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Abstract. With recent advances in robotics technologies and
autonomous systems, the idea of human-robot teams is gaining ever-
increasing attention. In this context, our research focuses on developing
an intelligent robot that can autonomously perform non-trivial, but spe-
cific tasks conveyed through natural language. Toward this goal, a con-
sortium of researchers develop and integrate various types of intelligence
into mobile robot platforms, including cognitive abilities to reason about
high-level missions, perception to classify regions and detect relevant
objects in an environment, and linguistic abilities to associate instruc-
tions with the robot’s world model and to communicate with human
teammates in a natural way. This paper describes the resulting system
with integrated intelligence and reports on the latest assessment.

1 Introduction

As robots become commonplace in a variety of domains ranging from manu-
facturing to the military, there has been growing interest in the development
of intelligent robots that can support humans not only as tools, but also as
teammates. To be a competent teammate, e.g., to perform a screening mission
illustrated in Fig. 1, a robot needs to have basic cognitive abilities including per-
ceiving the semantics of its environment, reasoning about spatial relationships,
and communicating with natural language. In this context, while the subfields
of robotics and artificial intelligence have been extensively evaluated accord-
ing to standard metrics accepted within each research community, little work
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Stay to the right of the car; screen the back of
the building that is behind the car.

Fig. 1. An example showing a Clearpath™ Husky unmanned ground vehicle working
with a human teammate on a screening mission in an unknown environment.

has been done to-date that gauges the current state-of-the-art for an intelligent
robot with cognitive abilities. For example, the computer vision community has
mainly focused on improving performance on benchmark data sets as opposed to
addressing the types of real world challenges faced in robotics [12,20]. As a result
of such disconnections, the majority of existing works in intelligent (or cognitive)
robotics includes simplifying assumptions, e.g., ideas are verified in simulated
environments or a robot’s perception is assumed to be perfect or is simplified
in order to measure the intelligence without including errors due to imperfect
perception [6,9,10,17,21]. In our work, we aim to assess where the technology
stands and where technology gaps are in the development of an intelligent robot
teammate by integrating various pieces of technologies needed for a robot to per-
form tactical behaviors autonomously without adding simplifying assumptions.
In this paper, we focus on semi-urban outdoor navigation and search behavior.
Toward this goal, we develop an intelligence architecture and integrate rele-
vant technologies including state-of-the-art perception modules on a robot plat-
form to assess robot intelligence at the tactical behavior level. Specifically, the
capabilities that have been integrated to support intelligence are the following:
(1) multi-modal interface to support rich interaction with humans,* (2) seman-
tic world model, (3) high-level mission planning, (4) object detection,* (5) door
detection,* (6) human detection and tracking,* (7) scene classification, (8) build-
ing (stuff) detection, (9) object prediction beyond sensor ranges, (10) natural
language grounding,* (11) object symbol grounding, (12) (global and local) path
planning, (13) imitation learning for navigation modes, and (14) an interac-
tion layer for mobile robots. We note that the architecture builds on our prior
work [19], augmented with new capabilities (marked with *). We describe our
approach and share the lessons we have learned from recent assessment.

2 Technical Approach

Figure 2 shows an architectural diagram of our intelligence system for a robot
teammate. In this section, we briefly illustrate how various modules contribute
and interact within this architecture to support high-level robot intelligence.
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Fig. 2. An architectural diagram of integrated intelligences for human-robot teams.

Because our goal is focused on robots that can work with humans, it is
important that robots be able to communicate in ways that are natural and
efficient to humans. In our system, the interaction between a robot and a human
is supported by a Multi-Modal Interface (MMI). Using this interface, a human
teammate can issue commands through natural language speech and hand ges-
tures, and review the robot’s reasoning process via annotated camera images
and semantic maps.

The world model is a central storage of information that is accumulated and
merged from various modules. The information stored in a world state includes
robot pose data, sensor data, semantic objects, multi-layered cost maps, com-
mands, and various action status. The world model supports a query interface
for the modules to look up relevant information.

The mission planner takes a command and reasons about pre- and post-
conditions of available actions to find a plan that will accomplish the task spec-
ified by the command. For instance, given a command “Screen the back of the
building,” a set of actions needs to be performed in a sequential order; i.e., the
robot needs to navigate to the back of the building, locate a door in the back of
the building, and then monitor the area near the door to report upon anyone’s
egress from the building.

