2019 IEEE International Conference on Services Computing (SCC)

NLSC: Unrestricted Natural Language-based
Service Composition through Sentence Embeddings

Oscar J. Romero
Machine Learning Department
Carnegie Mellon University
5000 Forbes Av., Pittsburgh

Abstract—Current approaches for service composition (as-
semblies of atomic services) require developers to use: (a)
domain-specific semantics to formalize services that restrict the
vocabulary for their descriptions, and (b) translation mechanisms
for service retrieval to convert unstructured user requests to
strongly-typed semantic representations. In our work, we claim
that the effort to developing service descriptions, request transla-
tions, and service matching could be reduced using unrestricted
natural language; allowing both: (1) end-users to intuitively
express their needs using natural language, and (2) service devel-
opers to develop services without relying on syntactic/semantic
description languages. Although there are some natural language-
based service composition approaches, they restrict service re-
trieval to syntactic/semantic matching. With recent developments
in Machine learning and Natural Language Processing, we
motivate the use of Sentence Embeddings by leveraging richer
semantic representations of sentences for service description,
matching and retrieval. Experimental results show that service
composition development effort may be reduced by more than
36% while keeping a high precision/recall when matching high-
level user requests with low-level service method invocations.

Index Terms—Service composition, Middleware, Sentence Em-
beddings, Named-Entity Recognition, Effort Estimation. NLP.

I. INTRODUCTION AND RELATED WORK

Service is any software component, data, or hardware re-
source on a device that is accessible by others [7]. Service
composition is the process of aggregating such reusable atomic
services to create complex compositions. Existing research
can be seen in two directions, where, (a) both atomic and
composite services are defined using description languages
(such as BPELAWS, OWL-S, and WSDM) in terms of service
input/output, pre- and post-conditions, fault handling and
invocation mechanisms. Such service descriptions serve as
inputs to orchestration engines [30], [32] that generate declar-
ative specification of workflows to compose different services;
and (b) architectural middlewares [7], [14], [33] that assume
a declarative specification of a composition. A substantial
amount of effort is required in both directions to define and
integrate services, mainly due to: (a) the use of domain-
specific languages and semantics for service descriptions and
compositions; (b) strongly-typed orchestration languages (e.g.,
BPEL, WSDL, OWL-S, etc.) restricting heterogeneous service
composition; (c) statically specified compositions that create
design-time couplings preventing dynamic adaptation; and
(d) there is more than one composite service description
languages: different ontologies have been designed resulting in

2474-2473/19/$31.00 ©2019 IEEE
DOI 10.1109/SCC.2019.00031

Ankit Dangi
Machine Learning Department
Carnegie Mellon University
5000 Forbes Av., Pittsburgh

126

Sushma A. Akoju
Machine Learning Department
Carnegie Mellon University
5000 Forbes Av., Pittsburgh

different vocabularies, thwarting true semantic interoperability,
so technologies have yet to converge and standardize [31]. In
natural language-based service composition middleware, end-
users interact instinctively with systems in natural language
and expect the system to identify services that meet their
goals. These kind of middleware can be broadly categorized
as those that: (a) apply restrictions on how the user expresses
the goal with sentence templates and then use structured
parsing to match against service descriptions [S], [21]; (b)
construct semantic graphs to represent service descriptions and
match against a lexical database such as WordNet to compute
concept similarity [10], [13], [23]; and (c) match partially-
observable natural language request with semantics of service
description expressed using semantic web services (OWL-S,
VDL) [9], [24]. Limitations with these approaches include: (a)
complex linguistic processing that requires additional natural
language processing (NLP) techniques: structured parsing,
extracting parts-of-speech, stop-word removal, spell-checking,
stemming, and text segmentation; (b) inclusion of lexical
databases such as WordNet or domain-specific ontologies; and
(c) a weaker concept representation and similarity score for
semantic matching that does not account for sentence context.

Research Questions: to overcome the above, we address:
RQI: How to reduce the amount of development effort and
complexity to develop service compositions?

RQ2: How can both end-users and developers create service
compositions in an intuitive, efficient, and dynamic way using
natural language-based descriptions?

Main Contributions: we address RQ1 by removing effort-
consuming engineering practices, such as: (a) formal service
descriptions that use syntactic/semantic representations; and
(b) orchestration processes that use domain-specific languages.
Additionally, we provide an automated OSGi-based toolchain
for service modularity, service discovery, service deployment,
and service execution. Our toolchain allows transparently de-
ploying OSGi components to either cloud-based applications
or mobile Android-based apps. And we addresses RQ2 by
developing NLSC, a Natural Language-based Service Compo-
sition Middleware that: (a) allows users to express template-
free service requests using natural language without complex
linguistic processing; (b) avoids the need for lexical databases,
semantic graphs, and domain-specific ontologies; (c) generates
dynamic service compositions by directly binding high-level

user requests to low-level service invocations without having to
define ontological service descriptions or strongly-typed well-
defined interfaces; and (d) uses a stronger representation of
sentence semantics to characterize words and concepts that
account for word usage in context to the sentence by applying
a state-of-the-art pre-trained semantic representation model of
English language. The remaining of this paper is organized
as follows: Section II presents the background and motivating
example. Section III details the design and implementation
and Section IV reports the experimental results. We introduce
the related work and conclude the paper in Section V and
Section VI, respectively.

II. BACKGROUND AND MOTIVATION
A. Service Composition Middleware Model

According to the Service Composition Middleware (SCM)
model [16] (a high-level abstraction model that does not
consider a particular service technology, language, platform
or algorithm used in the composition process), middleware for
service composition can be largely classified into four main
modules as follows: Translation, Generation, Evaluation, and
Execution. In SCM, applications may send requests to middle-
ware using diverse specification languages or techniques, and
the Translator converts these request descriptions into a system
comprehensible language (i.e., formal languages and models)
that can be used by the middleware. Once translated, the
request specification is sent to the Generator, which provides
the needed functionality by composing the available services,
and generating one or several composition plans. This service
composition is technically performed by chaining interfaces
using either a syntactic or semantic method matching (or both).
Then, the Evaluator chooses the most suitable composition
plan depending strongly on many criteria like application
context, the service technology model, the non functional
service QoS (Quality of Service) properties, etc. Finally, the
Builder executes the selected composition plan and produces
an implementation corresponding to the required composite
service. Once the composite service is available, it can be
executed by the application that required its functionality.

