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Abstract—An attractive question which still remains on Intelli-
gent Systems reseach field is how can we build autonomous agents
whose internal cognition process can be self-configured over
time? Our paper proposes a self-organized model for decision
making, which is a robust evolutionary extension of typical
Behaviors Network model. Given an initial set of meaningless and
unconnected units (behaviors), our system is able to evolutionarily
build well-defined and robust behavior networks which are
adapted and specialized to concrete internal agent’s needs and
goals. As a result, several properties of self-organization and
adaptability emerged when the proposed model was tested in a
robotic environment, using a multi-agent platform.

I. INTRODUCTION

An autonomous agent is a self-contained program which
is able to control its own decision making process, sensing
and acting autonomously in its environment, and by doing
so realizes a set of goals or tasks for which it is designed.
These goals and tasks use to change dynamically through
time as a consequence of internal and external (environmental)
perturbations, and ideally, the agent should adapt its own
behavior to these perturbations. Maes [1]-[3] proposed a
model for building such an autonomous agent, which includes
a mechanism for action selection (MASM) in dynamic and
unpredictable domains based on so-called behavior networks.
This model specifies how the overall problem can be decom-
posed into subproblems, i.e. how the construction of the agent
can be decomposed into the construction of a set of component
modules (behaviors) and how these modules should be made
to interact. The total set of modules and their interactions
provides an answer to the question of how the sensor data
and the current internal state of the agent determine the actions
(effector outputs) and future internal state of the agent through
an activation spreading mechanism that determines the best
behavior to be activated at each situation.

One of the most relevant weakness of original Maes model
is that the whole network model is fixed, so it requires to
be pre-programmed both a network structure (e.g., modules,
spreading activation links, etc.) and global parameters that
define the characteristics of a particular application (e.g., goal-
orientedness vs. situation-orientedness, etc.), and hence that
the agent has no complete autonomy over its own decision
making process. As an intent of resolving this problem, in
[4] are proposed two mechanisms depending on real world
observations: a learning mechanism for adding/deleting links
in the network, and an introspection mechanism for tuning

U.S. Government work not protected by U.S. copyright

Angelica de Antonio
Decoroso Crespo Lab
Universidad Politecnica de Madrid
Madrid, Spain
Email: angelica@fi.upm.es

global parameters. The main problem with the former is that
it does not use a real machine learning algorithm, but rather
a simple statistical process based on observations, so a lot
of hand-coded instructions are still required. In respect to the
latter, it proposes a meta-network (another behavior network)
which controls the global parameter variation of first network
through time, but the problem still remains: who is in charge
of dynamically adapting the global parameters of the meta-
network? it seems to be similar to what is well known in
cognitive psychology as the homunculus problem, or as the
russian nested dolls (matryoska dolls) effect in colloquial
terms.

The present work proposes a novel model based on Gene
Expression Programming (GEP) [5] that allows the agent to
self-configure both the topological structure and the functional
characterization of each behavior network without losing the
required expressiveness level. This approach confers a high
level of adaptability and flexibility, and always produces, as
a consequence, syntactically and semantically valid behavior
networks.

The remainder of this paper is organized as follows. Section
IT describes roughly the operation of the behavior network
model. Section III explains in detail how the behavior network
model is extended using GEP. Section IV outlines and dis-
cusses the results of the experiments. The concluding remarks
are shown in Section V.

II. BEHAVIOR NETWORKS MODEL

In the following, we describe the behavior network formal-
ism. Since we do not need the full details for our purposes,
the description will be sketchy and informal at some points.

A Behavior Network (BN) is a mechanism proposed by
Maes [1] as a collection of competence modules which works
in a continuous domains. Action selection is modeled as
an emergent property of an activation/inhibition dynamics
among these modules. A behavior ¢ can be described by a
tuple (c;,a;,d;, ;). ¢; is a list of preconditions which have
to be fulfilled before the behavior can become active, and
e = 7(¢;, 8) the executability of the behavior in situation s
where 7(c;, s) is the truth value of the precondition in situation
s. a; and d; represent the expected (positive and negative)
effects of the behavior’s action in terms of an add list and a
delete list. Additionally, each behavior has a level of activation
;. If the proposition X about environment is true and X is



in the precondition list of the behavior A, there is an active
link from the state X to the action A. If the goal Y has an
activation greater than zero and Y is in the add list of the
behavior A, there is an active link from the goal Y to the
action A.

