBR in order to find new available

services or updates for existing services. This functionality

is critical for the service discovery phase during service

execution because it allows re-configuration of services and

enables the generation of compositions on-demand.

D. Service Matching/Selection
Current approaches on service composition perform service

matching by doing syntactic and semantic interface matching,

then the service evaluation is performed upon the input/out-

put matching correctness. As we described before, semantic

matching though useful is expensive in terms of effort (i.e.,

the construction of one single service involves the design,

maintenance and consistency validation of syntactic/semantic

representations carried out by ontology engineers and service

designers) and computing time (the larger an ontology is,

the longer it takes to perform semantic inference or concept

graph search). Instead of using syntactic or semantic matching

through the use of ontologies, we propose semantic service

matching through the use of Sentence Embeddings. In lin-

guistics, and more specifically in feature learning techniques

in natural language processing (NLP), both word embeddings

and sentence embeddings are studied by the area of distribu-

tional semantics. Embeddings aim to quantify and categorize

semantic similarities between linguistic items based on their

distributional properties in large samples of language data.

Word embeddings capture the idea that is possible to express

“meaning” of words using a vector, so that the cosine of

the angle between the vectors captures semantic similarity

(“cosine similarity” property). Sentence embeddings and text

embeddings extend word embeddings to sentences and para-

graphs: they use a fixed-dimensional vector to represent a

short piece of text, e.g., a sentence or a small paragraph.

Sentence embeddings account for sentence context using the

words in the sentence (based on the distributional hypothesis,

that is, sentences that occur in the same contexts tend to have

similar meanings), providing a richer semantic representation

that makes it a reasonable choice for using natural-language

descriptions for service matching rather than using other

existing natural language-based service matching approaches

where only word-level matching is performed ignoring the

context. We used sent2vec [22] to perform text understanding

using sentence embeddings. sent2vec is a model that can

be seen as an extension of the CBOW (Continuous Bag of

Words [19]) where the training objective is to train sentences

instead of word embeddings. sent2vec has demonstrated that

the empirical performance of the resulting general-purpose

sentence embeddings significantly exceeds the state of the art,

while keeping the model simplicity as well as training and

inference complexity exactly as low as in averaging methods.

Let us revisit our motivating example, where user’s goal is

“plan a trip to Paris on...”. The required pipeline to carry

…

…
…

… 
…

…

Figure 4. Pipeline for the Service Matching using Text Embedding

out service matching is shown in Figure 4. In step 1, a

pre-trained model is learned through unsupervised machine

learning over a large dataset of sentences (in our experiments

we used two datasets, one with 19.7 billion sentences from

Tweeter entries, and another with 1.9 billion sentences from

Wikipedia entries) using sent2vec training mode. As a result

of this step, sentences and their meaning are mapped onto

vectors of real numbers (embeddings). In step 2, a textual

corpus C is automatically generated by NLSC by extracting

the service descriptions from the annotations that develop-

ers add to their abstract services during the development

phase (as explained in sections III-C and III-C3), such that

C = {asm1 ∪ asm2 ... ∪ asmn }, where m is the set of service

method descriptions and n is the total number of abstract

services as. In step 3, user makes a service request Sur.

For instance, assume that user makes the following request

as part of the required steps to achieve his/her goal of

planning a trip to Paris: Sur = “check what’s on my schedule
from Sept. 29 to Oct. 11?”. In step 4, the user’s request

Sur is fed as input into sent2vec and then mapped to a

vector (embedding) in a n-dimensional space. Finally, in step

5, a downstream classification finds the nearest neighboring

sentence feature (the optimal match for Sur in terms of a

higher sentence embedding match) by computing the sentence

similarity (correlation of the cosine similarity between two

embeddings) for each pair of sentences (Sur, S(c,i)), where

S(c,i) is the i-th service description contained by the corpus

C. For instance in Figure 4, after downstream classification,

the sentence similarity between user request Sur = “what’s
on my schedule...” and the service method description S(c,1) =
“check calendar availability...” for method checkAvailability()
that belongs to the abstract service CalendarService will be

higher (0.786), whereas the similarity between the same user

request and service method description S(c,2) = “book a
flight...” that belongs to FlightReservationService will be much

lower (0.003). Given this example, the user request would be

matched with method description checkAvailability on abstract

service CalendarService. Service matching selects the most

appropriate abstract service method based on a similarity-

based selection as described in the pseudocode on Listing 3.

