
An Efficient Mobile-based Middleware Architecture
for Building Robust, High-performance Apps

Oscar J. Romero
Machine Learning Dept., Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA, 15145
Email: oscarr@andrew.cmu.edu

Sushma A. Akoju
Machine Learning Dept., Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA, 15145
Email: sakoju@andrew.cmu.edu

Abstract—As smartphones become increasingly more powerful,
a new generation of highly interactive user-centric mobile apps
emerge to make user’s life simpler and more productive. However,
the construction of such apps requires developers to spend
a considerable amount of time dealing with the architecture
constraints imposed by the wide variety of platforms, tools,
and devices offered by the mobile ecosystem, thereby diverting
them from their main goal of building such apps. Therefore, we
propose a mobile-based middleware architecture that alleviates
the burdensome task of dealing with low-level architectural
decisions and fine-grained implementation details by focusing on
the separation of concerns and abstracting away the complexity
of orchestrating device sensors and effectors, decision-making
processes, and connection to remote services, while providing
scaffolding for the development of higher-level functional features
of interactive high-performance mobile apps. We demonstrates
the powerfulness of our approach vs. Android’s conventional
framework by comparing different software metrics.

Index Terms—android-based middleware; mobile architecture;
conversational agent; reusable architectural solutions

I. INTRODUCTION

Mobile technology has been broadly adapted in everyday
life activities ranging from business to entertainment domains
with increasing demand. This ongoing evolution of mobile
computing leads to larger applications and increases the need
for methods reducing software complexity [1]. The Android
Platform, the most used mobile platform by developers and
users [2], provides a software stack that allows building
robust, production-quality apps. However, acquiring a deep and
proper understanding of the Android Software Stack requires a
considerable amount of time for developers (approximately 2+
years [3]) due to the inherent complexity imposed by the over-
engineered Android Java Framework (AJF), thereby deviating
developers from their main goal: building interactive apps. A
common way to deal with AJF’s complexity is the use of
mobile middlewares that hides the underlying complexity of
the environment and masks the heterogeneity of networking
technologies to facilitate app programming [4]. Despite of the
fact that there exist several middlewares for Android, most
of them have a significant performance footprint and imply
that developers must learn additional architectural models. The
paper is organized as follows: section II presents the motivation
and related work, section III presents the architectural model
that underlies the development of the middleware; section IV
describes the implementation details of the middleware; on

section V we present a comparison between our approach
vs. the android conventional approach; and on section VI we
present our conclusions and future directions on our research.

II. MOTIVATION AND RELATED WORK

A. Issues with Android Java Framework (AJF): one of the
main issues with Android is that it imposes some design and
implementation constructs for components to interact with
each other, so the resulting apps becomes top-heavy and over-
engineered. Another issue with Android is its concurrency
architecture, where invoking a simple network request can be
a minefield of subtle problems for which even developers with
substantial mobile and Java experience may not be prepared [5].
To illustrate these issues, lets consider an app that sends
a network request to a remote service. This simple action
spawns several architectural considerations that have to be
addressed: 1) Android modifies the user interface and handles
input events from one single thread (the main thread) so
any task that occupies it for any significant period of time
will cause the UI (Android Activity) to become unresponsive;
2) the background tasks should be performed using any of
the following Android components: a Handler (it provides a
channel to send data to the main thread), an AsyncTask (it
manages short background asynchronous operations that run
on a different thread, so developers would have to deal with
thread-safe references and synchronization), a Service (it has to
spawn its own thread in which to do long-running work), or a
Java Thread (in this case developers are completely responsible
for managing the concurrency). The decision of which kind
of component to use depends on several criteria, imposing
strong constraints that cannot be verified automatically, e.g.,
is the background process tied to the UI? is this a long-
lasting process? can the process be affected by the activity’s
lifecycle? is the process shared by multiple components? 3)
Android Services define cumbersome mechanisms to com-
municate with each other, e.g., it is necessary to implement
Handlers, ServiceConnections (an interface for monitoring the
state of a Service), Messengers (implementation of message-
based communication across processes), Intents (an abstract
description of an operation to be performed), IPC (inter-process
communication) etc.; and 4) Services and Activities can share
data across process boundaries by passing Bundles, objects that
implement Serializable or Parcelable interfaces. This process
of continuous serialization/deserialization has a significant



Fig. 1: Android Java Framework (AJF) vs. Adroitness Architectural Model

performance footprint and requires developers to manually
parse all the content of these bundles.