Internal links include predecessor links, successor links, and
conflicter links. There is a successor link from behavior A
to behavior B (A has B as successor) for every proposition
p that is member of the add list of A and also member of
the precondition list of B (so more than one successor link
between two competence modules may exist). A predecessor
link from module B to module A (B has A as predecessor)
exists for every successor link from A to B. There is a
conflicter link from module A to module B (B conflicts with
A) for every proposition p that is a member of the delete list of
B and a member of the precondition list of A. The following
is the procedure to select an action to be executed at each step:

1) Calculate the excitation coming in from the environment
and the goals.

2) Spread excitation along the predecessor, successor, and
conflicter links, and normalize the behavior activations
so that the average activation becomes equal to the
constant 7.

3) Check any executable behaviors, choose the one with
the highest activation, execute it, and finish. A behavior
is executable if all the preconditions are true and if
its activation is greater than the global threshold. If no
behavior is executable, reduce the global threshold and
repeat the cycle.

Additionally, the model defines five global parameters that
can be used to “tune” the spreading activation dynamics of
the BN and thereby, they affect the operation of the behavior
network:

1) m: the mean level of activation

2) 6: the threshold for becoming active. 6 is lowered with
10% each time none of the modules could be selected.
It is reset to its initial value when a module could be
selected.

3) ¢: the amount of activation energy a proposition that is
observed to be true injects into the network.

4) ~: the amount of activation energy a goal injects into
the network.

5) §: the amount of activation energy a protected goal takes
away from the network.

In Maes’ BN model, all of the internal links and all of
the global parameters as well must be tuned by hand. In the
following section, we describe a mechanism to evolve the BN
topology in order to adapt it to continuous changing goals and
states of the environment.

III. EVOLUTIONARY BEHAVIOR NETWORKS

We propose an extended version of Maes model described
above, which incorporates an evolutionary mechanism ad-
dressed by Gene Expression Programming (GEP) [5] in
charge of evolving the BN topology, in other words, the

b) Expression Tree for the Behavior Network (Phenotype) ¢) Behavior Network

Fig. 1: GEP translation of a Behavior Network

activation/inhibition links among behaviors, the preconditions
of each behavior, and the algorithm’s global parameters. This
section explains how the chromosomes of GEP can be mod-
ified so that a complete BN, including the architecture, the
activation/inhibition links, and the global parameters, could
be totally encoded by a linear chromosome, though may be
expressed as non-linear structures such as expression trees.
The main advantage of using GEP is that no matter how
much or how profoundly the chromosomes are modified, the
algorithm always guarantees the production of valid solutions.

A. Genetic encoding of Behavior Networks

The network architecture is encoded in the familiar structure
of head and tail [6]. The head contains both special functions
that activate the units and terminals that represent the input
units. The tail contains obviously only terminals. Let us now
analyze an example about how the BN is encoded into a GEP
chromosome.

In Figure 1.a, a linear multigenic chromosome is initially
generated in a random way and modified by genetic operators
after that. Each multigenic chromosome defines several Behav-
ioral Genes and just one Functional Gene. Each Behavioral
Gene encodes a different behavior’s structure whereas the
Functional Gene encodes the global parameters of the BN. We
propose a multigenic chromosomal structure, which is more
appropriate to evolve good solutions to complex problems,
because they permit the modular construction of complex
hierarchical structures, where each gene encodes a smaller
and simpler building block (a behavior). The details of the
encoding process will be explained further along.

