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ABSTRACT: Network Science has reported a considerable amount of human-subject experiments on which
individuals have to carry out different kind of coordination games such as coloring and consensus problems in order
to observe the behavioral dynamics behind the decision-making process. We have focused on the experiments carried
out by Kearns (Kearns, 2010) on which were found strong correlations between the influence and other features of
individual and social behavior during the execution of both kind of experiments (the coloring and consensus
problems). The aim of this paper is to identify the computational underpinnings of social network behavioral through
computational agent modeling using a constrained cognitive architecture framework. Final results demonstrate a
strong similarity between human and model dynamics that reflects how complex network behavior can emerge from

simple cognitive agents.

1. Introduction

A significantly amount of studies in the field of
network science focus on the analysis of coordination
games which are performed in a networked and
decentralized fashion. Whereas coordination and
cooperation games such as the Prisoners Dilemma and
other games have been extensively studied with human
subjects over the years (Colin, 2003), (Russel, 1996) ,
(Reinhard, 1986}, behavioral studies of coordination
on networks are more recent. In (Kearns, 2009), study
coloring and related problems on networks, although
they do not focus on a particular parameterized family
of networks as it is done in (Kearns, 2010). McCubbins
(McCubbins, 2009) and Kearns (Kearns, 2006) both
observe that adding connections makes the coloring
problem easier.

The main goal pursued in (Kearns, 2010) is to analyze
the dynamics of the process by which players reach
coordinated choice and the role of networks in this
process. Due to the main objective of our work is to
design a cognitive model of the experiments done by
(Kearns, 2010), we focused on both the methodological
aspects and the behavioral results obtained in each
human-subject experiment in order to recreate these
behaviors through cognitive models that were then
executed in the ACT- R cognitive architecture.

2. Experimental Methodology

The work developed here is based on a line of research
at the University of Pennsylvania in controlled human-

subject experiments on strategic behavior in social
networks (Kearns, 2006), (Kearns, 2009), (Kearns,
2010). In the following, the experiment settings as
performed in (Kearns, 2010) are described. First of all,
two kind of experiments were performed: in the
coloring problem individuals had to choose a color
which were different from any of its neighbors and in
the consensus problem on which individuals had to
reach an unanimous consensus while receiving
opposing incentives. The network is a chain of six
cliques (complete sub-networks) of six vertexes each,
for a total of 36 vertexes, as shown in Fig. 1.
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Figurel. Three sample networks used in the experiments. The top
one is the baseline network, being a chain of cliques with q = 0, from
which all other networks were derived by random edge rewiring. The
second network had q = 0.1, and the third had q = 0.2. The six
numbered vertices are called “connectors”, and the five edges
connecting them were retained in all networks. Taken from (Kearns,
2010).

Additionally, there is a probability q € [0,1]. For any
fixed value of q, each edge not connecting two cliques
in the baseline network is independently “rewired”
with probability q. We used values of q €
{0;0.1;0.2;0.4;0.6;0.8;1}. For the consensus



experiment, nine colors were arbitrarily allowed
whereas for the coloring experiment there was a well-
defined minimum of colors required for a solution to
exist (the so-called chromatic number of each
network).

In the consensus experiments each subject received two
dollars if a global (unanimous) consensus to any single
color was reached, and zero dollars otherwise. In the
coloring experiments subjects received two dollars if a
valid global coloring was reached, and zero dollars
otherwise. Each player was given only a partial or local
neighborhood view of the network (only the inter-
connected nodes are seen). Finally, both experiments
had opposite network dynamics.