Basically, in order to be selected, an abstract service method

must have the highest similarity, which should be above an

upper threshold (t1 = 0.6); if not, abstract services that are

in the range (t2 ≥ as ≥ t1) and their similarities differ in



less than delta (0.01) then they need to be disambiguated by

the user; otherwise the similarity between user request and

service method description is too low that no service can

be selected and user needs to re-phrase the request. Values

for thresholds and delta have been discovered empirically and

have demonstrated satisfactory results.

algorithm match is
input: Set of abstract services AS
output: selected abstract service as
t1 := 0.6 //upper threshold
t2 := 0.2 //lower threshold
delta := 0.01
as := AS[0]
for each pair of services (s1, s2) in AS do

sim1 := s1.similarity
sim2 := s2.similarity
if sim1 >= t1 and abs(sim1 - sim2) <= delta then

as := max(as.similarity, sim1, sim2)
else if sim2 >= t1

as := s2
else if sim1 >= t2 or sim2 >= t2 then

as := user_disambiguate(s1, s2)
else

as := nil //service matching cannot be performed
end for

return as

Listing 3: Pseudocode for Service Matching

E. Service Coordination

The Service coordination comprises three mechanisms: a

short-term (working) memory where results are stored tem-

porarily, data type disambiguation through entity matching and

named-entity recognition, and a rule-based system that allows

creating high-level assemblies of abstract services (composite

services) by chaining pre/post-conditions.

Short-term Working Memory (WM): the WM stores not

only the partial results and inferences produced by the forward

chaining process of the rule engine but also keeps updated

information collected from sensors (in the case of an Android

phone), user preferences, service status, and QoS features.

WM is implemented as a Hash Table or Dictionary.

Data type disambiguation: we disambiguate data types

by using named-entity recognition. To that purpose, we use

Stanford NER [12], a Java implementation that labels se-

quences of words in a text that are names of things, such

as person and company names. It provides well-engineered

feature extractors that annotates sentences with labels such as:

NOUN, PERSON, COMPANY, NUMBER, MONEY, TIME,

DATE, and LOCATION. However, since it provides a general

implementation of (arbitrary order) linear chain Conditional

Random Field (CRF) sequence models, it is possible to train

customized models on labeled data extracted from service

descriptions. For example, suppose that the user request is:

“look for flights to Paris for less than $700”. Then, Service

Matching module (Section III-D) outputs a set of method

descriptions and their corresponding abstract services along

with a similarity score associated to each method description

(based on the cosine similarity). Now, suppose that the abstract

service method description shown in listing 4 is the best

match for the user request. Once the abstract service method

is selected, the type-based disambiguation is performed as

follows: first, suppose that the value for argument “from”

is provided by the WM (assuming that the system inferred

this value from user’s current location or extracted it from

a previous user request, and then stored it into the WM).

Now, user request provides two additional values, one string

value (Paris) and one numeric value (700). Without further

processing, the string value “Paris” could match either “to” or

“cabin” string arguments, and the numeric value “700” could

match either “price” or “numPass” numeric arguments. For

this reason, we use NER to disambiguate the types for method

searchFlights, that is, NER is able to infer that “Paris” is a

LOCATION, “$700” is MONEY, and “flight” is a NOUN.

public interface FlightReservationService {
...
@ArgDesc(arguments = {

"from : from a specific origin place",
"to : to a specific destination place",
"price : maximum price per flight ticket",
"class : cabin class",
"numPass : number of passengers or travelers"})

List<Flight> searchFlight(String from, String to, int price,
String class,... int numPass);

Listing 4: Argument description for searchFlight method

The next step is to automatically extract all the nouns

from the argument descriptions of the service method (i.e.,

@ArgDesc annotations) using a Part-Of-Speech tagger such

as Stanford POS Tagger [34]. Now, using an Automatic

Synonym Extractor (like WordNet synset or Word2Vec) over

the resulting set of nouns from the previous step (e.g., origin,

destination, place, price, flight, etc.) is possible to determine

that the closest synonym for “location” (Paris) is “place”.