B. Android App Frameworks: there are many 3rd party
libraries and frameworks for Android indicating that the
standard Android APIs are inadequate [6]. One alternative is to
use cross-platform (hybrid) mobile frameworks based on web
technologies (JS, HTML, CSS). Cross-platform frameworks
provide support to scripting languages such as JavaScript, Type-
Script or Angular (e.g., Facebook ReactNative, NativeScript
and Xamarin) and some others use a web engine to render
elements such as HTML5, CSS, and SVG, and execute the logic
in a browser instance (e.g., JQuery Mobile, TheAppBuilder,
and Apache PhoneGap). Using cross-platform frameworks has
advantages such as code sharing between the web and the
app, leveraging developers current web language skills, and
a plenty of open-source tools available. However, there are
some disadvantages regarding fragmentation, compatibility,
performance, UX issues, and memory, because they use a full
web-rendering engine loaded just for the app and take a lot of
GPU/CPU resources increasing the app’s response time [7].

C. Requirements: our work mainly focuses on the following
requirements 1) the middleware should significantly decrease
the amount of effort (person/day) and functional size; 2) it must
be latency-sensitive (events that complete in 100 milliseconds
or less are believed to have imperceptible latency and do not
contribute to user dissatisfaction [8]); 3) it must abstract away
the complexity of underlying layers (e.g., communication, con-
currency, etc.); 4) it must provide mechanisms for developers to
make their apps more modular, pluggable, and easily extensible;
5) it must provide any kind of mechanism for reasoning over
the data collected by the smartphone’s sensors and services.

III. ARCHITECTURAL MODEL
Figure 1 illustrates an architectural model comparison

between AJF vs. ADROITNESS in the development of a conven-
tional mobile app. In Figure 1.a, we have identified 6 different
scenarios for Activities and Services to communicate with each
other: A) the Service is merely a local background worker
running in the same process as the Activity, so developer has to
create a Binder class and return it to the Activity so it can use

it to directly access public methods available in the Service;
B) the Activity uses an AsyncTask to perform background
operations and publish results on the UI thread without having
to manipulate threads and/or handlers; C) Both Activities and
Services communicate to each other by sending and receiving
broadcast messages through a BroadcastReceiver; D) Activities
need to interact with Services running on different processes
or apps using IPC, so in this case the developer instantiates
the Messenger class inside the Service and defines a Handler
that responds to different types of Message objects, also, this
Messenger shares an IBinder with a ServiceConnection object,
allowing the Activity to send commands to the Service using
Message objects; E) the Activity interacts with a Remote
Service using AIDL (Android Interface Definition Language)
where a RemoteService.Stub object returns an instance of
the RemoteService to the ServiceConnection so it can then
register callbacks that will monitor the service, then a handler
is used to send/receive message objects that implement the
interface Parcelable which is used for marshalling purposes;
and F) an Activity needs to read data from built-in sensors (e.g.,
Accelerometer) so it connects to a Service that implements the
SensorEventListener, then it gets an instance of SensorManager
to register itself and starts listening to particular sensor events.
It is worth noting that these scenarios are even more complex
since they require additional effort that we have omitted
for the sake of simplicity (such as registering Services and
BroadcastReceivers on AndroidManifest, allowing permissions,
access to native libraries and hardware, etc.). On the other hand,
ADROITNESS abstracts away the complexity of these 6 scenarios
and simplify them to a single mechanism that connects
Activities to the underlying Services, Sensors and Effectors
(SSE) through a middleware layer that exposes only specific
behavior to subscribe, post and receive messages to/from
those components. Using the Clean Architecture principles
for better separation of concerns and better modularization,
ADROITNESS allows to decouple the system into well-defined
layers such as Presentation layer (i.e., Activities, GUI), Domain
layer (i.e., business objects and rules) and Middleware layer