3. Cognitive Architecture

The cognitive model was developed using the ACT-R
cognitive architecture (Anderson, 1998), (Anderson,
2004). Cognitive architectures are computational
representations of invariant cognitive mechanisms
specified by unified theories of cognition. ACT-R is a
modular architecture, reflecting neural constraints,
composed of asynchronous modules coordinated
through a central procedural system as depicted in
figure 2.
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Figure 2. ACT-R Cognitive Architecture

The procedural system is in charge of behavior
selection and more generally the synchronization of the
flow of information between the other modules. It is
implemented as a production system where competing
production rules are selected based on their utilities,
learning through a reinforcement mechanism from the
rewards and costs associated with their actions. The
production system conditions are matched against
limited-capacity buffers that control the interaction
with the other modules by enabling a single command
(e.g., retrieval of information, focus of visual attention)
to be given at a time to a given module, and a single
result to be returned (e.g., chunk retrieved from
memory, visual item encoded). A declarative memory
module holds both short-term information, such as the

details of the current situation, as well as long-term
knowledge, such as the procedural rules to follow.
Access to memory is controlled by an activation
calculus that determines the availability of chunks of
information according to their history of use such as
recency, frequency, and degree of semantic match.
Learning mechanisms control both the automatic
acquisition of symbolic structures such as production
rules and declarative chunks, and the tuning of their
subsymbolic parameters (utility and activation) to the
structure of the environment. The perceptual-motor
modules reflect human factor limitations such as
attentional bottlenecks. Individual differences can be
represented both in terms of differences in procedural
skills and declarative knowledge, as well as in terms of
architectural parameters controlling basic cognitive
processes such as spreading of activation.

4. Cognitive Modeling

In the following, the computational cognitive
mechanisms used for simulating the results of the
social experiments obtained in (Kearns, 2010) will be
described.

4.1 Symbolic Productions

As mentioned before, the procedural system uses
production rules, which interact with different kind of
buffers (retrieval, imaginal, declarative, visual, motor,
and others) in order to carry the reasoning and
inference process out according to the information that
every node of the network senses from its environment
and acts over it. We have implemented several
strategies to model the social experiments, and every
one of these has a set of different productions as
described below:

Productions for the Consensus problem: some
opposing productions compete against the others to
obtain the global control over the decision-making
process that performs the agent. Some productions
follow the majority, some others follow that agent
which is the most influential over the neighborhood',
as shown in in fig. 3; some other productions just keep
the same color no matter if the environmental
conditions are not favorable for that, that is, the
stubborn productions. ACT-R productions are written
in an enriched language that not only allows accessing
and manipulating buffer contents but also allows doing
as many complex validations as necessary and
triggering actions.

That is, that agent which has more unseen connections, keeps its
color for more time and when it changes its color there are a
considerable amount of seen connected agents that do the same



(p increasing-then-change-to-majority
=visual-location>
isa visual-location
leval! (eq =increasing true)
=
+vocal>
isa speak
string "change-to-majority")

a) If the dominant color is increasing then
change to the dominant color

(p decreasing-same-majority-then-change-influential
=visual-location>
isa visual-location
leval! (eq =decreasing true)
teval! (eq =current-color =majority-color)
==>
+vocal>
isa speak
string "change-to-influential™)
b) if current color is the same as the majority and its amount is
decreasing then change to the most influential agent

(p increasing-then-keep-color
=visual-location>
isa visual-location
leval! (eq =increasing true)
==
+vocal>
isa speak
string "keep-color")
c) If global consensus is increasing then keep the same color

(p decreasing-different-majority-then-change-majority
=visual-location>
isa visual-location
leval! (eq =decreasing true)
leval! (not (eq =current-color =majority-color))
==
+vocal>
isa speak
string "change-to-majority")

d) If current color is not the same as the majority and its
amount is decreasing then change to majority

Figure 3. Consensus: fragment of productions related to the color
changes in the cognitive agent’s neighborhood

Productions for the Coloring problem: The basic
idea behind this cognitive modeling is to seek an
strategy based on both past decisions and current
situation that helps the agent to avoid conflicting
coloring connections. Stubborn and wrong productions
were modeled as well but not presented in order to
keep the simplicity.