The core of the intelligence system consists of perception, prediction and lan-
guage understanding. These units contribute to the robot’s understanding of its
environment and enable it to interpret and execute a given natural language
command. The perception module translates the raw data from the robot’s sen-
sors into semantically meaningful information (e.g., semantic scene classifier, an
object detector, a door detector, and a human detector). The prediction module
enables the robot to infer a world model for the unseen parts of the environ-
ment, effectively compensating for limitations in the robot’s sensing range (as
well as possible perception errors) by using prior information about object mod-
els or descriptions of objects specified in the natural language command. The
language understanding module translates a spoken utterance into a structured
representation, known here as Tactical Behavior Specification (TBS) [19], that
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formally represents the task and its constraints, and computes symbol ground-
ing results [3]. Combined together, these modules enable the robot to robustly
perform complex tasks in an unknown environment.

2.1 Human-Robot Interface (HRI)

The effectiveness of human-robot teams is intrinsically linked to the efficiency of
bi-directional communication. Robots must be able to transform human forms
of expression (e.g., language and gesture) into a meaningful representation and
communicate their understanding and actions to humans in order to share a
cognitive model of mission goals and objectives. To address these challenges,
we developed a MMI based on a Toughpad FZ-M1 tablet (Fig.3). This device
enables a human teammate to command the robot through a combination of
speech and gestures and receive robot status from the visual display and auditory
cues. The MMI represents instructions to the intelligence architecture using the
TBS lexicon.

Fig. 3. An illustration of the Multi-Modal Interface (MMI) for human-robot interac-
tion. The MMI accepts input in the form of speech and/or gesture and visualizes the
state of the intelligence architecture. The MMI Visual Display illustrates a “screen the
back of the building” command. The robot status shown in the COMMANDS and
STATUS sections indicate the command is still running and the robot is currently
searching.

Grounding natural language to a TBS in the MMI is performed by the Hierar-
chical Distributed Correspondence Graph (HDCG) [2,4, 11]. This model searches
a pair of graphical models to efficiently translate natural language into a TBS
command. The first graphical model is used to infer a set of rules to construct
a more efficient representation of a second graphical model that is used to infer
a distribution of the physical meaning of each phrase. To characterize the per-
formance of the HDCG in this application, we measured the average run-time
of symbol grounding for the natural language expression “screen the back of the
building that is behind the car.” Over 100 queries on a MacBook Pro with a
2.6 GHz Intel Core i7 processor, we observed that the model required 0.131s on
average to correctly translate the expression to a valid TBS command.
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2.2 Common World Model (CWM)

The Common World Model (CWM) [5] defines and instantiates the data model
for the intelligence architecture, providing a common, centralized intelligent data
storage services. The world model is divided into three main concepts: Metric
(sensor data and aggregates), Semantic (class descriptions and instances), and
Self Information—data relative the robot, e.g., pose data. At the Semantic level,
objects represent symbolic information, enabling abstract reasoning needed for
intelligent behavior. Here, CWM maintains semantic information from percep-
tion modules, and provides methods for client modules, e.g., the navigate action,
to search for semantic objects that are relevant to a specific mission context with
a set of filtering criteria.

2.3 Mission Planner

The goal of the mission planner is to take commands in the mission vernacular
from a teammate (via the MMI) and convert them into a sequence of actions
(TBSs). We leverage recent work in ACT-R [1] on models of instruction following
in the form of decision graphs, where the decisions themselves are made based
on examples of past decisions in the form of Instance-Based Learning [13]. This
research uses a single model of decision-making in which more instructions and
examples can be included in the system in the form of “chunks”—ACT-R rep-
resentations of semantic information. The goal of this new model is to provide
increased flexibility in adding new examples to the model, which, in turn, allows
the model to plan for new missions, as well as in combining generalizations from
multiple examples.

Fig. 4. Examples of object detection. Final detections are shown as red solid rectangles
and rejected false positives as blue dashed rectangles.

2.4 Perception
We first describe four sensor-based perception modules in our system. Addition-

ally included in this section is perception through prediction.