After that, the multigenic chromosome could be translated
into the whole Expression Tree of Figure 1.b, using the
conversion process described in [6]. Here, it is possible to
identify three kind of functions: B, D, and T. The B function
is used for representing each behavior of the net, and it has
an arity of three: the first branch is a set of preconditions,
the second one is a set of activation links that connects to
other behaviors, and the third one is a set of inhibition links



that connects to other behaviors (dashed arrows). The D and
T functions are connectivity functions that join two or three
elements, respectively, of the same nature (e.g., behaviors,
preconditions, goals, etc.). It is important to notice that the
Expression Tree is composed of several sub-expression trees
(sub-ETs), where each one of these represents the structure
of an unique behavior in the net, and hence that each sub-ET
has a particular organization that is encoded into one separated
Behavioral Gene, and the whole Expression Tree (ET) models
the entire behavior network.

In Figure 1.c is depicted a basic BN with three behaviors
(B1, B2, and B3), where the solid arrows denote excitatory
activation connections and the dashed arrows denote inhibi-
tion connections among behaviors. P, P>, P3, Py and P;
denotes the preconditions for behaviors. In order to simplify
the picture, each behavior only defines few preconditions.
However, in the real implementation, the preconditions set
for each behavior might be composed by: a set of sensory
inputs (internal and external), a set of active working memory
elements, a set of current sub-goals, and a set of motivational
states (drives, moods and emotions). (G is an agent’s global
goal pursued by behavior Bj.

In the example of Figure 1.a, for each Behavioral Gene, po-
sitions from O to 3 encode the head domain (so both functions
and terminals are allowed), and positions from 4 to 12 encode
the tail domain (where only terminals are allowed). Due to
each Behavior defines variable sets of preconditions, activation
links, and inhibition links, the corresponding genetic encoding
spans along regions of different sizes into the behavioral gene.
These regions are called Open Reading Frames (ORF) [5]. In
GEP, what changes is not the length of genes, but rather the
length of the ORF. Indeed, the length of an ORF may be equal
to or less than the length of the gene.

Each sub-ET can be generated straightforwardly from chro-
mosomal representation as follows: first, the start of a gene
corresponds to the root of the sub-ET, forming this node the
first line; second, depending on the number of arguments
to each element (functions may have a different number of
arguments, whereas terminals have an arity of zero), in the
next line are placed as many nodes as there are arguments to
the functions in the previous line; third, from left to right, the
nodes are filled, in the same order, with the elements of the
gene; and fourth, the process is repeated until a line containing
only terminals is formed.

Due to the process is “’bidirectional, inversely each Behav-
ioral Gene can be easily inferred from the corresponding sub-
ET as follows: first, the behavior function (B) of the sub-ET is
encoded, and after that, the algorithm makes a straightforward
reading of the sub-ET from left to right and from top to bottom
(exactly as one reads a page of text). For instance, sub-ET for
the behavior By is encoded as: B1-D-G1-P2-P1-P5, and this
is the ORF of its corresponding Behavioral Gene (i.e., the
shadowy region for this gene in Figure 1).

On the other hand, the Functional Gene encodes an addi-
tional domain called D,,, which represents the global param-
eters of the BN. For the Functional Gene, position 0 encodes

m (the mean level of activation), position 1 encodes 6 (the
threshold for becoming active), position 2 encodes ¢ (the
amount of energy for preconditions), position 3 encodes ¢
(the amount of energy for protected goals), and position 4
encodes «y (the amount of energy for goals). The values of
global parameters are kept in an array and are retrieved as
necessary. The number represented by each position in the
parameters domain indicates the order in the array D,. For
example, position 0 in the Functional Gene (7) encapsulates
the index “4” which corresponds to the value 92 in the D,
array (in bold), and so on. For simplicity, Figure 1 only shows
an array of ten elements for parameters domain D), but in
our implementation we are using an array of one hundred
elements, where each position encodes one numeric value
between 0 and 100. Genetic operators guarantee that global
parameters are always generated inside the domain of D,
array.