B. Motivational Example

Suppose the user is planning a trip to Paris on a specific
range of dates (main goal) using a smartphone that does not
have a trip planner service or app installed. This main goal
can be decomposed into sub-goals such as: (1) check schedule
availability on dates, (2) look for flights cheaper than $700, (3)
book the chosen flight, (4) search for hotels under $100/night
near downtown, (5) book the selected hotel, (6) check the
weather conditions for given dates, (7) if weather conditions
are bad, look for indoor activities to do, (8) otherwise, look for
outdoor activities to do. To address this scenario (see Figure 1),
a service developer would create atomic service interfaces
and implementations for services such as Maps, Calendar,
FlightBooking etc.; a service modeler would define the service
interface contracts using WSDL; an ontology engineer would
maintain the trip-planning ontologies and ensure consistency

127

Smartphone App

?| “Plan a trip to Paris..* “Let's first check schedule availability™

Middleware Layer

M ows
Ontology

Service Repository

Process
Flow
Designer

Ontology
Engineer

'

Service
Modeler

BPELAWS
/ OWL-5

i1

Calendar | _|
Service

Builder

Service
" Developer

____________ —

WSDL Service Descriptions Services

Figure 1. Motivating Example: Plan a trip scenario

with OWL-S models; and a process flow designer would in-
vestigate explicit declarative alternatives to generate a service
composition that addresses user’s goal.

C. Problem Statement

In the example above, the total effort required is the
sum of partial efforts. Let Ex = Y . | E;, where, E; €
{Edeva Edesca Eontywa} such that Edev’ Edesc: Eont, wa
are effort amounts to develop a service implementation, gen-
erate a WSDL service description, create/maintain an OWL-
S ontology, and maintain a BPEL4AWS workflow, respectively
(for simplicity, we ignore additional efforts for testing, CI/CD,
etc.) These efforts increase exponentially when service re-
quirements change continuously, there are inconsistencies on
service contracts, or developers don’t have the proper skillset.

D. Goals

Our scientific intuition leads us to hypothesize that a data-
driven approach (using large text corpus and datasets of
common-sense sentences) not only could minimize the effort
of developing service compositions by removing the need
of specifying strongly-typed, syntactically/semantically well-
defined, domain-dependent service descriptions, but also could
outperform traditional semantic-driven approaches that require
continuous validation of consistency due to human designers’
biased models. Therefore, driven by our RQs, our goal is
two-fold: (a) to reduce the total effort of integrating new
services into a composition by merging/replacing some of
the development tasks previously described without affecting
either system performance or the quality of service com-
positions; and (b) to automatically bind unrestricted natural
language user requests to unstructured natural language service
descriptions with control structures for composition.

E. OSGi

OSGi (Open Services Gateway initiative) technology [1] is
a set of specifications that define a dynamic component system
for Java. These specifications enable a development model
where an application is composed of several components that
are packaged as bundles. Components communicate locally
and across the network through services. Services have an API
that is defined in a Java package. Some of the most known

OSGi-based middleware for service composition are: [15],
[18], [25], [26]. We use OSGi as a backbone for connecting
multiple service implementations, providing a mean for the
exchange of information between them.

III. APPROACH
A. Preliminaries

As it is generally considered in the literature [3], [32],
we distinguish two types of services [3], [32]: abstract and
concrete services. Formally, a concrete service cs; is a tuple
(csin es0ut st st s2°%) that performs a function-
ality by acting on input data (csi™) to produce output data
(es9*t), with pre-conditions (cs?™““), post-conditions (cs? ostey
and Quality of Service (csiQOS) requirements. An abstract
service as; is a tuple {asi™ as?" as¢®) realized by several
concrete services as® € {¢s(; 1y, C5(;,2), -+ CS(i,n) } that offer
the same functionality with input parameters (as;"), output
parameters (as{"") such that Ves; j), csqx) € asé® /(asim =
cs(ig) Nes(in) N (asf™ = esfify Nesfiy).

b

B. Reference Architecture

Figure 2 presents a reference architecture for service com-
position that will help highlight where our contributions lie.
Step 1: service developers continuously implement, integrate,
deploy and publish service components (either abstract or con-
crete). Developers add unstructured and unrestricted natural
language descriptions (in the form of plain code annotations)
to each single service component and its atomic methods. In
comparison, traditional approaches would include additional
steps (i.e., service description using WSDL, creation and
validation of OWL-S ontology, etc.). Step 2: an automated
process extracts those descriptions from the code annotations
and puts them on a separate repository. Step 3: the end-user,
an application developer, or a top-tier application makes a
service request (e.g., “I want to plan a trip to Paris from Sept.
29 to Oct. 117). Step 4: a coordination system is in charge
of orchestrating the high-level assembly of abstract services
by chaining service pre- and post-conditions and matching
data types (traditional approaches would include additional
steps for creating complex graph-based, workflow-based or
rule-based plans). Step 5: the service matching is performed
using two NLP techniques: Sentence embeddings and Named-
Entity Recognition, and returns a set of abstract services and
their corresponding concrete service candidates. Steps 4 and
5 are repeated until a composition plan is tailored. Step 6:
a mechanism validates the QoS requirements by selecting a
sub-set of candidate concrete services that are to be executed.
Step 7: using a service discovery mechanism, the sub-set of
concrete service candidates are looked up in the registry and
service availability for those is confirmed. Step 8: lastly, a
composite service is generated and executed. Compared to
the SCM model, we suppress the Translator module and only
keep the remaining ones (Generator, Evaluator, and Builder).
We overcome the need for the Translator as our approach
does not use intermediate representations such as ontologies,
graph-based models, and so forth, rather, we provide a direct

128

user
Request

Service Composition Middleware

Builder Evaluator Generator
(.
Service @ '@ : Service
Discovery & oS aware Ser.\nce. — Matching
L BEarihn {cs;} | Composition {ts, cs,} Coordination | chaining (NLP)

@ execute
{cs)}

Service Registry

. A @ Service Repository
Service PUb|I_Cal'I0n (OBR) Service Descriptions
and Service

Location % % %

Figure 2. Reference Architecture for a NLSCM

match {as, as,}
match {cs, cs,}

@

extract

Unrestricted NL

©

correlation between the request and the service description
which are both expressed using unrestricted natural language.

C. Service Development Process

NLSC was architected to be deployed on distributed envi-
ronments and to support different kind of client applications
(e.g., standalone, web, mobile, etc.). This requirement, along
with dynamicity, low-latency, high-performance, modularity,
and support to Android Runtime Environment (ART), were
the main architectural significant requirements we took into
consideration over its implementation [29]. Extending our
initial definition of “service”, we consider that an Android-
based service can be a device sensor, a local service (installed
on the Android device), or an app, hence, we avoid making the
assumption that only a web service model should be applicable
to NLSC. Given these requirements, a suitable solution for de-
veloping dynamic service components for Android is the OSGi
technology [17]. Most of the OSGi-Android approaches [6],
[8] are based on Apache Felix [2], an implementation of the
OSGi Framework and Service platform. In NLSC, composite
services are created from a dynamic assembly of black box
components, executing in a local Felix container, which does
not provide mandatory non-functional services. Services do
not contain any reference between them at design-time, and
respect black box and late-binding concepts. We tried to keep
the intervention of application developers to the minimum,
automating as much as possible the discovery, composition,
invocation and interoperability of services and, therefore, re-
ducing the development effort. To that purpose, we developed
a set of tools to simplify the process of service development,
and promote agile development and continuous integration into
NLSC. This process is shown in Figure 3 and described next.

