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ABSTRACT: Network Science has reported a considerable amount of human-subject experiments on which 
individuals have to carry out different kind of coordination games such as coloring and consensus problems in order 
to observe the behavioral dynamics behind the decision-making process. We have focused on the experiments carried 
out by Kearns (Kearns, 2010) on which were found strong correlations between the influence and other features of 
individual and social behavior during the execution of both kind of experiments (the coloring and consensus 
problems). The aim of this paper is to identify the computational underpinnings of social network behavioral through 
computational agent modeling using a constrained cognitive architecture framework. Final results demonstrate a 
strong similarity between human and model dynamics that reflects how complex network behavior can emerge from 
simple cognitive agents. 
 
 
1. Introduction 
 
A significantly amount of studies in the field of 
network science focus on the analysis of coordination 
games which are performed in a networked and 
decentralized fashion. Whereas coordination and 
cooperation games such as the Prisoners Dilemma and 
other games have been extensively studied with human 
subjects over the years (Colin, 2003), (Russel, 1996) , 
(Reinhard, 1986}, behavioral studies of coordination 
on networks are more recent. In (Kearns, 2009), study 
coloring and related problems on networks, although 
they do not focus on a particular parameterized family 
of networks as it is done in (Kearns, 2010). McCubbins 
(McCubbins, 2009) and Kearns (Kearns, 2006) both 
observe that adding connections makes the coloring 
problem easier. 
 
The main goal pursued in (Kearns, 2010) is to analyze 
the dynamics of the process by which players reach 
coordinated choice and the role of networks in this 
process. Due to the main objective of our work is to 
design a cognitive model of the experiments done by 
(Kearns, 2010), we focused on both the methodological 
aspects and the behavioral results obtained in each 
human-subject experiment in order to recreate these 
behaviors through cognitive models that were then 
executed in the ACT- R cognitive architecture. 
 
2. Experimental Methodology 
 
The work developed here is based on a line of research 
at the University of Pennsylvania in controlled human-

subject experiments on strategic behavior in social 
networks (Kearns, 2006), (Kearns, 2009), (Kearns, 
2010). In the following, the experiment settings as 
performed in (Kearns, 2010) are described. First of all, 
two kind of experiments were performed: in the 
coloring problem individuals had to choose a color 
which were different from any of its neighbors and in 
the consensus problem on which individuals had to 
reach an unanimous consensus while receiving 
opposing incentives. The network is a chain of six 
cliques (complete sub-networks) of six vertexes each, 
for a total of 36 vertexes, as shown in Fig. 1. 
 

 
Figure1. Three sample networks used in the experiments. The top 
one is the baseline network, being a chain of cliques with q = 0, from 
which all other networks were derived by random edge rewiring. The 
second network had q = 0.1, and the third had q = 0.2. The six 
numbered vertices are called “connectors”, and the five edges 
connecting them were retained in all networks. Taken from (Kearns, 
2010). 
 
Additionally, there is a probability q ∈ [0,1]. For any 
fixed value of q, each edge not connecting two cliques 
in the baseline network is independently “rewired” 
with probability q. We used values of q ∈ 
{0;0.1;0.2;0.4;0.6;0.8;1}. For the consensus 



experiment, nine colors were arbitrarily allowed 
whereas for the coloring experiment there was a well-
defined minimum of colors required for a solution to 
exist (the so-called chromatic number of each 
network). 
 
In the consensus experiments each subject received two 
dollars if a global (unanimous) consensus to any single 
color was reached, and zero dollars otherwise. In the 
coloring experiments subjects received two dollars if a 
valid global coloring was reached, and zero dollars 
otherwise. Each player was given only a partial or local 
neighborhood view of the network (only the inter-
connected nodes are seen). Finally, both experiments 
had opposite network dynamics. 
 
3. Cognitive Architecture 
 
The cognitive model was developed using the ACT-R 
cognitive architecture (Anderson, 1998), (Anderson, 
2004). Cognitive architectures are computational 
representations of invariant cognitive mechanisms 
specified by unified theories of cognition. ACT-R is a 
modular architecture, reflecting neural constraints, 
composed of asynchronous modules coordinated 
through a central procedural system as depicted in 
figure 2.  
 