B. Special Genetic Operators

The operators of the basic gene expression algorithm [5]
are easily transposed to behavior-net encoding chromosomes,
and all of them can be used as long as the boundaries of
each domain are maintained so alphabets are not mixed up.
Mutation was extended to all the domains so every different
gene (behavioral or functional) is modified following its re-
spective domain constraints (e.g., not replacing terminal nodes
by function nodes in the tail region, etc.). Insertion Sequence
(IS) and Root Insertion Sequence (RIS) transposition were also
implemented in behavioral genes and their action is obviously
restricted to heads and tails. In functional gene we define
only an IS operator (because RIS operator is not applicable
here) that works within D, domain, ensuring the efficient
circulation of global parameters in the population. Another
special operator, the parameters’ mutation, was also defined
in order to directly introduce variation in the functional gene
(i.e., global parameters region) selecting random values from
D, array.

The extension of recombination and gene transposition to
GEP-nets is straightforward, as their actions never result in
mixed domains or alphabets. However, for them to work
efficiently (i.e., allow an efficient learning and adaptation),
we must be careful in determining which behavior’s structure
elements and global parameters insert into which region after
the splitting of the chromosomes, otherwise the system is
incapable of evolving efficiently. Therefore, for our multigenic
system, a special intragenic two-point recombination was used
so that the recombination is restricted to a particular gene
(instead of interchanging genetic material with other kind of
genes in the chromosome).

In summary, in order to guarantee the generation of valid
BN, all genetic operators have to comply with the following
constrains:

o In the first position of behavioral genes, it can only be
inserted a B (Behavior) node.
o For head region in Behavioral Genes:



— It just can be mutated by connectivity functions (D
and T'), and by terminals such as preconditions (FP,,)
and goals (G,).

— Transposition (IS and RIS) and one-point and two-
point Recombination operators must follow the same
syntactic validations than the mutation operator.

« For tail region in Behavioral Genes:

— Terminals of this gene just can be mutated, trans-
posed and recombined using elements from tail do-
main, such as preconditions (P, ) and goals (G,,). No
syntactic validations are required.

o For global parameters in Functional Gene:

— Terminals of this gene just can be mutated, trans-
posed and recombined using numeric values from
parameters domain D), that means, numeric values
between 0 and 100. No additional syntactic valida-
tions are required.

C. Fitness Functions for BN-Chromosomes

In this section we describe how Behavior-Network chromo-
somes are evaluated, so they have more or less probability to
be replicated in the next generation of the evolutionary process.
For the fitness evaluation we have took into account the
theorems proposed by [7], and additionally we have identified
a set of necessary and sufficient conditions that make behavior
networks goal converging. It is important to notice that all
reinforcement parameters used in the next fitness functions are
self-generated by the system from changes observed in agent’s
internal states, so that they don’t require a priori encoding nor
manual adjustment made by a designer.

First of all, we define two fitnesses functions: one evaluates
how well-defined the behavior-network structure is, and the
other one evaluates the efficiency and functionality of the
behavior network. The fitness function for evaluating the
behavior-network structure is:

FFS;,=A;,+B;,+C;+D; + E; + F; (D)

Where ¢ is a chromosome encoding a specific BN, and each
term is:

a) A;: is there at least one behavior of the net accom-
plishing with a goal?, such that:

al, if Abeh €i | Apen, M G(t) # 0
A= . (2)
a2, otherwise

where beh is any behavior, ap.p, is the add list of beh, G(t)
is a set of global goals, al is a positive reinforcement (+100),
and a2 is a negative reinforcement (-100).
b) B;: are all behaviors of the net well-connected? such
that:
B = nep - bl 4 nyyp - 02 3)

where 1., is the number of behaviors correctly connected to
others through successor and predecesor links (self inhibitory
connections are incorrect). 1., is the number of unconnected
behaviors (no propositions at add list neither at delete list).

bl is a positive reinforcement (+10) and b2 is a negative
reinforcement (-20).

c¢) C;: is there any deadlock loops defined by the BN?,
such that:

(TLp X C].) + (nnp X 62), if the BN has associated a global goal

C= .
c3, otherwise

“4)
where n, is the number of behaviors that define at least
one path connecting to the global goal, ¢l is a positive
reinforcement (+20), n,, is the number of behaviors without
a path between them and the global goal, and ¢2 and ¢3 are
negative reinforcements (-10 and -50).