Fig. 2: Adroitness Class Diagram.
(i.e., SSE). The Middleware is divided into four sub-layers:
1) a set of controllers that orchestrate the operation of SSE;
2) a Resource Manager that serves as a service discovery
mechanism, resource locator, and dependency injector; 3) a
Decision Rule Engine that creates synergies (rules) among those
SSE; and 4) a communication layer composed by a Message
Broker component and multiple Channel Adapters. This layer
uses minimal android dependencies, meaning that no Han-
dlers, AsyncTasks, Messengers, BroadcastReceivers, Binders,
nor ServiceConnections are used, instead, a lightweight but
powerful concurrency and communication model is proposed,
as described in further sections. It is worth noting that the
only dependency between app GUI (Activity) and ADROITNESS
on the class diagram in Figure 2 is the MessageBroker, this
centralization reduces complexity and increases maintainability.

A. Sensing and Acting Viewpoint: Sensors allow ADROIT-
NESS to detect external changes (e.g., variation in acceleration),
user’s events (e.g, gestures), and events among phones (e.g.,
phone1 notifies its proximity to phone2); whereas Effectors
perform actions as the result of making a decision (e.g, make
a phone call). ADROITNESS extends the Android SensorFrame-
work (as described by scenario F in Figure 1.a) and adds high-
order functions while abstracting away the atomic operations,
e.g., the Accelerometer sensor is equipped with a mechanism
for detecting free-fall so developers do not need to check
whether the 3-axis vector sum is equal to 0.

B. Service-Orientation Viewpoint: since sensors’ and effec-
tors’ extensibility is limited by phone’s hardware, we enhanced
them by using ADROITNESS Services (which extend Android
Services), that is, application components that perform discrete
functions either locally (in the phone) or remotely (on a
server). ADROITNESS was designed based on a Service-Oriented
Architecture (SOA) in order to promote loose coupling between
services. We defined a Resource Manager pattern in charge of:
1) maintaining a service registry which contains information
about how to dispatch requests to services; 2) carrying out
service discovery operations by using a resource locator pattern;
3) registering pluggable services that can be added or removed
dynamically by using dependency injection; and 4) executing a
Service Manager that controls the services lifecycle (start,
destroy, bind, etc.). Our SOA architecture is empowered

Fig. 3: Sequence Diagram for end-to-end message passing.

by the use of an event-driven mechanism that allows fast
decoupled interaction between Android Services and Activities.
ADROITNESS provides a set of pre-defined pluggable services
(e.g, weather, calendar, email, Automatic Speech Recognition
– ASR, access to Knowledge Bases, just to name a few, but
developers can extend this set of services and add customized
services that are hooked into the middleware.

C. Messaging and communication Viewpoint: Message
Broker: this component is in charge of routing, transforming,
aggregating and decomposing messages. MessageBroker makes
transparent the communication between activities and SSE,
that is, developers only have to create a request (MBRequest)
instance and pass it to the message broker, then it will deliver
the request to the corresponding SSE. Finally, the message
broker uses an event bus to perform this communication
through a publish/subscribe mechanism. Channel Adapter:
it acts as a messaging client to the messaging system and
invokes ADROITNESS functions via a service-supplied interface.
Figure 3 illustrates the the interaction among these classes.