 
Figure 2. ACT-R Cognitive Architecture 
 
The procedural system is in charge of behavior 
selection and more generally the synchronization of the 
flow of information between the other modules. It is 
implemented as a production system where competing 
production rules are selected based on their utilities, 
learning through a reinforcement mechanism from the 
rewards and costs associated with their actions. The 
production system conditions are matched against 
limited-capacity buffers that control the interaction 
with the other modules by enabling a single command 
(e.g., retrieval of information, focus of visual attention) 
to be given at a time to a given module, and a single 
result to be returned (e.g., chunk retrieved from 
memory, visual item encoded). A declarative memory 
module holds both short-term information, such as the 

details of the current situation, as well as long-term 
knowledge, such as the procedural rules to follow. 
Access to memory is controlled by an activation 
calculus that determines the availability of chunks of 
information according to their history of use such as 
recency, frequency, and degree of semantic match. 
Learning mechanisms control both the automatic 
acquisition of symbolic structures such as production 
rules and declarative chunks, and the tuning of their 
subsymbolic parameters (utility and activation) to the 
structure of the environment. The perceptual-motor 
modules reflect human factor limitations such as 
attentional bottlenecks. Individual differences can be 
represented both in terms of differences in procedural 
skills and declarative knowledge, as well as in terms of 
architectural parameters controlling basic cognitive 
processes such as spreading of activation. 
 
4. Cognitive Modeling 
 
In the following, the computational cognitive 
mechanisms used for simulating the results of the 
social experiments obtained in (Kearns, 2010) will be 
described.  
 

4.1 Symbolic Productions  
As mentioned before, the procedural system uses 
production rules, which interact with different kind of 
buffers (retrieval, imaginal, declarative, visual, motor, 
and others) in order to carry the reasoning and 
inference process out according to the information that 
every node of the network senses from its environment 
and acts over it. We have implemented several 
strategies to model the social experiments, and every 
one of these has a set of different productions as 
described below: 
 
Productions for the Consensus problem: some 
opposing productions compete against the others to 
obtain the global control over the decision-making 
process that performs the agent. Some productions 
follow the majority, some others follow that agent 
which is the most influential over the neighborhood1, 
as shown in in fig. 3; some other productions just keep 
the same color no matter if the environmental 
conditions are not favorable for that, that is, the 
stubborn productions. ACT-R productions are written 
in an enriched language that not only allows accessing 
and manipulating buffer contents but also allows doing 
as many complex validations as necessary and 
triggering actions.  
 

                                                             
1 That is, that agent which has more unseen connections, keeps its 
color for more time and when it changes its color there are a 
considerable amount of seen connected agents that do the same 



a)#If#the#dominant#color#is#increasing#then#
change#to#the#dominant#color#

b)#if#current#color#is#the#same#as#the#majority#and#its#amount#is#
decreasing#then#change#to#the#most#influen8al#agent#

c)#If#global#consensus#is#increasing#then#keep#the#same#color#

d)#If#current#color#is#not#the#same#as#the#majority#and#its#
amount#is#decreasing#then#change#to#majority#  

Figure 3. Consensus: fragment of productions related to the color 
changes in the cognitive agent’s neighborhood 
 
Productions for the Coloring problem:  The basic 
idea behind this cognitive modeling is to seek an 
strategy based on both past decisions and current 
situation that helps the agent to avoid conflicting 
coloring connections. Stubborn and wrong productions 
were modeled as well but not presented in order to 
keep the simplicity. 
 
As you can infer from figure 3, 4, and 5 all the 
productions generate opposing tensions and a 
continuous competence for being the production to be 
fired. For example, “increasing-then-change-majority” 
production senses the same information as “increasing-
then-keep-color” production but they trigger different 
actions: the first one will change its color in order to 
follow the majority and the second one will keep its 
current color if the majority is increasing (whichever 
its color is). Similar antagonisms are observed in the 
rest of productions. Due to the fact that multiple 
productions may match the same sensory input or that 
sometimes there is not a production, which has a 
perfect match with the sensory input, a selection 

process based on production utilities and partial 
matching is required. 
 

a)#If#global#consensus#is#stuck#then#choose#
sta3s3cally#the#color#of#an#influen3al#agent#

b)#If#global#consensus#is#stuck#then#choose#
sta3s3cally#the#color#of#another#majority#node#

c)#If#the#global#consensus#is#increasing#then#keeps#
the#same#current#color#

d)#If#current#color#is#not#the#same#as#majority#and#
it#is#decreasing#then#keeps#the#same#color.#  

Figure 4. Consensus: Fragment of productions related to the 
cognitive agent’s internal motivations 
 
It is important to remark that both experiments were 
running each one by using three different decision-
making strategies: 1) a purely deterministic process on 
which the highest values were always selected (e.g., the 
majority or the most influential agent for the consensus 
problem and the change-to-another-color action for the 
coloring problem); 2) an stochastic selection process 
based on the Boltzman equation (Anderson, 2004) as 
shown in equation 1; and 3) a second version of the 
stochastic process using a gradually decreasing value 
for the temperature, similar to the simulated annealing 
approach (Kirkpatrick, 1983). 
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Equation 1. Boltzman Equation 
 



 
Pi is the probability that cognitive agent i follows agent 
j according to the function M, which can be either the 
majority or the most influential agent. t is the 
temperature which determines the randomness of the 
process and it is set at 0.35 for convenience. 
 

a)#If#current#color#doesn’t#conflict#with#any#color#of#local#neighborhood#
and#persists#over#:me#then#keep#the#same#color#

b)#If#current#color#is#repeated#but#the#previous#selec:on#is#not#conflic:ng#
then#change#again#to#the#previous#color#

c)#If#both#current#and#previous#colors#are#conflic:ng#then#stochas:cally#
change#to#another#color##

d)#If#all#cliques#are#in#a#non>conflic:ng#state#the#keep#color#  
Figure 5. Coloring: Fragment of productions to avoid local color 
similarities. 
 