As you can infer from figure 3, 4, and 5 all the
productions generate opposing tensions and a
continuous competence for being the production to be
fired. For example, “increasing-then-change-majority”
production senses the same information as “increasing-
then-keep-color” production but they trigger different
actions: the first one will change its color in order to
follow the majority and the second one will keep its
current color if the majority is increasing (whichever
its color is). Similar antagonisms are observed in the
rest of productions. Due to the fact that multiple
productions may match the same sensory input or that
sometimes there is not a production, which has a
perfect match with the sensory input, a selection

process based on production utilities and partial
matching is required.

(p stuck-then-change-to-influential
=visual-location>
isa visual-location
leval! (eq =increasing false)
==>
+vocal>
isa speak
string "change-to-influential")
a) If global consensus is stuck then choose
statistically the color of an influential agent

(p stuck-then-change-another-majority
=visual-location>
isa visual-location
leval! (eq =increasing false)
==
+vocal>
isa speak
string "change-another-majority")
b) If global consensus is stuck then choose
statistically the color of another majority node

(p stable
=visual-location>
isa visual-location
teval! (eq =increasing true)
==>
+vocal>
isa speak
string "keep-color")
c) If the global consensus is increasing then keeps
the same current color

(p stubborn
=visual-location>
isa visual-location
teval! (eq =decreasing true)
teval! (not (eq =current-color =majority-color))
==>
+vocal>
isa speak
string "keep-color")

d) If current color is not the same as majority and
it is decreasing then keeps the same color.

Figure 4. Consensus: Fragment of productions related to the
cognitive agent’s internal motivations

It is important to remark that both experiments were
running each one by using three different decision-
making strategies: 1) a purely deterministic process on
which the highest values were always selected (e.g., the
majority or the most influential agent for the consensus
problem and the change-to-another-color action for the
coloring problem); 2) an stochastic selection process
based on the Boltzman equation (Anderson, 2004) as
shown in equation 1; and 3) a second version of the
stochastic process using a gradually decreasing value
for the temperature, similar to the simulated annealing
approach (Kirkpatrick, 1983).
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Equation 1. Boltzman Equation



P; is the probability that cognitive agent i follows agent
j according to the function M, which can be either the
majority or the most influential agent. t is the
temperature which determines the randomness of the
process and it is set at 0.35 for convenience.

(p current-not-repeated-increasing-then-keep
=visual-location>
isa visual-location
leval! (equal =current-repeated false)
==>
+vocal>
isa speak
string "keep")
a) If current color doesn’t conflict with any color of local neighborhood
and persists over time then keep the same color

(p cur-repeated-prev-not-repeated-then-change-prev
=visual-location>
isa visual-location
leval! (equal =current-repeated true)
leval! (equal =previous-repeated false)
==>
+vocal>
isa speak
string "change-previous")
b) If current color is repeated but the previous selection is not conflicting
then change again to the previous color

(p cur-repeated-prev-repeated-then-change-another
=visual-location>
isa visual-location

leval! (equal =current-repeated true)
leval! (equal =previous-repeated true)
==
+vocal>
isa speak

string "change-another™)

c) If both current and previous colors are conflicting then stochastically
change to another color

(p finished-then-keep
=visual-location>
isa visual-location
leval! (equal =finished true)
==>
+vocal>
isa speak
string "keep")

d) If all cliques are in a non-conflicting state the keep color

Figure 5. Coloring: Fragment of productions to avoid local color
similarities.

4.2 Activation Process

All the knowledge required for decision making is
encoded in the form of ACT-R productions and the
activation of those productions combines two main
sub-process:  Spreading activation and Partial
Matching. Spreading Activation is a sub-symbolic
process on which chunks spread activation to the
chunks in declarative memory based on the contents of
their slots. They spread an amount of activation based
on their relation to the other chunks. An ACT-R feature