1) Abstract Services Description: Common OSGi-based
approaches for service composition provide modularity,
though still a Translator is required to guarantee interop-
erability between semantic and syntactic service description
languages that are both heterogeneous. Prior work shows
the heavy cost of the syntactic and semantic matching [16].
In our work, we replace effort-consuming syntactic/semantic
service descriptions (WSDL, OWL-S, etc.) by intuitive code
annotations that allow developers to add unrestricted natural

Extract

Developer

_Developer

def Abstract | [AS Available] [CS Available]* Service
Services Concrete Services Description
[Descriptions Available]
- il es is Android Bundie?] Self_register
st @ D Ut i ; 0SGi Bundles
[No]

Transform Maven
Artifacts and
Publish to OBR

Deploy [deployed]
Bundles to

Maven

[bundles published]

Automatic
Resource

[refreshed bundles]
End @

Figure 3. Workflow for Service Development using NLSC

language descriptions to each service component and its
methods. More specifically, we provide 2 code annotations:
@Description annotation allows developers to add a set of
possible capabilities for an atomic service method (in terms of
what the service method can do), and @ArgDesc let developers
add descriptions to method arguments that can be later used for
argument type disambiguation. Alternatively, NLSC can also
load these annotations from plain files in order to decouple
them from the programming language.

public interface CalendarService {
@Description (capabilities = {
"validates availability on calendar given a time slot",
conflicts on calendar given a range of dates",
calendar availability on a range of

dates"

)
@ArgDesc (arguments = {

"fromDate : check calendar
"toDate : check calendar

from date
to date

(yyyy-mm-dd) ",
(yyyy-mm-dd) "

1)

Boolean checkAvailability (Date
}

fromDate, Date toDate);

Listing 1: Abstract service description for CalendarService

From Listing 1, it is worth noting that: a) given an
abstract service as; exposes a set of methods m;
{m(m)...m(i’n)}, where, a method is described as a tuple
(capmy;, ArGSm,, argdy,,) where cap,y,, is an arbitrary number
of capabilities such that |cap.,,| > 1, argsm,, is a set of
method arguments, and argd,,, is a set of argument de-
scriptions corresponding to argsm,, such that |args.,,|
|argdmm,,| > 0; b) the list of arguments in @ArgDesc maps
each description onto a method argument using the name of the
argument, a description in natural language, and (optional) the
format or type of the argument (used to disambiguate with the
user or when using the Named-entity Recognition technique).
¢) developer does not need to do extra effort defining a service
description or ontology using WSDL, OWL-S, etc. (especially
when developers are unfamiliar with such languages, but even
if they are, using unrestricted natural language descriptions is
more intuitive and easy-to-deploy).

2) Concrete Services Implementation: A concrete service
cs; inherits method descriptions from abstract service as;.
It defines non-functional, platform-specific QoS requirements

129

for methods to guarantee service execution if and only if
they are met. For illustration purposes, let’s continue with
our motivating example and assume the platform is An-
droid. An abstract service could be CalendarService (ascq;)
whereas concrete services could be GoogleCalendarService
(csge) and YahooCalendarService (csy.). NLSC provides a
set of pre-defined QoS annotations for Android, though they
can extended: @BatteryQoS is a categorical value for bat-
tery level consumption that indicates whether the service is
battery-intensive (e.g., LOW_BATTERY, HALF_CHARGED,
FULLY_CHARGED), @ConnectivityQoS is a categorical
value that determines whether the service requires deveice’s
wifi connection or if it runs locally, etc. From Listing 2, we

public class YahooCalendarService implements CalendarService{
Constants.REQUIRES_HALF_CHARGED)
= Constants.REQUIRES_WIFI)
Date to) {
Log4J.info ("Executing YahooCalendarService....");

@BatteryQoS(minBattery
@ConnectivityQoS(wifiStatus

public Boolean checkAvailability (Date from,

}

Listing 2: QoS-awareness for YahooCalendarService

observe that YahooCalendarService will be executed only if
its QoS features are met, that is, the smartphone’s battery
has to be at least half charged and it should be connected to
the WiFi, otherwise, another concrete service that implements
CalendarService is discovered.

3) Service Descriptions Extractor: Using Java reflection,
this tool automatically generates a plain file with all service
method descriptions which is further used by the Service
Matching module (Section III-D). Additionally, it generates
a metadata file with method argument descriptions and QoS
values that are used at the time of service execution after
services are grounded (Section III-F).

4) OSGi bundle self-registration: Both abstract and con-
crete services are deployed as OSGi bundles. This tool au-
tomatically generates an implementation of a BundleActivator
(an OSGi interface that manages bundle’s lifecycle) and injects
code on the start() and stop() methods to self-register or self-
unregister the bundle against the Felix Framework.

5) Dexifying bundles: Android Runtime does not use Java
bytecode, instead, Android programs are compiled into .dex
(Dalvik Executable) files. Thus, we developed Dexer, a tool
that automatically transforms the Java class files compiled
by a regular Java compiler into a class file format that can
be executed on the Android runtime. In other words, Dexer
automatically converts an OSGi bundle into an executable Jar
that can be later executed on the Android platform.

6) OSGi Maven Deployer: Transforms application Jars to
OSGi bundles that are then automatically deployed to a remote
Maven repository, which makes the artifacts accessible to
application developers and service runtime environment.

7) TAMO: This is a tool that automatically transforms
artifacts from a Maven repository (that holds OSGi bundle
artifacts) to an OSGi Bundle Repository (OBR). Felix OBR
provides a service that can automatically install a bundle,

with its deployment dependencies, from a bundle repository,
enabling location and discovery of the participating services
during the composition process.

8) ARW: The Automatic Resource Watcher (ARW) pulls
data periodically from an OBR in order to find new available
services or updates for existing services. This functionality
is critical for the service discovery phase during service
execution because it allows re-configuration of services and
enables the generation of compositions on-demand.