d) D;: are all propositions (preconditions, add list, and
delete list) of each behavior unambiguous? (e.g., the precon-
dition set is ambiguous if it has propositions p and —p at the
same time), such that:

k

D= (npa x dl) + (nq x d2) (5)
=0

where k is the total number of behaviors, n,,, is the number
of unambiguous propositions, d1 is a positive reinforcement
(+10), n, is the number of ambiguous propositions, and d2 is
a negative reinforcement (-20).
e) E;: are all add-list propositions non-conflicting? (e.g.,
a proposition that appears both in the add list and in the delete
list — for the same behavior — is a conflicting proposition), such
that:
k
E = Z(nnca X el) 4+ (ne X €2) (6)
i=0

where k is the total number of behaviors of the BN, n.,, is
the number of non-conflicting add-list propositions, el is a
positive reinforcement (+10), n., is the number of conflicting
add-list propositions, and e2 is a negative reinforcement (-20).

f) F;: are all delete-list propositions non-conflicting?
such that:

k
F =2 (npea X f1) + (nea x [2) (7)
=0

K2

where k is the total number of behaviors of the BN, n.,q is
the number of non-conflicting delete-list propositions, f1 is a
positive reinforcement (+10), n.q is the number of conflicting
delete-list propositions, and f2 is a negative reinforcement (-
20).

On the other hand, the fitness function for evaluating
network functionality is:

FFE, =G+ H;+1,+J;+ L+ M; + N; (®)

Where ¢ is a chromosome encoding a specific BN, and each
term is defined as:



g) G;: this term determines if ~y (the amount of energy
for goals) is a well-defined parameter. Due to the parameter ~y
must reflect the “goal-orientedness” feature of the BN, then:

100—g1, if (Rfreqa>0ARy>0)V(Ryreqa <OAR~,<0)
G= )

g2, otherwise

where Rjf..qc is the absolute variation rate which deter-
mines how often a goal is activated by the internal agent’s
motivational sub-system. R, is the absolute variation rate
for parameter . gl is the absolute difference among the
variation rates: g1 = | Rjreqa R, | ; and g2 is a
negative reinforcement (-100). Intuitively, when the frequency
of activated goals increases through time, the global parameter
~ should increase proportionally too.

h) H;: this term determines if ¢ (the amount of energy
for preconditions) is a well-defined parameter. Due to the
parameter ¢ must reflect the “situation relevance” and ‘“‘adap-
tivity” features of the BN, then:

100—h1, if (Rfreqe>0ARG>0)V (R peqe <OAR4<0)

o= (10)

h2, otherwise

where hl is the absolute difference among the absolute vari-
ation rates: hl = | Rypeqc Ry | . Ryreqe is a variation
rate (between a current and prior states) which determines
how often the environmental perturbations are perceived by
the agent. Ry denotes the absolute variation rate for parameter
¢. And h2 is a negative reinforcement (-100).

i) I;: this term determines if w (the mean level of
activation) is a well-defined parameter. Due to the parameter
« must reflect the “adaptivity” and “bias to ongoing plans”
features of the BN, then:

100—:1, if (RfreqSG >0AR, >O)V(Rf7~eqsc <0AR,<0)

I =
12, otherwise

1D
where 71 is the absolute difference among the absolute varia-
tion rates: il = | Ryreqs¢ — Rr | - Rfregsc 18 a variation
rate (between a current and prior states) which determines the
activation frequency of the sub-goals set that are associated
to a current global goal. R, denotes the absolute variation
rate for parameter 7. 72 is a negative reinforcement (-100).
Absolute variation rates are treated quite similar as in term G.
Intuitively, if the environment requires the agent to address its
actuation to the achievement of a hierarchical set of goals, the
BN must increase the value of 7 through the time; otherwise,
if the environment is quite dynamic and an adaptive behavior

is required, the parameter 7w should decrease.
J) Ji: this term determines if § (the amount of energy
for protected goals) is a well-defined parameter. Due to the
parameter § must reflect the “avoiding goal conflicts” feature