called Production Partial Matching (PPM) is used to
select the production that best matches the current
sensed state of the neighborhood. Normally, a
production is said to match only if the constraints
specified in the if (condition) part match exactly to the
contents of the specified buffers. With PPM enabled,
the architecture will match productions in the absence
of an exact match between the specification and the
buffer contents. It does this by calculating a similarity
value between the specification and the content. This
similarity value is combined with the production’s
existing utility value to generate a new utility that
reflects both the overall goodness of the production and
the degree to which it matches the situation. This
process is repeated for other productions and the
production with the highest utility (after noise) is
selected. In PPM, noise plays an important role in the
selection of productions by simulating the subtle
changes of action that humans perform according to
environmental conditions and biased believes of the
reality. PPM allows ACT-R to generalize the sensory
input to new situations. Because the degree of match is
combined with a production utility, which is itself
learned from rewards reflecting its effectiveness, it
provides the possibility of adaptively learning which
decompositions are most effective and thus how
broadly they can be generalized.

4.3 Reinforcement Learning

The reinforcement model supports the utility learning
mechanism of ACT-R. The utilities of productions can
be learned as the model runs based on rewards that are
received from the environment. The utility of every
production is updated according to a simple integrator
model. If Uj(n-1) is the utility of a production i after its
n-1st application and R;(n) is the reward the production
receives for its nth application, then its utility Uj(n)
after its nth application will be as in equation 2
(typically, the learning rate & is set at 0.2).

U.(n)=U.(n-1)+a[R,(n)-U,(n—1)] Eq.2

In our experiments, cognitive agents were requested to
maximize their expected total reward over a given
number of trials and learn about the structure of the
environment by taking into account the reward
associated with each choice. Due to the fact that we run
two kind of experiments, we proposed a different
reinforcement algorithm for each one of these.

Consensus Reinforcement:

def: reward R
if (current color = majority color)
then R <- R + (payoff / 100)
#influence of current cognitive agent
over its neighbors
if (time step > 0) then

loop over neighbors



if (neighbor color = current color) then
R <-R + 5

if (cur_consensus > prev_consensus) then
R <- R + (payoff / 60)

else R <- R - (payoff / 20)

Coloring Reinforcement:
def: reward R
if (current color is not 1in conflict)
then R <- R + (payoff / 20)
else R <- R - (payoff / 20)
if (current color is steady and durable
decision) then R <- R + 1
if (game progress is increasing) then
R <- R + (payoff / 100)
else R <- R - (payoff / 50)

5. Experimentation

The purpose of the experiments is manifold: firstly it
aims to compare the convergence speed and
performance of both the consensus and the coloring
experiments, secondly it expects to get close similar
results between the cognitive simulation and the real
experiments with humans and finally it seeks to find
meaningful variances regarding to the different
modeling strategies for decision making process
(deterministic, stochastic and variable stochastic)

5.1 Convergence Speed and Performance

In figure 6 are plotted the convergence graphs for every
variation of probability q for the simulated consensus
experiments. Speed of convergence is increased as far
as the probability q of rewiring approaches to 1.0. In
figure 7 you can see that when gq=0.0 the curve
converges slowly and there are more fluctuations
reflecting conflicts to come to an agreement whereas
when gq=1.0 the curve converges promptly and gently.
The higher the probability q is the quicker the curve
converges because of more intra-communication
among the cliques is carried out and less clusters
formation is observed.

Probability g =0.0 Probability g =0.2 Probabilty q = 0.4

Probabilty q =0.6
v Probabilty q = 0.8 Probabilty = 1.0

Figure 6. Color decision over time for the consensus
experiments when varying the probability of rewiring,
g. y-axis corresponds to time and x-axis is each one of
the agents

The opposite effect occurs in the coloring experiments.
Figure 8 reflects that the lower the rewiring probability
is the faster and gentler the curve converges (in this
case, decreasing the number of conflicts from 190 to 0
over time). It is important to notice that this opposing
effect is due to the fact that when probability q is low
there are not so many inter-connections between the
cliques, which allows to come faster to a non-
conflicting coloring situation in comparison with high
clique inter-connections which require more effort to
avoid repeating colors into the local neighborhood.
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Figure 7. Convergence curve for the different variations of
probability q in the consensus experiments.
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Figure 8. Convergence curve for the different variations of
probability q in the coloring experiments