D. Service Matching/Selection

Current approaches on service composition perform service
matching by doing syntactic and semantic interface matching,
then the service evaluation is performed upon the input/out-
put matching correctness. As we described before, semantic
matching though useful is expensive in terms of effort (i.e.,
the construction of one single service involves the design,
maintenance and consistency validation of syntactic/semantic
representations carried out by ontology engineers and service
designers) and computing time (the larger an ontology is,
the longer it takes to perform semantic inference or concept
graph search). Instead of using syntactic or semantic matching
through the use of ontologies, we propose semantic service
matching through the use of Sentence Embeddings. In lin-
guistics, and more specifically in feature learning techniques
in natural language processing (NLP), both word embeddings
and sentence embeddings are studied by the area of distribu-
tional semantics. Embeddings aim to quantify and categorize
semantic similarities between linguistic items based on their
distributional properties in large samples of language data.
Word embeddings capture the idea that is possible to express
“meaning” of words using a vector, so that the cosine of
the angle between the vectors captures semantic similarity
(“cosine similarity” property). Sentence embeddings and text
embeddings extend word embeddings to sentences and para-
graphs: they use a fixed-dimensional vector to represent a
short piece of text, e.g., a sentence or a small paragraph.
Sentence embeddings account for sentence context using the
words in the sentence (based on the distributional hypothesis,
that is, sentences that occur in the same contexts tend to have
similar meanings), providing a richer semantic representation
that makes it a reasonable choice for using natural-language
descriptions for service matching rather than using other
existing natural language-based service matching approaches
where only word-level matching is performed ignoring the
context. We used sent2vec [22] to perform text understanding
using sentence embeddings. sent2vec is a model that can
be seen as an extension of the CBOW (Continuous Bag of
Words [19]) where the training objective is to train sentences
instead of word embeddings. sent2vec has demonstrated that
the empirical performance of the resulting general-purpose
sentence embeddings significantly exceeds the state of the art,
while keeping the model simplicity as well as training and
inference complexity exactly as low as in averaging methods.

Let us revisit our motivating example, where user’s goal is
“plan a trip to Paris on...”. The required pipeline to carry

130

S, “What's on my
schedule..” ') _ ucheck

calendar availab...”

=

User request (S,,)

What's on my schedule :>
from Sept. 29 to Oct. 11?

Downstream
Classification

(Sun St = 0.786
(Sur Sic) = 0.003

Embedding

Method
(Transducer)

_ugookaflight..”

Vector Representation

Pre-trained model learned

from a large text corpus ?“\ Corpora S 1) Check calendar availability.

descripﬁons){ .

(Service S(, 2 Book a flight to

Figure 4. Pipeline for the Service Matching using Text Embedding

out service matching is shown in Figure 4. In step 1, a
pre-trained model is learned through unsupervised machine
learning over a large dataset of sentences (in our experiments
we used two datasets, one with 19.7 billion sentences from
Tweeter entries, and another with 1.9 billion sentences from
Wikipedia entries) using sent2vec training mode. As a result
of this step, sentences and their meaning are mapped onto
vectors of real numbers (embeddings). In step 2, a textual
corpus C is automatically generated by NLSC by extracting
the service descriptions from the annotations that develop-
ers add to their abstract services during the development
phase (as explained in sections III-C and III-C3), such that
C = {as?* Uasy...Uas]'}, where m is the set of service
method descriptions and n is the total number of abstract
services as. In step 3, user makes a service request Sy
For instance, assume that user makes the following request
as part of the required steps to achieve his/her goal of
planning a trip to Paris: S, = “check what’s on my schedule
from Sept. 29 to Oct. 11?”. In step 4, the user’s request
Sur 18 fed as input into sent2vec and then mapped to a
vector (embedding) in a n-dimensional space. Finally, in step
5, a downstream classification finds the nearest neighboring
sentence feature (the optimal match for S, in terms of a
higher sentence embedding match) by computing the sentence
similarity (correlation of the cosine similarity between two
embeddings) for each pair of sentences (Su,,,S(Cy,‘)), where
S(e,iy is the i-th service description contained by the corpus
C. For instance in Figure 4, after downstream classification,
the sentence similarity between user request S,, = “what’s
on my schedule...” and the service method description S 1) =
“check calendar availability...” for method checkAvailability()
that belongs to the abstract service CalendarService will be
higher (0.786), whereas the similarity between the same user
request and service method description S,) “book a
flight...” that belongs to FlightReservationService will be much
lower (0.003). Given this example, the user request would be
matched with method description checkAvailability on abstract
service CalendarService. Service matching selects the most
appropriate abstract service method based on a similarity-
based selection as described in the pseudocode on Listing 3.
Basically, in order to be selected, an abstract service method
must have the highest similarity, which should be above an
upper threshold (t1 = 0.6); if not, abstract services that are
in the range ({2 > as > t1) and their similarities differ in

less than delta (0.01) then they need to be disambiguated by
the user; otherwise the similarity between user request and
service method description is too low that no service can
be selected and user needs to re-phrase the request. Values
for thresholds and delta have been discovered empirically and
have demonstrated satisfactory results.

algorithm match is

input: Set of abstract services AS
output: selected abstract service as
tl := 0.6 //upper
t2 := 0.2 //lower
delta :=
as AS[0]

for each pair of services (sl, s2) in AS do

th

siml := sl.similarity
sim2 := s2.similarity
if siml >= tl and abs(siml - sim2) <= delta then
as := max(as.similarity, siml, sim2)
else if sim2 >= tl
as := s2
else if siml >= t2 or sim2 >= t2 then
as := user_disambiguate (sl, s2)
else
as := nil service matching cannot be performed
end for

return as

Listing 3: Pseudocode for Service Matching
E. Service Coordination

The Service coordination comprises three mechanisms: a
short-term (working) memory where results are stored tem-
porarily, data type disambiguation through entity matching and
named-entity recognition, and a rule-based system that allows
creating high-level assemblies of abstract services (composite
services) by chaining pre/post-conditions.

Short-term Working Memory (WM): the WM stores not
only the partial results and inferences produced by the forward
chaining process of the rule engine but also keeps updated
information collected from sensors (in the case of an Android
phone), user preferences, service status, and QoS features.
WM is implemented as a Hash Table or Dictionary.

Data type disambiguation: we disambiguate data types
by using named-entity recognition. To that purpose, we use
Stanford NER [12], a Java implementation that labels se-
quences of words in a text that are names of things, such
as person and company names. It provides well-engineered
feature extractors that annotates sentences with labels such as:
NOUN, PERSON, COMPANY, NUMBER, MONEY, TIME,
DATE, and LOCATION. However, since it provides a general
implementation of (arbitrary order) linear chain Conditional
Random Field (CRF) sequence models, it is possible to train
customized models on labeled data extracted from service
descriptions. For example, suppose that the user request is:
“look for flights to Paris for less than $700”. Then, Service
Matching module (Section III-D) outputs a set of method
descriptions and their corresponding abstract services along
with a similarity score associated to each method description
(based on the cosine similarity). Now, suppose that the abstract
service method description shown in listing 4 is the best
match for the user request. Once the abstract service method
is selected, the type-based disambiguation is performed as
follows: first, suppose that the value for argument “from”