E. Decision Rule Engine Viewpoint: the Decision Rule
Engine (DRE) is a rule-based system in charge of creating, val-
idating, executing and specializing rules created by the user or
developers [9]. The DRE extends the ADROITNESS’s scope by
aggregating different SSE, that is, services that can accomplish
more complex processes and provide higher-level abstractions
that allow developers to easily assemble entire use cases and
interactions. A Rule is formally defined as a set of conditions
so that <left-side><operator><right-side> and a set of
actions so that <event-action>:<component>:<method>:
<params>. The three rules on Listing 1 illustrates a use case for
the free-fall scenario, where the phone’s alarm is triggered when
the accelerometer sensor detects the phone is free-falling.
RULE: Rule1
IF Event.what equals Sensor.ACC.motion
THEN Event.post : Sensor.ACC : doVectorSum : [ACC.3-axis]

RULE: Rule2
IF Event.what equals Sensor.ACC.doVectorSum
AND Sensor.ACC.vectorSum equals 0
THEN Event.post : Sensor.ACC : freeFall

RULE: Rule3
IF Event.what equals Sensor.ACC.freeFall
THEN Event.post : Effector.ALARM : ring : [notification]

Listing 1: Rules free-fall use case
D. Concurrency Viewpoint: in order to improve ADROIT-

NESS’s latency footprint, throughput and interactivity, we
defined a clean concurrency model that radically eliminate



the use of over-engineered AJF constructs and replace them
with a pure Thread-based model that uses thread pools and
async executors. Also, it uses a message-passing mechanism
(the event bus) to pass messages between threads instead of
sharing or accessing objects simultaneously, that way it is not
necessary to protect the code by using locks, monitors and
synchronized blocks that are computationally expensive.

IV. IMPLEMENTATION

In this section, we provide some details about the libraries
we used for the implementation of ADROITNESS1. We use the
GreenRobot’s EventBus framework [10], an Android optimized
event bus that simplifies communication between AJF com-
ponents by decoupling event senders and receivers, removing
dependencies, and using a pub/sub pattern for loose coupling.
Also, we used ZMQ messaging framework for communication
with external servers. ZMQ is a high-performance asynchronous
messaging library aimed at use in distributed and concurrent
applications with minimal latency footprint. Using this library,
ADROITNESS guarantees extremely low-latency responses, even
when external servers, thanks to it access sockets directly.
Using ZMQ, we could abstract away low-level communication
details, such as dealing with different socket types, connection
handling, framing, and even routing. Finally, we extended
the set of plug-ins provided by AWARE [11], a framework
dedicated to instrument, infer, log and share mobile context
information. For instance, AWARE provides an effector for
processing TTS (text-to-speech) outputs, however, it lacks of
a sensor for processing ASR inputs. ADROITNESS not only
includes an effector for TTS but also provides a extensible
API that allows to plug different kind of ASR implementations
(e.g., Google ASR, Microsoft Bing, CMU Pocket-sphinx, etc.)

V. EVALUATION
We performed an empirical metric-based comparison be-

tween ADROITNESS and AJF in the development of a conversa-
tional agent [12], [13]. For latency experiments, we measured
the time for sending and receiving 1, 101, 102, 103 and 104

messages. In general, ADROITNESS’s performance surpassed
AJF’s performance in a high rate when sending/receiving 1
message (� 95%) and then gradually decreased while the
number of messages increased but still surpassing AJF at a
rate of � 54%. We also measured the Cyclomatic Complexity
of both approaches, which is defined as the number of linearly
independent paths within a graph that represents the source code
flows. Based on our analysis we deduced that both ADROITNESS
and AJF have low complexity, however, the improvement rate
demonstrated that ADROITNESS reduced the complexity on
� 31% in comparison with AJF. In terms of size metric, we
used Function Points (FP), a widely accepted industry standard
for functional sizing. Based on the results we could observe
that the app is � 53% smaller in functionality when using
ADROITNESS instead of AJF (see Figure 4), which in turn
reduced the estimated amount of effort (a team of 5 persons
would take 54.6 days if using AJF while taking 25.8 days if
using ADROITNESS).