Since there are two places (origin and destination) but “origin

place” was already resolved by the WM, then Paris is mapped

onto argument “to” (destination place). Likewise, since the

closest synonym for “money” is “price”, then $700 is mapped

onto argument “price”. Since there are no other information

available, the remaining arguments (class, numPass, etc) are

disambiguated directly with the user.

Compositional Rules: the compositional rules allow linking

different abstract service methods by chaining their pre- and

post-conditions. For the sake of simplicity, we assume that

service method pre-conditions correspond to service method

arguments, while service method post-conditions correspond

to service method returned elements. Rules can retrieve, add

and remove information from the WM according to the current

and future compositional needs. After executing a service

method, the returned value (post-condition) is added to the

WM, while during data type disambiguation and pre-condition

matching values stored in WM are retrieved. Finally, WM

contents can be removed by rules if they are not longer

needed for the current composition. As a rule-based system

to support the creation and execution of compositional rules

we used easy-rules [11], a lightweight yet powerful Java rule

engine that can be executed in a wide variety of platforms,

including Android. easy-rules also supports MVEL (MVFLEX

Expression Language [20]), a hybrid dynamic/statically typed,

embeddable Expression Language and runtime for the Java

Platform. MVEL is typically used for exposing basic logic



to end-users and programmers through weakly-typed (or non-

typed) expressions. MVEL is dynamically typed (with optional

typing), meaning that type qualification is not required in the

source, which confers significant flexibility to our purpose of

creating dynamic compositional rules based on unrestricted

language descriptions. For instance, service methods “search-

Flight” and “bookFlight” can be automatically chained using

two MVEL rules as shown in Listing 5: when all pre-

conditions of method “searchFlight” are stored into the WM

(i.e., the condition part (when) of MVEL rule “rule-search-

flights”: flight.destination, flight.from, etc.) then an instance

of the service FlightReservationService is obtained, then the

method searchFlight is executed, and finally the results of

the method execution are stored back into the WM (i.e.,

wm.put(‘selectedFlights’, ....)). Once the post-conditions of

method searchFlight are stored into the WM, then the pre-

conditions of method bookFlight are met so the second MVEL

rule (rule-book-flight) can be triggered, and the process con-

tinues until no more information can be chained.

MVELRule rule = new MVELRule()
.name("rule-search-flights")
.description("search for flights on dates...")
.when("wm.get('flight.destination') != null && ...")
.then("service = getService(userRequest); ")
.then("results = execute(service.searchFlight()); ")
.then("wm.put('selectedFlights', results); ");

MVELRule rule = new MVELRule()
.name("rule-book-flight")
.description("book a flight on dates...")
.when("wm.get('selectedFlights') != null && ...")
.then("results = execute(service.bookFlight()); ")
.then("wm.put('bookedFlight', results); ");

Listing 5: Excerpt for Compositional rule expressed in MVEL

One of the main advantages of using NER along with

MVEL rules is that unrestricted natural-language user requests

can be easily transformed into programmatic compositional

rules, for instance, when user says something like “look for
flights to Paris on August 10 at 10:30am” then NER will

identify that substring “August 10 at 10:30am” refers to a

single entity of type TIME, which becomes pretty convenient

for further transformation into a Date Java object. Using

the data disambiguation mechanism, this TIME entity can

be mapped to argument “departureDate” on service method

searchFlight, and finally, the MVEL rule mechanism can infer

that the WM may have an object called “flight” that has

an attribute named “departureDate”, which can be evaluated

as a precondition for service execution. The flexibility of

this approach allows discovering and re-configuring types at

runtime without linking to specific classes and objects at

design-time.