131

is provided by the WM (assuming that the system inferred
this value from user’s current location or extracted it from
a previous user request, and then stored it into the WM).
Now, user request provides two additional values, one string
value (Paris) and one numeric value (700). Without further
processing, the string value “Paris” could match either “to” or
“cabin” string arguments, and the numeric value “700” could
match either “price” or “numPass” numeric arguments. For
this reason, we use NER to disambiguate the types for method
searchFlights, that is, NER is able to infer that “Paris” is a
LOCATION, “$700” is MONEY, and “flight” is a NOUN.

public interface FlightReservationService ({

@ArgDesc (arguments = {

"from : from a specific origin place",

"to : to a specific destination place",
"price : maximum price per flight ticket",
"class : cabin class",

"numPass : number of passengers or travelers"})

List<Flight> searchFlight (String from, String to, int price,
String class, ... int numPass);

Listing 4: Argument description for searchFlight method

The next step is to automatically extract all the nouns
from the argument descriptions of the service method (i.e.,
@ ArgDesc annotations) using a Part-Of-Speech tagger such
as Stanford POS Tagger [34]. Now, using an Automatic
Synonym Extractor (like WordNet synset or Word2Vec) over
the resulting set of nouns from the previous step (e.g., origin,
destination, place, price, flight, etc.) is possible to determine
that the closest synonym for “location” (Paris) is “place”.
Since there are two places (origin and destination) but “origin
place” was already resolved by the WM, then Paris is mapped
onto argument “to” (destination place). Likewise, since the
closest synonym for “money” is “price”, then $700 is mapped
onto argument “price”. Since there are no other information
available, the remaining arguments (class, numPass, etc) are
disambiguated directly with the user.

Compositional Rules: the compositional rules allow linking
different abstract service methods by chaining their pre- and
post-conditions. For the sake of simplicity, we assume that
service method pre-conditions correspond to service method
arguments, while service method post-conditions correspond
to service method returned elements. Rules can retrieve, add
and remove information from the WM according to the current
and future compositional needs. After executing a service
method, the returned value (post-condition) is added to the
WM, while during data type disambiguation and pre-condition
matching values stored in WM are retrieved. Finally, WM
contents can be removed by rules if they are not longer
needed for the current composition. As a rule-based system
to support the creation and execution of compositional rules
we used easy-rules [11], a lightweight yet powerful Java rule
engine that can be executed in a wide variety of platforms,
including Android. easy-rules also supports MVEL (MVFLEX
Expression Language [20]), a hybrid dynamic/statically typed,
embeddable Expression Language and runtime for the Java
Platform. MVEL is typically used for exposing basic logic

to end-users and programmers through weakly-typed (or non-
typed) expressions. MVEL is dynamically typed (with optional
typing), meaning that type qualification is not required in the
source, which confers significant flexibility to our purpose of
creating dynamic compositional rules based on unrestricted
language descriptions. For instance, service methods “search-
Flight” and “bookFlight” can be automatically chained using
two MVEL rules as shown in Listing 5: when all pre-
conditions of method “searchFlight” are stored into the WM
(i.e., the condition part (when) of MVEL rule “rule-search-
flights”: flight.destination, flight.from, etc.) then an instance
of the service FlightReservationService is obtained, then the
method searchFlight is executed, and finally the results of
the method execution are stored back into the WM (i.e.,
wm.put(‘selectedFlights’,)). Once the post-conditions of
method searchFlight are stored into the WM, then the pre-
conditions of method bookFlight are met so the second MVEL
rule (rule-book-flight) can be triggered, and the process con-
tinues until no more information can be chained.

MVELRule rule = new MVELRule (
.name ("rule-search-flights"
.description("search for flights on dates...")

.when ("wm.get ('flight.destination') != null && ...")

.then("service = getService (userRequest); ")
.then("results = execute (service.searchFlight()); ")
.then("wm.put ('selectedFlights', results); ");

MVELRule rule = new MVELRule (
.name ("rule-book-flight")
.description("book a flight on dates...")
.when ("wm.get ('selectedFlights"') null && ..
.then ("results execute (service.bookFlight ());
.then ("wm.put ('bookedFlight', results); ");

1=

N
"

Listing 5: Excerpt for Compositional rule expressed in MVEL

One of the main advantages of using NER along with
MVEL rules is that unrestricted natural-language user requests
can be easily transformed into programmatic compositional
rules, for instance, when user says something like “look for
flights to Paris on August 10 at 10:30am” then NER will
identify that substring “August 10 at 10:30am” refers to a
single entity of type TIME, which becomes pretty convenient
for further transformation into a Date Java object. Using
the data disambiguation mechanism, this TIME entity can
be mapped to argument “departureDate” on service method
searchFlight, and finally, the MVEL rule mechanism can infer
that the WM may have an object called “flight” that has
an attribute named “departureDate”, which can be evaluated
as a precondition for service execution. The flexibility of
this approach allows discovering and re-configuring types at
runtime without linking to specific classes and objects at
design-time.

E Service Discovery, QoS-Aware Composition and Execution

Service Discovery: Once a composite service has been
created (by linking abstract services through the use of compo-
sitional rules) then the service discovery mechanism searches
for concrete services associated to each abstract service. To
accomplish this task, service discovery uses the automated

132

bundle discovery and registration mechanism provided by the
OSGi Felix framework as described in Section III-C.

QoS-aware composition: After a set of concrete services
is discovered per each abstract service, then it is necessary
to select the most appropriate concrete service in terms of its
QoS features. On early stages of development, developers may
define a set of QoS features for each method per concrete
service (as shown in listing 2). Using a similar rule-based
approach as described in the previous section, developers
define a set of heuristics (rules) that are later validated using
the rule engine. Every QoS has different triggering priorities,
so for instance, battery consumption has higher priority than
connectivity (since some services can still work locally even
when there is no connectivity, but no services may work
when battery is drained), which in turn has more priority
than, let’s say accuracy (since two high-accuracy services
may compete to be selected, however if they do not run
locally but remotely and WiFi connection is disabled, then
neither of them can be executed). Given a composite service (a
sequence of linked abstract services resulting from the Service
Coordination process described in section III-E), and after
validating the QoS features by firing the heuristics, a new set
of concrete service method candidates are generated per each
abstract service method, which is then passed to the Builder
for service execution.

Execution: Once a single concrete service associated to
an abstract service has been selected, then it is executed.
Execution can be performed either locally (e.g., if the service is
running on a device) or remotely (e.g., in a server or the cloud).
Required data to execute the service and service method is
obtained from the WM, as explained above. After the service
is executed, the current state of the composition is updated by
adding the results of the execution to the WM. This process
is repeated until no more abstract services are left.

IV. EVALUATION

We evaluated NLSC from three different perspectives in or-
der to address the initial research questions: a precision/recall
analysis to measure the performance of our system in real
scenarios with users, a metric-based analysis to estimate the
amount of effort (person/day) that could be minimized when
using our approach vs. using a baseline approach !, and a
scalability test using different settings for NLSC.