4.2 Activation Process  
All the knowledge required for decision making is 
encoded in the form of ACT-R productions and the 
activation of those productions combines two main 
sub-process: Spreading activation and Partial 
Matching. Spreading Activation is a sub-symbolic 
process on which chunks spread activation to the 
chunks in declarative memory based on the contents of 
their slots. They spread an amount of activation based 
on their relation to the other chunks. An ACT-R feature 

called Production Partial Matching (PPM) is used to 
select the production that best matches the current 
sensed state of the neighborhood. Normally, a 
production is said to match only if the constraints 
specified in the if (condition) part match exactly to the 
contents of the specified buffers. With PPM enabled, 
the architecture will match productions in the absence 
of an exact match between the specification and the 
buffer contents. It does this by calculating a similarity 
value between the specification and the content. This 
similarity value is combined with the production’s 
existing utility value to generate a new utility that 
reflects both the overall goodness of the production and 
the degree to which it matches the situation. This 
process is repeated for other productions and the 
production with the highest utility (after noise) is 
selected. In PPM, noise plays an important role in the 
selection of productions by simulating the subtle 
changes of action that humans perform according to 
environmental conditions and biased believes of the 
reality. PPM allows ACT-R to generalize the sensory 
input to new situations. Because the degree of match is 
combined with a production utility, which is itself 
learned from rewards reflecting its effectiveness, it 
provides the possibility of adaptively learning which 
decompositions are most effective and thus how 
broadly they can be generalized. 
 

4.3 Reinforcement Learning  
The reinforcement model supports the utility learning 
mechanism of ACT-R. The utilities of productions can 
be learned as the model runs based on rewards that are 
received from the environment. The utility of every 
production is updated according to a simple integrator 
model. If Ui(n-1) is the utility of a production i after its 
n-1st application and Ri(n) is the reward the production 
receives for its nth application, then its utility Ui(n) 
after its nth application will be as in equation 2 
(typically, the learning rate α is set at 0.2). 
 
Ui (n) =Ui (n−1)+α[Ri (n)−Ui (n−1)]  Eq. 2 

 
In our experiments, cognitive agents were requested to 
maximize their expected total reward over a given 
number of trials and learn about the structure of the 
environment by taking into account the reward 
associated with each choice. Due to the fact that we run 
two kind of experiments, we proposed a different 
reinforcement algorithm for each one of these. 
 
Consensus Reinforcement: 
def: reward R 

if (current_color = majority_color) 
then R <- R + (payoff / 100) 
#influence of current cognitive agent 
over its neighbors 

    if (time_step > 0) then 
        loop over neighbors 



if (neighbor_color = current_color) then 
R <- R + 5 
if (cur_consensus > prev_consensus) then 
R <- R + (payoff / 60) 
else R <- R - (payoff / 20) 
 
Coloring Reinforcement: 
def: reward R 
if (current_color is not in conflict) 
then R <- R + (payoff / 20) 
else R <- R - (payoff / 20) 
if (current_color is steady and durable 
decision) then R <- R + 1 

if(game_progress is increasing) then 
R <- R + (payoff / 100) 

    else R <- R - (payoff / 50) 
 
5. Experimentation 
 
The purpose of the experiments is manifold: firstly it 
aims to compare the convergence speed and 
performance of both the consensus and the coloring 
experiments, secondly it expects to get close similar 
results between the cognitive simulation and the real 
experiments with humans and finally it seeks to find 
meaningful variances regarding to the different 
modeling strategies for decision making process 
(deterministic, stochastic and variable stochastic) 
 

5.1 Convergence Speed and Performance  
In figure 6 are plotted the convergence graphs for every 
variation of probability q for the simulated consensus 
experiments. Speed of convergence is increased as far 
as the probability q of rewiring approaches to 1.0. In 
figure 7 you can see that when q=0.0 the curve 
converges slowly and there are more fluctuations 
reflecting conflicts to come to an agreement whereas 
when q=1.0 the curve converges promptly and gently. 
The higher the probability q is the quicker the curve 
converges because of more intra-communication 
among the cliques is carried out and less clusters 
formation is observed. 
 