F. Service Discovery, QoS-Aware Composition and Execution

Service Discovery: Once a composite service has been

created (by linking abstract services through the use of compo-

sitional rules) then the service discovery mechanism searches

for concrete services associated to each abstract service. To

accomplish this task, service discovery uses the automated

bundle discovery and registration mechanism provided by the

OSGi Felix framework as described in Section III-C.

QoS-aware composition: After a set of concrete services

is discovered per each abstract service, then it is necessary

to select the most appropriate concrete service in terms of its

QoS features. On early stages of development, developers may

define a set of QoS features for each method per concrete

service (as shown in listing 2). Using a similar rule-based

approach as described in the previous section, developers

define a set of heuristics (rules) that are later validated using

the rule engine. Every QoS has different triggering priorities,

so for instance, battery consumption has higher priority than

connectivity (since some services can still work locally even

when there is no connectivity, but no services may work

when battery is drained), which in turn has more priority

than, let’s say accuracy (since two high-accuracy services

may compete to be selected, however if they do not run

locally but remotely and WiFi connection is disabled, then

neither of them can be executed). Given a composite service (a

sequence of linked abstract services resulting from the Service

Coordination process described in section III-E), and after

validating the QoS features by firing the heuristics, a new set

of concrete service method candidates are generated per each

abstract service method, which is then passed to the Builder

for service execution.

Execution: Once a single concrete service associated to

an abstract service has been selected, then it is executed.

Execution can be performed either locally (e.g., if the service is

running on a device) or remotely (e.g., in a server or the cloud).

Required data to execute the service and service method is

obtained from the WM, as explained above. After the service

is executed, the current state of the composition is updated by

adding the results of the execution to the WM. This process

is repeated until no more abstract services are left.
IV. EVALUATION

We evaluated NLSC from three different perspectives in or-

der to address the initial research questions: a precision/recall

analysis to measure the performance of our system in real

scenarios with users, a metric-based analysis to estimate the

amount of effort (person/day) that could be minimized when

using our approach vs. using a baseline approach 1, and a

scalability test using different settings for NLSC.

A. Performance: Recall, Precision and F1-Score

Setup: for this experiment, we conducted a user study via

Amazon Mechanical Turk where 20 users interacted with a

chatbot [35]. We provided users 15 different services and 3

scenarios (plan a trip, plan a romantic dinner, and plan a

party at home next weekend). Users were asked to describe

what kind of requests (using unrestricted natural language)

they would make to the chatbot for each of the three different

scenarios. Conversations were logged and analyzed through a

confusion matrix to determine the recall, precision and F1-

score metrics. For this experiment, we used 2 pre-trained

1Source code: https://github.com/ojrlopez27/nl-service-composition



models, one uses 19.7B words from 700 dimensions trained

on English tweets, and and the other uses 1.7B words from

700 dimensions trained on Wikipedia entries.

Results: For the Actual Class, we defined two values: 1)

YES: user’s sentence is well structured, has meaning, can be

understood, and should lead to the activation of a service and

a specific method, and 2) NO: user’s sentence is ambiguous,

or out of context, or incomprehensible, or should not lead to

the activation of a service (method is not available or does

not exist). For the Predicted Class, we defined two values: 1)

YES: NLSC has correctly identified the method and service

OR if user sentence was ambiguous, then it should ask user

to re-phrase the sentence, and 2) NO: NLSC selected a wrong

service and method OR id did not ask user to re-phrase the

sentence. Results are summarized in table I. Since we have

an uneven class distribution, that is, false positives and false

negatives are very different, then Accuracy metric is not of

too much help, thus we need to rely on F1-score instead due

to it computes the weighted average of Precision and Recall.

Generally speaking, results demonstrate a good performance

since the recall, precision an F1-Score are above 0.5. However,

it is worth noting that these values might vary significantly

from one experiment to the other since they rely on human

judgment, which is bias-prone.