A. Performance: Recall, Precision and FI-Score

Setup: for this experiment, we conducted a user study via
Amazon Mechanical Turk where 20 users interacted with a
chatbot [35]. We provided users 15 different services and 3
scenarios (plan a trip, plan a romantic dinner, and plan a
party at home next weekend). Users were asked to describe
what kind of requests (using unrestricted natural language)
they would make to the chatbot for each of the three different
scenarios. Conversations were logged and analyzed through a
confusion matrix to determine the recall, precision and FI1-
score metrics. For this experiment, we used 2 pre-trained

'Source code: https:/github.com/ojrlopez27/nl-service-composition

models, one uses 19.7B words from 700 dimensions trained
on English tweets, and and the other uses 1.7B words from
700 dimensions trained on Wikipedia entries.

Results: For the Actual Class, we defined two values: 1)
YES: user’s sentence is well structured, has meaning, can be
understood, and should lead to the activation of a service and
a specific method, and 2) NO: user’s sentence is ambiguous,
or out of context, or incomprehensible, or should not lead to
the activation of a service (method is not available or does
not exist). For the Predicted Class, we defined two values: 1)
YES: NLSC has correctly identified the method and service
OR if user sentence was ambiguous, then it should ask user
to re-phrase the sentence, and 2) NO: NLSC selected a wrong
service and method OR id did not ask user to re-phrase the
sentence. Results are summarized in table 1. Since we have
an uneven class distribution, that is, false positives and false
negatives are very different, then Accuracy metric is not of
too much help, thus we need to rely on Fl-score instead due
to it computes the weighted average of Precision and Recall.
Generally speaking, results demonstrate a good performance
since the recall, precision an F1-Score are above 0.5. However,
it is worth noting that these values might vary significantly
from one experiment to the other since they rely on human
judgment, which is bias-prone.

Table I
CONFUSION MATRIX FOR 3 SCENARIOS AND 20 PARTICIPANTS

Predicted class

YES NO
Actual Class | YES 341 109

NO 162 76

Accuracy .60
Recall 0.67
Prediction 0.81
F1-Score 0.74

B. Effort Estimation

Setup: for this experiment, we estimated the total effort
required to develop the “Plan-a-trip-to-Paris” scenario (com-
posed of 8 different services: FlightReservation, HotelReser-
vation, Calendar, Weather, GroundTransportation, Messaging,
LeisureActivities, and Maps) using 2 different approaches:
NLSC vs. a Baseline service composition model (BSC) that
uses WSDL templates for service descriptions, OWL-S for
semantic matchingz, and BPELA4]J for service coordination. As
an effort estimation model we used COCOMO II (COnstruc-
tive COst MOdel II) [4], a model that computes the effort
(and cost) of a software project by fitting a regression formula
based on a number of environmental factors related to systems
engineering and historical data.

Results: Using Lines of Code (LoC) metric as an input, CO-
COMO II computes software development effort as a function
of program size and a set of 22 “cost drivers” that include sub-
jective assessment of product, platform, personnel and project
attributes; where each of them can be assigned a six-point scale
rating (ranging from “very low” to “extra high”). Therefore,
the effort is calculated as: E = a;(K LoC)(")(EAF), where

2Matchmaker implementation: https://bit.ly/2uZwznA

133

E is the effort applied in person-months, K LoC is the
estimated number of thousands of LoC, and EAF is the Effort
Adjustment Factor derived from the cost drivers. Constants a;
and b; depend on the category of the system (organic, semi-
detached, and embedded). We categorize our experiment as
organic under the assumptions that the required development
team is adequately small, the problem is well understood and
the team members have a nominal experience regarding the
problem. For an organic project, the values of a; and b; are
3.2 and 1.05 respectively [4]. For the implementation of the
experiment using NLSC we measured 2,562 LoC, while we
got 3,267 LoC for BSC (including LoC for WSDL/OWL-
S service descriptions). We assumed that most of the cost
drivers remain the same for both approaches (i.e., nominal
rating), the only cost driver that we consider may vary is
“Language and Toolset Experience (LTE)” since developers
may or may not have any experience on describing services
and compositions using WSDL and OWL-S. For this reason,
we considered 3 different scenarios: 1) Average-case scenario
(A): developers have average experience with WSDL/OWL-
S, so both NLSC and BSC have a nominal rating level for
the LTE cost driver; 2) Worst-case scenario (W): developers
have little or no experience with WSDL/OWL-S languages,
so the LTE’s rating level for BSC is “very low”; and 3) Best-
case scenario (B): developers are experts on WSDL/OWL-S
so LTE’s rating level for BSC is “extra high”. In scenarios
2 and 3, NLSC’s LTE remains nominal since there are no
special developer’s skills required to generate the annotations.
Also, using COCOMO 1II we estimated the software project
schedule (months) and cost (dollars). Finally, we calculated
an improvement rate of NLSC over BSC according to each
scenario (Rate-A, Rate-W, and Rate-B, respectively). The
results on Table TI* show that, in general, NLSC significantly
reduces the amount of total effort in comparison with the 3
configurations of BSC (ranging from a 8.79% improvement
rate for the best-case scenario to a 36.15% improvement rate
for the worst-case scenario). NLSC promises to reduce the
cost of the project in similar proportions, while reducing the
project schedule in approximately a third of the improvement
rates for effort and cost estimations (i.e., 2.63% - 12.94%). The
schedule estimation was not reduced in the same proportions
as effort and cost due to it uses different calibrate scale factors
that reflect changing requirements, CI/CD, and other variables
that may affect the estimation.

Table II
EFFORT ESTIMATION FOR NLSC VS. A BASELINE APPROACH (BSC)
Metric NLSC-A | BSC-W | BSC-A | BSC-B | Rate-W | Rate-A | Rate-B
LoC 2,562 3267 3267 3367 | 21.58% | 21.58% | 21.58%
Effort 83 13.0 108 9.1 | 36.15% | 23.15% | 8.19%
Schedule 74 8.5 8.1 76 | 1294% | 8.64% | 2.63%
Cost $33K $52K $43K $36K | 36.54% | 23.26% | 8.33%

It is worth noting that, despite the fact that NLSC reduces the
number of LoC in relation to the BSC implementation at a rate
of 21.58%, the estimation produces lower improvement rates
for the best-case scenario and higher improvement rates for

3Using COCOMO 1I calculator: http://csse.usc.edu/tools/COCOMOILphp

the worst-case scenario. This means that, even in comparison
with the BSC best-case scenario where the development team
counts on the participation of highly skilled service developers
(i.e., developers that are experts on conventional service tools,
languages and technologies such as WSDL, OWL-S, BPEL,
etc.), who can easily create software service-based solutions
and prototypes; NLSC can still reduce the amount of effort,
cost and schedule for the software project development. Of
course, this effort improvement is more evident in the worst-
case scenario, making possible that developers with no service-
oriented training can easily generate software solutions from
simple prototypes to comprehensive enterprise solutions.