of the BN, then:
100—351, if (Rauto>0ARs<0)V(Rguto<OARs>0)
J= (12)

j2, otherwise

where j1 is the absolute difference among the absolute vari-
ation rates: j1 = | Rauto Rs | . Rauto is the absolute
variation rate for the number of self-referenced loops identified
by the agent between current and prior states (e.g., when the
system identifies a circular reference of behavior activation
such as: a — b,b — c¢,c — a). Rs denotes the absolute
variation rate for parameter J. j2 is a negative reinforcement
(-100). Intuitively, if R4, increases, then Rs should decrease
proportionally, and vice versa.

k) L;: this term determines if 6 (the threshold for becom-
ing active) is a well-defined parameter. Due to the parameter
6 must reflect the “bias to ongoing plans”, “deliberation”, and
“reactivity” features of the BN, then:

100—11, if (Rfrech>0/\R9<O)V(RfreqCE<O/\Rg>0)

L=
12, otherwise

13)
where [1 is the absolute difference among the absolute varia-
tion rates: {1 = | Ryreqce — Ro | . Rfreqor is the absolute
variation rate for the number of changing environmental el-
ements between current and prior states (e.g., novel objects
that coming into the perception field, or perceived objects
that change physically, etc.). Ry denotes the absolute variation
rate for parameter 6. [2 is a negative reinforcement (-100).
Intuitively, if R..qcE increases (that means, the environment
is more dynamic), then Ry should decrease proportionally
(making the BN more reactive); but if Rf..q,cr decreases, then
Ry should increase in order to make the BN more deliberative.
[) M;: this term validates the add-list efficiency of each
behavior. If the current state includes a proposition that
corresponds to any add-list’s proposition of any behavior, the

behavior will receive a positive reinforcement:

k
M:m1~Zeev

1=0

(14)

where m1 is a positive reinforcement (+100). k is the number
of propositions defined by the add-list of the activated behavior
(apen), and eev is a function that determines if the expected
effect is included into the current state (S(¢)), in other words,
it validates if the following condition is true: Ip € S(¢) | p N
apen, # 0.

m) N,;: this term validates the delete-list efficiency of
each behavior. If the current state includes a proposition that
corresponds to any delete-list’s proposition of any behavior,
the behavior will receive a negative reinforcement:

k
N =nl- Zeen
i=0

where n1 is a negative reinforcement (-200). k is the number of
propositions defined by the delete-list of the activated behavior
(dpen), and een is a function that determines if the non-
expected effect is not included into the current state (S(t)),
in other words, it validates if the following condition is true:
dpeSEt)|p N dper, = 0.

(15)



Finally, the whole fitness for each BN is calculated as
follows:

FFT;, =FFS;+ FFE; (16)

All the elements of the function exert different (and in
some cases, opposing) evolutionary and selective pressures.
On the one hand, we have defined a function element for
each of the most typical structural problems identified in
behavior networks (such as terminating and dead-end net-
works, monotone networks, non-converging acyclic networks,
ambiguous and conflicting links, and so on). On the other
hand, we have defined a function element for each kind
of functional characterization of the behavior network (such
as goal orientedness vs. situation orientedness, bias towards
ongoing plans vs. adaptivity, deliberation vs. reactivity, and
sensitivity to goal conflicts). So the whole fitness function try
to model a multi-objective problem where probably the best
suited solution should be met in an intermediate point.