Table I
CONFUSION MATRIX FOR 3 SCENARIOS AND 20 PARTICIPANTS

Predicted class
YES NO

Actual Class YES 341 109
NO 162 76

Accuracy 0.60
Recall 0.67
Prediction 0.81
F1-Score 0.74

B. Effort Estimation

Setup: for this experiment, we estimated the total effort

required to develop the “Plan-a-trip-to-Paris” scenario (com-

posed of 8 different services: FlightReservation, HotelReser-
vation, Calendar, Weather, GroundTransportation, Messaging,

LeisureActivities, and Maps) using 2 different approaches:

NLSC vs. a Baseline service composition model (BSC) that

uses WSDL templates for service descriptions, OWL-S for

semantic matching2, and BPEL4J for service coordination. As

an effort estimation model we used COCOMO II (COnstruc-

tive COst MOdel II) [4], a model that computes the effort

(and cost) of a software project by fitting a regression formula

based on a number of environmental factors related to systems

engineering and historical data.

Results: Using Lines of Code (LoC) metric as an input, CO-

COMO II computes software development effort as a function

of program size and a set of 22 “cost drivers” that include sub-

jective assessment of product, platform, personnel and project

attributes; where each of them can be assigned a six-point scale

rating (ranging from “very low” to “extra high”). Therefore,

the effort is calculated as: E = ai(KLoC)(bi)(EAF ), where

2Matchmaker implementation: https://bit.ly/2uZwznA

E is the effort applied in person-months, KLoC is the

estimated number of thousands of LoC, and EAF is the Effort

Adjustment Factor derived from the cost drivers. Constants ai
and bi depend on the category of the system (organic, semi-

detached, and embedded). We categorize our experiment as

organic under the assumptions that the required development

team is adequately small, the problem is well understood and

the team members have a nominal experience regarding the

problem. For an organic project, the values of ai and bi are

3.2 and 1.05 respectively [4]. For the implementation of the

experiment using NLSC we measured 2,562 LoC, while we

got 3,267 LoC for BSC (including LoC for WSDL/OWL-

S service descriptions). We assumed that most of the cost

drivers remain the same for both approaches (i.e., nominal

rating), the only cost driver that we consider may vary is

“Language and Toolset Experience (LTE)” since developers

may or may not have any experience on describing services

and compositions using WSDL and OWL-S. For this reason,

we considered 3 different scenarios: 1) Average-case scenario
(A): developers have average experience with WSDL/OWL-

S, so both NLSC and BSC have a nominal rating level for

the LTE cost driver; 2) Worst-case scenario (W): developers

have little or no experience with WSDL/OWL-S languages,

so the LTE’s rating level for BSC is “very low”; and 3) Best-
case scenario (B): developers are experts on WSDL/OWL-S

so LTE’s rating level for BSC is “extra high”. In scenarios

2 and 3, NLSC’s LTE remains nominal since there are no

special developer’s skills required to generate the annotations.

Also, using COCOMO II we estimated the software project

schedule (months) and cost (dollars). Finally, we calculated

an improvement rate of NLSC over BSC according to each

scenario (Rate-A, Rate-W, and Rate-B, respectively). The

results on Table II3 show that, in general, NLSC significantly

reduces the amount of total effort in comparison with the 3

configurations of BSC (ranging from a 8.79% improvement

rate for the best-case scenario to a 36.15% improvement rate

for the worst-case scenario). NLSC promises to reduce the

cost of the project in similar proportions, while reducing the

project schedule in approximately a third of the improvement

rates for effort and cost estimations (i.e., 2.63% - 12.94%). The

schedule estimation was not reduced in the same proportions

as effort and cost due to it uses different calibrate scale factors

that reflect changing requirements, CI/CD, and other variables

that may affect the estimation.