Semantic Classifier. An online scene labeler is used to find buildings, vehicles,
traffic barrels, and fire hydrants, and to classify background, e.g., trees, asphalt,
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concrete, gravel, or grass as shown in Fig. 6. Our approach builds on the Hierar-
chical Inference Machine [18], a scene labeling method that decomposes an image
into a hierarchy of nested superpixel regions. Rather than perform inference on
a graphical model, which can be expensive, we instead train a decision forest
regressor with 10 trees and the segmentation hierarchy of depth 7 for predict-
ing label distribution. We use SIFT [16], LAB colorspace statistics, and texture
information derived from convolving the image with a bank of spatial filters, in
addition to statistics on the size and shape of a superpixel region. We process
a 640 x 384 image in approximately 2s on a dedicated quad-core i7-3615QM at
2.3 GHz, with feature extraction being the dominant cost.

Object Detector. We employ an Active Deformable Part Models (ADPM)
method [23] for on-board object detection on our system. ADPM is an acceler-
ated DPM that dynamically schedules parts and prunes locations in a cascade
framework. With the current MATLAB/C++ implementation, ADPM simulta-
neously detects 5 classes on a 10 MP image at 0.5 Hz on a modern CPU. ADPM
employs a sliding window approach at multiple image scales to detect objects
at different positions and distances. In order to reduce the number of false posi-
tives, the detection hypotheses are further pruned using LADAR measurements
as shown in Fig. 4.

Fig. 5. Examples of door detections are shown. Fagade detection and door candidates
are shown on the left. Final detection output is shown on the right.

Door Detection. Detecting doors imposes a unique challenge because doors
undergo severe perspective distortion under different viewpoints. Based on the
intuition that doors should be seen as a rectangle at a frontal (canonical) view-
point, each facade candidate is mapped to the image domain according to the
known calibration of each sensor. We preprocessed each candidate fagade for
door detection as follows: facade regions in the image are rectified using the esti-
mated plane orientation in 3D and resized to a fixed scale such that the rectified
facades are (virtually) observed at a fixed distance. Due to the canonicaliza-
tion, the pose and scale variation of doors in the fagades can be eliminated. On
top of the rectified fagades, a Deformable Part Model based door detector [8] is
applied. Since the fagades are standardized in canonical view and fixed distance,
detection can be performed online because searching in a single scale space is
sufficient to detect doors as seen in Fig. 5.
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Human Detection. One of the main objectives of the human-robot team is
to identify potential human threats, which would feed directly into the observe
action as the architecture is currently laid out. A tree-structured Deformable
Part Model [22] was chosen as the state-of-the-art algorithm to perform this
task. Given a rectified image, the algorithm reports the locations of 26 indi-
vidual parts for each detected person. Our contribution is to port the feature
pyramid processing code to run on a FPGA or GPU while the rest of the code
runs as a module on a separate laptop. Using the current system architecture,
streaming 1020 x 768 images from the camera, and processing all scales within the
human detection algorithm runs at a 0.5 Hz processing rate. Additional LADAR
processing is included within the observe action to better discriminate humans
from other arbitrary objects.

2.5 Object Prediction

In addition to those approaches that use actual sensors to detect objects or
humans in the robot’s environment, we also utilize language inputs to perceive
objects, primarily in the part of the environment that the robot has not directly
explored. The current approach hypothesizes an object when two conditions
are met: symbol grounding fails to map a symbol to an object in the world
model; and there are areas that satisfy the spatial constraints but have not
been explored by the robot. Given a language phrase [ that describes a target
object with spatial constraints relative to a reference object o, we sample a
set of candidate locations from a discretized 2D map defined in X x Y space.
A predicted object is created in an unseen location (z,y) that best satisfies the
given spatial constraints: (z,y) = arg max(, ynexxy k(@',y")o(2’,y', 1, 0), where
k(x,y) is a binary indicator with value 0 for free space (i.e., no detection) that
has been visited, 1 otherwise; and ¢ is a function that represents how well a given
location (z,y) satisfies the spatial constraints [ relative to a reference object o.

2.6 Structured Command Grounding

The symbol grounding algorithm takes as inputs a TBS command and a set of
semantic objects in the world model, and grounds each object symbol referenced
in the TBS to an object instance in the world model. Spatial constraints specified
in the TBS are evaluated in a robot-centric manner, i.e., a spatial relationship
relative to the position of the robot at the time when the command was given.