IV. EXPERIMENTATION

A simulated robotic environment was proposed in order
to evaluate the proposed evolutionary decision-making model.
In the simulated environment, the robot will have to collect
different kind of objects and then deliver them in specific
storages. The robot will have to coordinate different kind
of tasks such as object search, object recognition, route
planning, obstacle avoidance, battery recharging, object piling
up, and so forth. The simulated robotic environment was
designed using the Player/Stage platform'. Stage simulates a
population of mobile robots moving in and sensing a two-
dimensional bitmapped environment. In our simulation, the
robot (agent) is provided with four kind of sensor interfaces:
sonar sensors, gps sensor, laser sensors, and fiducial sensors;
and two kind of actuator interfaces: position interface and
gripper interface. In order to measure the convergence rates
of different aspects of the evolutionary functional design of
BNs, we propose various experimental cases where global
parameters were continuously adapted to the situations: Case
1: this case measures the adaptation rates of goal-orientedness
vs. situation-orientedness aspects of BNs. In this experiment,
the robot senses one orange box and seven green boxes around
it, where <Collect-All-Orange-Boxes> goal is the
current goal. In spite of the fact that the robot receives more
activation energy from situation (i.e., the seven green boxes),
it must learn to pursue current goals and avoid changes of
attention focus (e.g., it must focus on collecting orange boxes
instead of collecting green boxes). See Figure 2.

Case 2: this case measures the adaptation rates of de-
liberation vs. reactivity aspects of BNs. Initially, the robot
has to store an observed box in a specific storage and, for
this, it has to gradually accumulate activation energy and
activate sequentially a set of behaviors which accomplish the
<Store-Box> goal (deliberation). Suddenly, during the task
execution, an unexpected situation is presented to the robot:
some obstacles are dynamically moved around, so the robot

'The open source platform is available on http://playerstage.sourceforge.net/

a) b) o) d)

Fig. 2: Case 1. a) the robot senses an orange box. b) the robot
activates <Pick-up-orange—box> behavior. c) the robot
senses other seven “green” boxes. d) the robot does not change
the attention focus even though it receives more activation
from situation (the seven green boxes).

Fig. 3: Case 2. a) the robot reactively avoids a moving obstacle
in front of it while it is carrying a box. b) the robot finally
stores the box in spite of the multiple distracting obstacles.

a) b) c)

Fig. 4: Case 3. a) the robot is transporting a box until the
storage. b) the location of the storage is moved, so the robot
changes its initial plan (dropping the grasped box and starting
to look for the new location of the storage). c) after the
robot finds the new location of the storage it retakes the
<LOOK-FOR-BOX> behavior and then stores the box.

will have to react on time with an evasive action (reactivity)
and retake the control after that. See Figure 3.

Case 3: this case measures the adaptation rates of bias
towards ongoing plans vs. adaptivity aspects of BNs. In this
experiment the robot has to store a box in a storage situated in
a specific point of the environment. For this, the robot has to
previously make a plan in order to achieve the <Store-Box>
goal. When the robot is getting closer to the storage, this latter
will be displaced to another location, so the robot won’t be
able to store the box and it will have to start looking for the
new location of the storage. The aim of this experiment is to
validate the speed of the best evolved BN to replan a new
problem-solving strategy on runtime. See Figure 4.

Case 4: this case measures the adaptation rate of sensitivity
to goal conflicts aspect of BNs. In this experiment we take
into account the anomalous situation example of the blocks
world [8]. In this classical conflicting goals example there
are three blocks (2, B, and C) which must be piled up in
a specific order. The initial state of the world is S (0) = (
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Fig. 5: Case 4. a) initial and final states of block world
problem. b) deadlock situation that avoids to undo the already
achieved goal <A-on-B>.
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Fig. 6: Behavior of the GEP population best and mean fitnesses
during the evolutionary epochs for cases 1, 2, 3, and 4.

<clear-B>, <clear—-A>, <A-on-C>) and the goals are
G(0) = (<A-on-B>, <B-on-C>). The robot should first
achieve the goal <B-on—-C> and then the goal <A-on-B>.
It is tempted however to immediately stack A onto B which
may bring it in a deadlock situation (not wanting to undo the
already achieved goal). Some of the behaviors used for this
experiment were: <stack—-A-on-B>, <stack-B-on-C>,
and <take-A-from-C>. See Figure 5.