Table II
EFFORT ESTIMATION FOR NLSC VS. A BASELINE APPROACH (BSC)

Metric NLSC-A BSC-W BSC-A BSC-B Rate-W Rate-A Rate-B
LoC 2,562 3,267 3,267 3,367 21.58% 21.58% 21.58%
Effort 8.3 13.0 10.8 9.1 36.15% 23.15% 8.79%
Schedule 7.4 8.5 8.1 7.6 12.94% 8.64% 2.63%
Cost $33K $52K $43K $36K 36.54% 23.26% 8.33%

It is worth noting that, despite the fact that NLSC reduces the

number of LoC in relation to the BSC implementation at a rate

of 21.58%, the estimation produces lower improvement rates

for the best-case scenario and higher improvement rates for

3Using COCOMO II calculator: http://csse.usc.edu/tools/COCOMOII.php



the worst-case scenario. This means that, even in comparison

with the BSC best-case scenario where the development team

counts on the participation of highly skilled service developers

(i.e., developers that are experts on conventional service tools,

languages and technologies such as WSDL, OWL-S, BPEL,

etc.), who can easily create software service-based solutions

and prototypes; NLSC can still reduce the amount of effort,

cost and schedule for the software project development. Of

course, this effort improvement is more evident in the worst-

case scenario, making possible that developers with no service-

oriented training can easily generate software solutions from

simple prototypes to comprehensive enterprise solutions.

C. Scalability Test
Setup: the purpose of this experiment is to find out how

much NLSC’s performance is improved or degraded when the

system is scaled to thousands of services. To this purpose,

we measured the system’s response time (ms) for the plan-

to-trip-scenario when using either 5, 50, 500, or 5,000 service

descriptions in the corpora. We used service descriptions from

a web service dataset4. The sent2vec module was trained

using two models: one model with 19.7 billion sentences

from Tweeter entries, and another model with 1.9 billion

sentences from Wikipedia entries. Then, we ran the experi-

ment 10 times per setting and computed the harmonic mean

(Harm.) of the response times (the harmonic mean mitigates

the impact of large outliers and aggravates the impact of

small ones). We estimated the standard deviation (StdDev),

the time response per service (TPS) calculated as (Harm /

# services), and an improvement/degradation rate calculated

as 1 − (TPS1/TPS−1)%. The experiment was run on a

MacBook Pro Intel Core i7, 1.7 GHz, 8 GB, 1600 MHz DDR3.

Results: the results of this experiment are shown in table III.

Generally speaking, the system’s performance is not affected

when progressively scaled the system up to thousands of

services, actually, one can observe an improvement rate that

decreases inversely proportional the number of services. In

particular, we observed that the time response per service

decreased from 5 to 50 to 500 to 5,000 services, though not

in the same proportions. For instance, for the Wiki model,

when using only 5 services the composition took 0.022 ms

per service, while taking 0.005 ms per service when using

50 services, which corresponds to a 77.21% of improvement.

The reason why the performance of the system is not affected

when increasing the number of services is that the composition

model keeps some information in memory which can be reused

while constructing the composite service, for instance, when

resolving and mapping the service method “searchFlights”,

arguments “fromOrigin”, “toDestination”, “departureDate”,

“arrivalDate”, etc. are stored in the working memory. Later on,

when resolving service method “bookFlight”, almost all the

arguments can be easily retrieved from the working memory

without requiring to perform data-type disambiguation and

firing compositional rules. Likewise, service method “search-

Hotels” and “bookHotel” can retrieve information from the

4QWS dataset: http://www.uoguelph.ca/∼qmahmoud/qws/index.html

working memory such as “toDestination”, “departureDate”,

and “arrivalDate”. Regarding the two pre-trained models

(Wikipedia and Twitter) we observed that using Twitter took

more time for the system to perform the semantic matching

based on cosine similarity (mostly due to the considerable

difference in size of both models), however, NLSC increased

its accuracy in almost 28%, which leads to the conclusion

that there should be a trade-off between the accuracy of the

mappings between the user request and the service description,

and the system’s response time (performance) which will

increase when the model is bigger in size.