C. Scalability Test

Setup: the purpose of this experiment is to find out how
much NLSC’s performance is improved or degraded when the
system is scaled to thousands of services. To this purpose,
we measured the system’s response time (ms) for the plan-
to-trip-scenario when using either 5, 50, 500, or 5,000 service
descriptions in the corpora. We used service descriptions from
a web service dataset*. The sent2vec module was trained
using two models: one model with 19.7 billion sentences
from Tweeter entries, and another model with 1.9 billion
sentences from Wikipedia entries. Then, we ran the experi-
ment 10 times per setting and computed the harmonic mean
(Harm.) of the response times (the harmonic mean mitigates
the impact of large outliers and aggravates the impact of
small ones). We estimated the standard deviation (StdDev),
the time response per service (TPS) calculated as (Harm /
services), and an improvement/degradation rate calculated
as 1 — (T'PS;/TPS_1)%. The experiment was run on a
MacBook Pro Intel Core i7, 1.7 GHz, 8 GB, 1600 MHz DDR3.

Results: the results of this experiment are shown in table III.
Generally speaking, the system’s performance is not affected
when progressively scaled the system up to thousands of
services, actually, one can observe an improvement rate that
decreases inversely proportional the number of services. In
particular, we observed that the time response per service
decreased from 5 to 50 to 500 to 5,000 services, though not
in the same proportions. For instance, for the Wiki model,
when using only 5 services the composition took 0.022 ms
per service, while taking 0.005 ms per service when using
50 services, which corresponds to a 77.21% of improvement.
The reason why the performance of the system is not affected
when increasing the number of services is that the composition
model keeps some information in memory which can be reused
while constructing the composite service, for instance, when
resolving and mapping the service method “searchFlights”,
arguments “fromOrigin”, “toDestination”, “departureDate”,
“arrivalDate”, etc. are stored in the working memory. Later on,
when resolving service method “bookFlight”, almost all the
arguments can be easily retrieved from the working memory
without requiring to perform data-type disambiguation and
firing compositional rules. Likewise, service method “search-
Hotels” and “bookHotel” can retrieve information from the

4QWS dataset: http://www.uoguelph.ca/~qmahmoud/qws/index.html

134

working memory such as “toDestination”, “departureDate”,
and “arrivalDate”. Regarding the two pre-trained models
(Wikipedia and Twitter) we observed that using Twitter took
more time for the system to perform the semantic matching
based on cosine similarity (mostly due to the considerable
difference in size of both models), however, NLSC increased
its accuracy in almost 28%, which leads to the conclusion
that there should be a trade-off between the accuracy of the
mappings between the user request and the service description,
and the system’s response time (performance) which will
increase when the model is bigger in size.

Table III
SCALABILITY
Wiki Model Twitter Model
Services | Harm. | StdDev TPS Rate | Harm. | StdDev TPS Rate
5 0.12 2.60 | 0.022 0% 0.16 0.59 | 0.032 0%
50 0.28 0.34 | 0.005 | 77.21% 0.39 0.98 | 0.007 | 75.07%
500 1.39 1.54 | 0.002 | 51.79% 1.64 1.38 | 0.003 | 58.85%
5,000 7.60 2.13 | 0.001 | 4537% 8.05 1.26 | 0.001 | 50.98%

V. RELATED WORK

Users interact instinctively with the system in an easily
expressible natural language and thus expect the system to
identify the set of services that are required to achieve the
user’s goal. In our study, we review natural language-based
approaches for dynamic service composition. If we consider
an user’s natural language description at one end of the
problem and services at the other end, then, we find that
existing literature can be broadly categorized as approaches
that a) apply restrictions on how the user expresses the goal
using sentence templates and/or user utterances and then use
structured parsing techniques to parse the sentences against
service descriptions [5], [21]; b) construct semantic graphs
that represent the service description [13] [28] [27] such that
those could be matched with the natural language descriptions
using a lexical database such as WordNet, that groups words
based on their meanings, to calculate a conceptual distance
metric between concepts [23] [10]; and c) match partially-
observable natural language description using semantic web
services such as OWL-S [24] [9]. Categorical limitations of
existing approaches include, (i) complex linguistic process-
ing that employs several NLP techniques: structured parsing,
extracting parts-of-speech tokens, stop-word removal, spell-
checking, stemming, and text segmentation, (ii) inclusion of
lexical databases such as WordNet or domain-specific ontolo-
gies that represents domain lexicons, and (iii) a weaker concept
representation and similarity score for semantic matching
that does not account for sentence context. To overcome the
above limitations, in our work, we (a) allow users to express
their sentences template-free and use their natural language
description without complex linguistic processing by aligning
it with service descriptions using Sentence embeddings, (b)
avoid the need for lexical databases and ontologies by relying
on the automatically extracted corpus of service descriptions
which would otherwise be provided by service developers as
code comments on services; this reduces the need to construct
semantic graphs of concepts and domain-specific ontologies,
and (c) use a stronger representation of words, concepts and

natural language sentences that account for word usage in
context to user’s sentence by applying a state-of-the-art pre-
trained semantic representation model of English language.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented NLSC, a Dynamic Ser-
vice Composition Middleware based on unrestricted Natural
Language service descriptions. Using our approach, we have
demonstrated that total effort (in terms of person/day) for
service composition and service integration can be dramati-
cally reduced up to 36% thanks to we eliminated the Transla-
tion phase proposed by the Service Composition Middleware
(SCM) model and substituted it by an intuitive mechanism for
service description, discovery, and retrieval. We also demon-
strated that Service Composition using Sentence Embeddings
and Named Entity Recognition techniques alleviate the bur-
densome task of writing boilerplate code, strictly defining
well-defined hard-typed interfaces, validating ontology models
and representations, and creating ad-hoc semantic reasoning
mechanisms for service matching. Also, we estimated that the
cost-overhead of using extra comments in the code is minimal
since developers would only have to learn a reduced number
of code annotations (i.e., @Description, @ArgDesc, and QoS
annotations). These annotations are easy to document since
they do not require any particular structure (they are plain nat-
ural language-based descriptions) and resemble the structure
of conventional Java annotations and Java documentation. One
of the limitations of our approach is that it is only oriented to
Java (for now), however, we are planning to make it available
to other programming languages by removing the need of
Java annotations and allowing developers to write their service
descriptions on plain text files.