5.2 Consensus vs. Coloring Experiments

In figure 9 are plotted both agent-based experiments
(solid lines) and human-based experiments (dashed
lines). Solid lines show that our cognitive models do
indeed broadly approximate the human collective
behavior reported in (Kearns, 2010). In general terms,
both consensus curves (agent-based and human-based)
has a tendency to reduce the number of running steps
to converge into a consensus when probability q
increases, whereas both coloring curves tend to
increase the number of running steps when probability
q is increased as well. However, in our simulated
experiments the cognitive mechanisms behind the
decision-making accentuate the difference between
running times when q = 1.0 for the coloring



experiment, which emphasize the fact that a highly
inter-connected cliques require more time to reach an
agreement, specially if the chromatic number is low (4
in this case).

During the agent-based simulation, the gradual
reduction of the chromatic number while probability q
increases in coloring experiments was a crucial aspect
that allowed obtaining more similar results in
comparison with human-based experiments. We found
that both human-based and agent-based variability was
not significant in both consensus and coloring
experiments when P < 0.05, whereas it was significant
when P < 0.001. This variability in both experiments
was improved in a second experimental phase.
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Figure 9. Coloring vs. consensus performance

It is important to notice that agent-based experiments
behaves worst than human-based experiments after q =
0.5. The main reason for that is stubborn productions
produces a snowball effect when the network is highly
interconnected. One way to avoid that is increasing the
punishing feedback received for those stubborn
productions after triggering.

5.3 Multi-strategy Selection Process

We tested 3 different strategies for choosing either the
most influential agent (consensus) or the next choice of
a non-conflicting color (coloring). The first one was a
deterministic strategy; the second one was stochastic
but using a fixed value for the temperature in Boltzman
equation (t = 0.35) which has demonstrated to be
emerging as a reasonable setting for this parameter in
previous works of ACT-R (Anderson, 2004); and the
third strategy consisted of executing a set of variations
for cooling the temperature slowly over time. Figure 10
summarizes the results for the consensus problem. In
order to determine whether the Boltzman approaches
curves were significantly different, we performed 100
runs of the experiments and collect the corresponding
data.

Graphically we can conclude that the deterministic
strategy keeps almost steady with a soft tendency to
decrease when $q$ increases, whereas stochastic
strategies shows more fluctuations for low values of q

but rapidly converging when q gradually increases.
Empirically, we have found that cooling the
temperature slowly from (t = 1) to (t = 0.35) in 17
cycles (time steps) was the best configuration that
reflected in a more accurate fashion the human-based
experiments. Furthermore, this configuration had the
lowest data dispersion (with a std. dev. of 15.5). After
executing an Anova test we found that F > F_; (2.03 >
0.77) reflecting that there is a significant difference
between the strategies and, in this case, that using a
variable stochastic strategy meaningfully improves the
accuracy of the simulated experiments in comparison
with the social behavioral experiments.
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Figure 10. Performance comparison of different strategies
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6. Conclusions

Opposing tensions generated by conflicting incentives
over the whole cognitive process has demonstrated to
properly drive the decision-making process of both
individual and social levels of the multi-agent system.

Opposing productions had to compete for the right to
be selected, pretty much the same that occurs in our
brains when we have to make decisions, negotiate with
others or come to an agreement when conflicting
interests are present. In our cognitive simulation, there
was supporting evidence that using stochastic strategies
driven by slow decreasing of randomness fit better with
the results of social experiments with humans.

Presumably it agrees with the fact that humans make
less random decisions when we have more information
about the dynamics of the environment, as happened
with the cognitive simulation. As a final remark,
modeling cognitive social behaviors is an complex task
which should have into account some other aspects of
human decision-making such as mood states,
intentions, expectations, believes, etc. Modeling these
aspects probably would probably improve the accuracy
of our experiments.
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