Table III
SCALABILITY

Wiki Model Twitter Model
Services Harm. StdDev TPS Rate Harm. StdDev TPS Rate

5 0.12 2.60 0.022 0% 0.16 0.59 0.032 0%
50 0.28 0.34 0.005 77.21% 0.39 0.98 0.007 75.07%

500 1.39 1.54 0.002 51.79% 1.64 1.38 0.003 58.85%
5,000 7.60 2.13 0.001 45.37% 8.05 1.26 0.001 50.98%

V. RELATED WORK

Users interact instinctively with the system in an easily

expressible natural language and thus expect the system to

identify the set of services that are required to achieve the

user’s goal. In our study, we review natural language-based

approaches for dynamic service composition. If we consider

an user’s natural language description at one end of the

problem and services at the other end, then, we find that

existing literature can be broadly categorized as approaches

that a) apply restrictions on how the user expresses the goal

using sentence templates and/or user utterances and then use

structured parsing techniques to parse the sentences against

service descriptions [5], [21]; b) construct semantic graphs

that represent the service description [13] [28] [27] such that

those could be matched with the natural language descriptions

using a lexical database such as WordNet, that groups words

based on their meanings, to calculate a conceptual distance

metric between concepts [23] [10]; and c) match partially-

observable natural language description using semantic web

services such as OWL-S [24] [9]. Categorical limitations of

existing approaches include, (i) complex linguistic process-

ing that employs several NLP techniques: structured parsing,

extracting parts-of-speech tokens, stop-word removal, spell-

checking, stemming, and text segmentation, (ii) inclusion of

lexical databases such as WordNet or domain-specific ontolo-

gies that represents domain lexicons, and (iii) a weaker concept

representation and similarity score for semantic matching

that does not account for sentence context. To overcome the

above limitations, in our work, we (a) allow users to express

their sentences template-free and use their natural language

description without complex linguistic processing by aligning

it with service descriptions using Sentence embeddings, (b)

avoid the need for lexical databases and ontologies by relying

on the automatically extracted corpus of service descriptions

which would otherwise be provided by service developers as

code comments on services; this reduces the need to construct

semantic graphs of concepts and domain-specific ontologies,

and (c) use a stronger representation of words, concepts and



natural language sentences that account for word usage in

context to user’s sentence by applying a state-of-the-art pre-

trained semantic representation model of English language.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented NLSC, a Dynamic Ser-

vice Composition Middleware based on unrestricted Natural

Language service descriptions. Using our approach, we have

demonstrated that total effort (in terms of person/day) for

service composition and service integration can be dramati-

cally reduced up to 36% thanks to we eliminated the Transla-

tion phase proposed by the Service Composition Middleware

(SCM) model and substituted it by an intuitive mechanism for

service description, discovery, and retrieval. We also demon-

strated that Service Composition using Sentence Embeddings

and Named Entity Recognition techniques alleviate the bur-

densome task of writing boilerplate code, strictly defining

well-defined hard-typed interfaces, validating ontology models

and representations, and creating ad-hoc semantic reasoning

mechanisms for service matching. Also, we estimated that the

cost-overhead of using extra comments in the code is minimal

since developers would only have to learn a reduced number

of code annotations (i.e., @Description, @ArgDesc, and QoS

annotations). These annotations are easy to document since

they do not require any particular structure (they are plain nat-

ural language-based descriptions) and resemble the structure

of conventional Java annotations and Java documentation. One

of the limitations of our approach is that it is only oriented to

Java (for now), however, we are planning to make it available

to other programming languages by removing the need of

Java annotations and allowing developers to write their service

descriptions on plain text files.

Future Work: we plan to improve the precision of our

model by training custom service description models in ad-

dition to common-sense pre-trained models as Wikipedia or

Twitter entries. Also, we plan to extend our approach so it can

discover third-party services published in well-known public

repositories such as ProgrammableWeb.com and GitHub.

Discussion: data-driven ML and NLP approaches raise sev-

eral open questions including learning with limited data. For

instance, a) learning QoS-aware models that introduce model

sparsity, b) inferring custom entities using reinforcement and

online learning, with initial disambiguations by user, to im-

prove service matches, c) learning context-sensitive models

with working memory for better entity resolution, and d) one-

shot learning from descriptions for service disambiguation.
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