Future Work: we plan to improve the precision of our
model by training custom service description models in ad-
dition to common-sense pre-trained models as Wikipedia or
Twitter entries. Also, we plan to extend our approach so it can
discover third-party services published in well-known public
repositories such as ProgrammableWeb.com and GitHub.

Discussion: data-driven ML and NLP approaches raise sev-
eral open questions including learning with limited data. For
instance, a) learning QoS-aware models that introduce model
sparsity, b) inferring custom entities using reinforcement and
online learning, with initial disambiguations by user, to im-
prove service matches, c) learning context-sensitive models
with working memory for better entity resolution, and d) one-
shot learning from descriptions for service disambiguation.

REFERENCES
[1]

[2]
[3]

Alliance. (2018) Osgi. [Online]. Available: https://www.osgi.org/
Apache. (2015) Felix. [Online]. Available: http://felix.apache.org

S. Balzer and T. Liebig, “Bridging the gap between abstract and concrete
services a semantic approach for grounding owl-s,” in Semantic Web
Services:Preparing to Meet the World of Business Applications, 2004.
B. W. Boehm, Clark, Horowitz, Brown, Reifer, Chulani, R. Madachy,
and B. Steece, Software Cost Estimation with Cocomo II. PTR, 2000.
A. Bosca, F. Corno, G. Valetto, and R. Maglione, “On-the-fly construc-
tion of web services compositions from natural language requests,” JSW,
vol. 1, no. 1, pp. 40-50, 2006.

S. Bouzefrane and D. Huang, “An OSGi-based service oriented archi-
tecture for android software development platf.” SOA, 2011.

[4]
[5]

[6]

135

[7]
[8]

[9]
[10]

[11]
[12]

[13]
[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

D. Chakraborty, A. Joshi, T. Finin, and Y. Yesha, “Service composition
for mobile environments,” Mob. Netw. Appl., vol. 10, pp. 435-451, 2005.
T.-W. Chang, “Android/osgi-based vehicular network management sys-
tem,” in 2010 The 12th International Conference on Advanced Commu-
nication Technology (ICACT), vol. 2, Feb 2010, pp. 1644-1649.

Y. Charif and N. Sabouret, “An overview of semantic web services
composition approaches,” Theo. CS, vol. 146, no. 1, pp. 33-41, 2006.
M. Cremene, J. Tigli, S. Lavirotte, F. Pop, M. Riveill, and G. Rey,
“Service composition based on natural language requests,” in Int. Conf.
on Services Computing, 2009, pp. 486—489.

Easy-Rules. (2018, Aug.) A simple rule-based system.
Available: https://github.com/j-easy/easy-rules

J. R. Finkel, T. Grenager, and C. Manning, “Incorporating non-local
information into information extraction systems by gibbs sampling,” in
Computational Linguistics, 2005, pp. 363-370.

K. Fujii and T. Suda, “Semantics-based dynamic service composition,”
Communications, vol. 23, no. 12, pp. 2361-2372, 2005.

E. Hadj, “A language-based approach for web service composition,”
Ph.D. dissertation, Universite de Bordeaux, France, Nov. 2017.

N. Ibrahim, F. Le Mouél, and S. Frénot, “MySIM: A spontaneous
service integration middleware for pervasive environments,” in Pervasive
Services. ACM, 2009, pp. 1-10.

N. Ibrahim and F. L. Mouél, “A survey on service composition middle-
ware in pervasive environments,” CoRR, vol. abs/0909.2183, 2009.

J. Kalinowski and L. Braubach, “Integrating application-oriented mid-
dleware into the android operating system,” in UBICOMM, 2015.

C. Lee, S. Ko, S. Lee, W. Lee, and S. Helal, “Context-aware service
composition for mobile network environments,” in Ubiquitous Intelli-
gence and Computing, 2007, pp. 941-952.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in NIPS, 2013, p. 3111-3119.

MVEL. (2018, May) Mvel guide. [Online]. Available: https://github.
com/imona/tutorial/wiki/MVEL-Guide

A. Ordonez, J. C. Corrales, and P. Falcarin, “Natural language processing
based services composition for environmental management,” in System
of Systems Engineering (SoSE), 2012, pp. 497-502.

M. Pagliardini and P. Gupta, “Unsupervised learning of sentence em-
beddings using compositional n-gram features,” in Com. Ling,, 2018.
F. Pop, M. Cremene, M. Vaida, and M. Riveill, “On-demand service
composition based on natural language requests,” in Wireless On-
Demand Network Systems and Services, 2009, pp. 45-48.

FE.-C. Pop, M. Cremene, M. Vaida, and M. Riveill, “Natural language ser-
vice composition with request disambiguation,” in SOCo, P. P. Maglio,
M. Weske, J. Yang, and M. Fantinato, Eds., 2010, pp. 670-677.

H. Pourreza and P. Graham, “On the fly service composition for local
interaction environments,” in PerCom, 2006, pp. 6 pp.—399.

R. P. D. Redondo, A. F. Vilas, M. R. Cabrer, J. J. P. Arias, and M. R.
Lopez, “Enhancing residential gateways: Osgi services composition,” in
Conf. on Consumer Electronics, 2007, pp. 1-2.

0. J. Romero, “COPERNIC: Cognitively-inspired Pervasive Middleware
for Emergent Service Composition,” in SCC, 2019, p. In press.

——, “Dynamic Service Composition Orchestrated by Cognitive Agents
in Mobile & Pervasive Computing,” in Artificial Intelligence and Mobile
Services (AIMS), 2019, p. In press.

0. J. Romero and S. Akoju, “An efficient mobile-based middleware ar-
chitecture for building robust, high-performance apps,” in International
Conference on Software Architecture ICSA, 2018.

E. Sirin, B. Parsia, D. Wu, and J. Hendler, “HTN planning for web
service composition using shop2,” WS, vol. 1, pp. 377-396, 2004.

T. G. Stavropoulos, D. Vrakas, and 1. Vlahavas, “A survey of service
composition in ambient intelligence environments,” Artificial Intelli-
gence Review, vol. 40, no. 3, pp. 247-270, Oct 2013.

K. Tari, Y. Amirat, A. Chibani, A. Yachir, and A. Mellouk, “Context-
aware dynamic service composition in ubiquitous environment,” /EEE
International Conference on Communications, pp. 1-6, 2010.

L. Tomazini, O. J. Romero, and H. Hruschka, “An Architectural
Approach for Developing Intelligent Personal Assistants Supported by
NELL,” in ENIAC, 2017.

K. Toutanova, D. Klein, C. D. Manning, and Y. Singer, “Feature-rich
part-of-speech tagging with a cyclic dependency network,” in NAACL,
2003, pp. 173-180.

R. Zhao, O. J. Romero, and A. Rudnicky, “SOGO: A Social Intelligent
Negotiation Dialogue System,” in Intelligent Virtual Agents (IVA), 2018.

[Online].