1https://github.com/ojrlopez27/Adroitness-Mobile

Fig. 4: Code snippet for a two-steps use case realization using
ADROITNESS (in the 1st step, ASR is started on GUI’s onCreate
method, in the 2nd step, a NLG -Natural Language Generator-
event is handled by onEventMainThread method). ADROITNESS
requires 15 lines of code (loc) while AJF more than 750 loc.

VI. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented ADROITNESS, an archi-

tectural middleware to support the construction of mobile
apps. Our contributions are: a) we used the clean architecture
approach to guarantee a better separation of concerns; b) mid-
dleware’s architecture abstracts away the low-level design and
implementation details such as communication and concurrency
model; c) latency was improved by avoiding the use of overengi-
neered AJF components and replacing them by a lightweight
threading model, and a high-performance cache instead of using
serialization/deserialization mechanisms; d) a Decision Rule
Engine that binds SSE and facilitates the composition of more
complex behaviors; and e) we demonstrated that ADROITNESS
reduced the complexity, size, and effort of apps implementation
while improving the performance. For the future work, we will
create a semantic layer in order to improve the service discovery
process, provide more accurate and relevant information to
higher-level layers, and make inferences about user’s context.
Also, we will implement a machine learning mechanism to
discover and refine the rules orchestrated by DRE.

ACKNOWLEDGMENT
This research was supported in part by Yahoo! and Verizon

through the CMU-Yahoo InMind project.
REFERENCES

[1] J. Dehlinger, “Mobile application software engineering: Challenges and
research directions,” in Mobile Sw. Eng., vol. 2, 2011, pp. 29–32.

[2] [Online]. Available: https://www.gartner.com/newsroom/id/3859963
[3] [Online]. Available: https://www.infoq.com/news/2010/07/Mobile-Survey
[4] Z. Sanaei, S. Abolfazli, A. Gani, and R. Buyya, “Heterogeneity in mobile

cloud computing: taxonomy and open challenges,” IEEE Communications
Surveys & Tutorials, vol. 16, no. 1, pp. 369–392, 2014.

[5] Z. Mednieks, G. B. Meike, L. Dornin, and Z. Pan, Enterprise Android:
Programming Android Database Applications for the Enterprise, 2013.

[6] S. Barnett, R. Vasa, and A. Tang, “A conceptual model for architecting
mobile applications,” in Conf. Software Architecture, 2015, pp. 105–114.

[7] J. B. Jorgensen, B. Knudsen, L. Sloth, J. R. Vase, and H. B. Christensen,
“Variability handling for mobile banking apps on ios and android,” in
13th IEEE/IFIP Conference on Software Architecture, 2016, pp. 283–286.

[8] B. Shneiderman, Designing the user interface: strategies for effective
human-computer interaction. Pearson Education India, 2010.

[9] L. Tomazini, O. Romero, and E. H., “An architectural approach for deve-
loping intelligent personal assistants supported by NELL,” in ENIAC’17.

[10] [Online]. Available: https://github.com/greenrobot/EventBus
[11] [Online]. Available: http://www.awareframework.com/
[12] Y. Matsuyama, R. Zhao, O. Romero, and et al., “Socially-aware animated

intelligent personal assistant agent.” in SIGDIAL, 2016, pp. 224–227.
[13] O. J. Romero, R. Zhao, and J. Cassell, “Cognitive-inspired conversational-

strategy reasoner for socially-aware agents,” in 26th Int. Joint Conf. on
Artificial Intelligence, IJCAI, 2017, pp. 3807–3813.

https://github.com/ojrlopez27/Adroitness-Mobile
https://www.gartner.com/newsroom/id/3859963
https://www.infoq.com/news/2010/07/Mobile-Survey
https://github.com/greenrobot/EventBus
http://www.awareframework.com/

	Introduction
	Motivation and Related Work
	Architectural Model
	Implementation 
	Evaluation
	Conclusions and Future Work
	References