 
 
Figure 6. Color decision over time for the consensus 
experiments when varying the probability of rewiring, 
q. y-axis corresponds to time and x-axis is each one of 
the agents 
 

The opposite effect occurs in the coloring experiments. 
Figure 8 reflects that the lower the rewiring probability 
is the faster and gentler the curve converges (in this 
case, decreasing the number of conflicts from 190 to 0 
over time). It is important to notice that this opposing 
effect is due to the fact that when probability q is low 
there are not so many inter-connections between the 
cliques, which allows to come faster to a non-
conflicting coloring situation in comparison with high 
clique inter-connections which require more effort to 
avoid repeating colors into the local neighborhood. 
 

 
Figure 7. Convergence curve for the different variations of 
probability q in the consensus experiments. 
 

 
Figure 8. Convergence curve for the different variations of 
probability q in the coloring experiments 
 

5.2 Consensus vs. Coloring Experiments  
In figure 9 are plotted both agent-based experiments 
(solid lines) and human-based experiments (dashed 
lines). Solid lines show that our cognitive models do 
indeed broadly approximate the human collective 
behavior reported in (Kearns, 2010). In general terms, 
both consensus curves (agent-based and human-based) 
has a tendency to reduce the number of running steps 
to converge into a consensus when probability q 
increases, whereas both coloring curves tend to 
increase the number of running steps when probability 
q is increased as well. However, in our simulated 
experiments the cognitive mechanisms behind the 
decision-making accentuate the difference between 
running times when q = 1.0 for the coloring 



experiment, which emphasize the fact that a highly 
inter-connected cliques require more time to reach an 
agreement, specially if the chromatic number is low (4 
in this case).  
 
During the agent-based simulation, the gradual 
reduction of the chromatic number while probability q 
increases in coloring experiments was a crucial aspect 
that allowed obtaining more similar results in 
comparison with human-based experiments. We found 
that both human-based and agent-based variability was 
not significant in both consensus and coloring 
experiments when P < 0.05, whereas it was significant 
when P < 0.001. This variability in both experiments 
was improved in a second experimental phase. 
 

 
Figure 9. Coloring vs. consensus performance 
 
It is important to notice that agent-based experiments 
behaves worst than human-based experiments after q = 
0.5. The main reason for that is stubborn productions 
produces a snowball effect when the network is highly 
interconnected. One way to avoid that is increasing the 
punishing feedback received for those stubborn 
productions after triggering. 
 

5.3 Multi-strategy Selection Process 
We tested 3 different strategies for choosing either the 
most influential agent (consensus) or the next choice of 
a non-conflicting color (coloring). The first one was a 
deterministic strategy; the second one was stochastic 
but using a fixed value for the temperature in Boltzman 
equation (t = 0.35) which has demonstrated to be 
emerging as a reasonable setting for this parameter in 
previous works of ACT-R (Anderson, 2004); and the 
third strategy consisted of executing a set of variations 
for cooling the temperature slowly over time. Figure 10 
summarizes the results for the consensus problem. In 
order to determine whether the Boltzman approaches 
curves were significantly different, we performed 100 
runs of the experiments and collect the corresponding 
data. 
 
Graphically we can conclude that the deterministic 
strategy keeps almost steady with a soft tendency to 
decrease when $q$ increases, whereas stochastic 
strategies shows more fluctuations for low values of q 

but rapidly converging when q gradually increases. 
Empirically, we have found that cooling the 
temperature slowly from (t = 1) to (t = 0.35) in 17 
cycles (time steps) was the best configuration that 
reflected in a more accurate fashion the human-based 
experiments. Furthermore, this configuration had the 
lowest data dispersion (with a std. dev. of 15.5).  After 
executing an Anova test we found that F > Fcrit (2.03 > 
0.77) reflecting that there is a significant difference 
between the strategies and, in this case, that using a 
variable stochastic strategy meaningfully improves the 
accuracy of the simulated experiments in comparison 
with the social behavioral experiments. 
 

 
Figure 10. Performance comparison of different strategies 
 
6. Conclusions 
 
Opposing tensions generated by conflicting incentives 
over the whole cognitive process has demonstrated to 
properly drive the decision-making process of both 
individual and social levels of the multi-agent system.  
 
Opposing productions had to compete for the right to 
be selected, pretty much the same that occurs in our 
brains when we have to make decisions, negotiate with 
others or come to an agreement when conflicting 
interests are present. In our cognitive simulation, there 
was supporting evidence that using stochastic strategies 
driven by slow decreasing of randomness fit better with 
the results of social experiments with humans. 
 
Presumably it agrees with the fact that humans make 
less random decisions when we have more information 
about the dynamics of the environment, as happened 
with the cognitive simulation. As a final remark, 
modeling cognitive social behaviors is an complex task 
which should have into account some other aspects of 
human decision-making such as mood states, 
intentions, expectations, believes, etc. Modeling these 
aspects probably would probably improve the accuracy 
of our experiments. 
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