We first use a log-linear model to represent the probability that an object in
the environment satisfies a given spatial relation. Given an object, this probabil-
ity is defined as a function ¢ of weighted sum of the object’s spatial feature values.
The spatial features used here include the distances and the angles between the
centers of objects and the robot. A weight vector of each relation is learned by
maximizing the log-likelihood of all the training examples using gradient descent
with the [; regularization. For details, we refer to previous work [3].
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2.7 Actions: Tactical Behaviors

An action implements a specific tactical behavior of a robot. Currently supported
actions include: navigate (Fig.6), search, observe (Fig.7), bump, go-to-zy, and
wait; here, we describe navigate as an example.

Navigate. Semantic navigation [19] differs from path planning with regards
to the expressiveness of its command, as shown in Fig.6. In contrast to the
go-to-xy action, for instance, where a goal is specified in map coordinates, a
destination can be described using its spatial relationships with landmarks in an
environment. Additionally, a navigation mode can also be specified to instruct
a robot to move quickly or more covertly depending on the characteristics of a
mission.

L
SIEHHEP |

. predicted
traffic barrel

il

Fig. 6. Navigate: Given a command, “Stay to the left of the building; navigate quickly
to the back of a traffic barrel that is behind the building,” a robot navigates to the left
of the building toward a hypothesized goal, a traffic barrel in the back of the building.

Fig. 7. Observe: a static, focused action where the robot registers human detections
and reports them to the world model. Once the observe action starts running, it begins
listening to the output from the human detector that is already sending human detec-
tion messages.

3 Experimental Results

To assess the ability of the intelligence architecture to use different capabilities,
the system was tested in various mission scenarios. A human teammate used
speech and gestures to command each mission through the MMI, and the robots
performed the mission autonomously for the entire duration. We evaluated the
robot’s performance both via human assessment and via comparisons against
human performance on similar tasks.
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Fig. 8. An experimental setup: Two replica of Clearpath™ Husky unmanned ground
vehicles equipped with the General Dynamics XR 3D LADAR sensor and Adonis cam-
era were used.

Table 1. Results on the four vignettes involving navigation (against results from 2013).

IDs | Runs | Site Task (%) | Time (min.) | Dist. (m) | Weather Errors
V1 |6 Bar 87 5.8 36.4 4+ 0.5 |3 rain, 3 sun |2 comm.
V2 |4 Church | 80 5.5 52.7+ 2.1 | 3 sun, 1 cloud | grounding
V3 |4 Church | 75 3.5 23.0 £ 0.0 | 1 sun, 3 cloud | 2 software
V4 |3 Bar 93 5.7 31.3 £+ 1.5 | cloud 1 battery
2013 ‘ 20 ‘ Various ‘ 50 snow, ice various

3.1 Evaluation by Human Experts

Performances on screening missions: The complete runs involved two build-
ing sites, the Church and the Bar, requiring the robot to navigate 20-60m to
achieve the mission. Total of 17 runs were graded on a 0-100 scale by incre-
ments of 20. Table1 contains the overall human evaluation. When compared
with an earlier performance, there has been a significant improvement. In pre-
vious results, on a similar set of navigation tasks, the average completion rate
was 50 % (where only 30 % received full scores) [14]. Overall, the system consis-
tently executed the screening mission, with 11 of 17 runs scored at 100 %. Of
the remaining runs, 3 failed due to low batteries or software crashes, 2 because
of the communication system, and 1 because of a symbol grounding error.

Performances on semantic navigation: Table 2 summarizes the experiments
from two distinct outdoor environments. The first set of experiments was con-
ducted as part of a larger system assessment in a physically simulated town with
12 buildings in 1 km? outdoor space in a military training facility. A qualitative
summary from this set of experiments was reported in [15]. This set of experi-
ments consisted of 57 runs that are 2 replications of 30 commands divided into
12 vignettes—i.e., world configurations.
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(a) The paths chosen by a robot and (b) Frechét distance between the
82 human users are shown. paths chosen by a robot and humans

Fig. 9. Given a command “Navigate to the back of the building,” this example com-
pares a robot’s navigation path against those of 82 human users.

The second set of experiments was carried out in a parking lot of a large,
irregular-shaped building. The background in this environment was natural but
highly cluttered. In the vignette where the robot was facing the large build-
ing, the robot performed poorly because there were many unknown objects on
which the recognition algorithm had not been trained. The performance in those
vignettes involving known objects was highly reliable, resulting in the average
completion of 100 % and 86 % in the complete and the incomplete information
cases, respectively.

Table 2. Outdoor semantic navigation completion rate (%) with complete vs. incom-
plete information (The number of runs is in parenthesis).

Environment Complete information | Incomplete information
Simulated town |94+ 13 (18) 81 £ 20 (36)
Building outdoor | 100 4 0 (7) 86 + 26 (13)

3.2 Evaluation Against Human Performance on Similar Tasks

According to our preliminary data collection on 20 subjects, human interpreta-
tion of a verbal instruction can vary significantly. Given a simple command, “go
to a barrel that is in the back of the building,” 20 % (4 out of 20) of the subjects
interpreted the command differently from the commander’s intention, and the
paths chosen by the majority who chose similar goal positions as the commander
also varied.

Motivated by this result, we have collected a larger set of user data on inter-
preting navigation directions. We created a human intelligence test (HIT) on
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Amazon Mechanical Turk to collect the navigation paths selected by humans
for a similar set of problems to the robot’s. Two out of 84 data entries were
eliminated due to incompleteness.

To compare the paths generated by a robot against that by a human, we
used Frechét distance [7] that measures the distance between two curves. We
sort the entries according to their choice of a goal landmark and their mode
of navigation, e.g., left or right of a building. We computed Frechét distance
between the robot’s path and the paths taken by the group of users who had
made the same grounding decisions as the robot. We note that, in all 6 examples,
the robot’s grounding choice agreed with that of the human majority.

Path comparison: For each human turker, we computed Frechét distance
between the path chosen by the human and that of the robot. In addition, we
randomly selected another human turker and computed the distance between
the paths chosen by the two human participants. The mean and the standard
deviation of the Frechét distance for the example shown in Fig.9 between the
paths chosen by a robot and 69 human users who have chosen the same build-
ing as their landmarks (drawn in green lines) are 56.79 + 14.37, whereas those
between human users in that same group were 67.70 £83.19. The t-test failed to
reject the null hypothesis that there is no significant difference when a human
generated path is compared against that of a robot or a human; the confidence
interval at the 0.05 significance level was [—34.29, 12.48] on the example in Fig. 9.

Task-level performance comparison: When evaluated based on the intended
goal and landmark groundings, the accuracy of human participants was 68.9%.
People performed better on path constraints, reaching 86.9% in accuracy. We
also asked the participants to evaluate the paths generated by a robot given the
same set of navigation commands. Based on the evaluation of 82 participants,
the robot scored 86.0%.

4 Main Experimental Insights

Our approach takes advantage of additional information conveyed within
verbal commands by a human teammate to improve a robot’s perception.

& Goal pursued
Path planned

" | —Path taken f \m
w| | == Path* :
“Yw 220 ED 750 ED EQ 3

Fig. 10. Navigation paths with complete vs. incomplete information.
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Figure 10 shows progressive changes in the robot’s navigation plans as the robot
drives from a partially known world to a known world by gradually acquiring
information through perception. The blue dotted line shows the path that the
robot would have taken if it had complete information about the environment at
the time when the command was given; the red line is the actual path that the
robot has taken; the green lines and magenta triangles show the paths and the
goals, respectively, that the robot pursued during execution. In these runs, the
robot’s early goals may not be precisely correct (because they were the hypoth-
esized goals as opposed to those perceived) but generally guide the robot to a
proper direction so that the robot can revise its plan for the actual goal when
detected. These examples illustrate that the paths taken by the robot under
incomplete information strongly resemble those that would have been taken
under complete information. Our experimental results show that, in outdoor
navigation, semantic understanding of an environment is still challenging and
exploiting information from verbal directions can compensate significantly.

In our previous experiments, the performance has been assessed only in terms
of task completion as shown in Table 1. Here, we also evaluated the robot perfor-
mance by surveying human participants on similar navigation tasks. Our exper-
iments suggest that the paths generated by the robot resemble closely those
generated by humans and that the robot performs comparably with humans.

5 Conclusion

In this paper, we present an intelligence architecture for human-robot teams
that has been fully integrated into a mobile robot platform. During extensive
assessments on various screening missions, the system performed consistently
and robustly, demonstrating the strength of integrated intelligence. We conclude
that combining the latest perception technologies and reasoning about complex
surroundings with additional capabilities, such as natural language understand-
ing to follow instructions from teammates or predicting unseen environments
beyond the ranges of sensors, can lead to a viable robot teammate for imple-
menting high-level intelligence in real environments.
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