Figure 6 shows the convergence curves for the experimental
cases 1, 2, 3 and 4 using the harmonic mean value for 100 runs.
It is important to notice that the evolutionary process always
converged for all cases, although not always at the same speed.
For case 4 the convergence speed was slower because the GEP
algorithm had to adjust all the global parameters, whereas in
other cases were necessary to adjust only some parameters: 7,
v, and ¢ for case 3; 6, , and ¢ for case 2; and v and ¢ for
case 1.

In table I are shown the statistical data from the experiments.
The CE (convergence epoch) column indicates the mean
epoch when the algorithm converged in every experiment.
The MSE is the mean square error for 100 runs of the
corresponding experiment, where an error is considered as a
wrong behavior activation produced in every execution step
by the behavior network (in the MSEg., column is used
the BN with the best fitness generated by the GEP algorithm

TABLE I: Statistics for BN functional evolution. CE: Con-
vergence Epoch of the curve. MSE,.,: Mean Square Error
of the case using the GEP algorithm. MSE,,,4¢s: MSE using
only the original Maes’” BN model. MSE rate is equivalent to
1 — (MSEgep/MSEqes)]-

Min | Max | Average | Stddev | CE | MSEgep | MSEmaes MSE rate
Case 1 27 437 416.10 70.90 15 45.78 118.03 61.21%
Case 2 35 472 455.44 69.10 9 41.39 98.36 57.91%
Case 3 28 573 515.18 137.73 21 56.15 145.87 61.50%
Case 4 53 683 629.01 143.98 27 73.02 233.28 68.69%

TABLE II: Evolved Global Parameters

1 ¥ o) T 0
Casel | 85 | 68 | 23 | 92 | 95
Case2 | 87 | 57 | 64 | 93 | 15
Case3 | 88 | 37 | 61 | 18 | 93
Case 4 | 48 | 17 | 63 | 18 | 41

and in the M SFE,,q.s column is used the original Maes” BN
model without an evolutionary mechanism). The MSE rate
presents the performance relationship between MSE,., and
MSE,,qes. It is important to notice that, for the experiments
executed, the proposed evolutionary BN model improves the
performance results obtained by the original Maes’ BN model
a rate between 58% and 69%. This improvement is due to
the capability of the proposed evolutionary BN model to self-
adjust the global parameters on runtime, whereas the original
Maes’ BN model was always restricted to a fixed configuration
of these parameters.

For all the experiments, original Maes’ BN model was
configured with the following fixed global parameters: § = 90,
v = 50, ¢ = 90, 7 = 90, and § = 100. In contrast
with these fixed values, table II shows the global parameters
discovered by the proposed evolutionary mechanism for each
experimental case. From these results, it is important to remark
some observations:

Case 1: the proposed evolutionary mechanism discovered
that in order to keep the balance between ‘“goal-orientedness”
and “situation-orientedness” aspects, v must be roughly be-
tween 29% and 34% greater than ¢. For a very high value
of « or a very low value of ¢, the agent (robot) could not
adaptively re-drive its attention focus towards more interesting
goals when they were presented.

On the other hand, a value of ¢ greater than v would avoid
the robot to achieve none of the goals because it would be
continuously changing its attention focus.

Case 2: the proposed evolutionary mechanism found out
that in order to keep the balance between “deliberation” vs.
“reactivity” aspects, the value of ¢ must be a little bit greater
than vy (roughly between 9% and 15%). With this configuration
the agent is not only able to keep its attention focused on
current goals, but is also able to react against unexpected or
dangerous situations. Additionally, when reactive behavior was
required, the proposed evolutionary mechanism discovered
that a low value of 6 allows a fast behavior activation due to



the BN takes less activation loops and, as a consequence, the
amount of deliberative processing was considerably decreased.

Case 3: the proposed evolutionary mechanism revealed that
in order to keep the balance between “bias towards ongoing
plans” vs. “adaptivity” aspects, the value of = must be roughly
between 46% and 52% greater than -y, and roughly between
72% and 77% lesser than ¢. If these global parameters are
kept between such ranges, the agent will not continually be
“jumping” from goal to goal and in turn it will be able to adapt
to changing situations. From the wrong solutions it is possible
to infer that a value of 7 too much greater than v and ¢ makes
the BN more adaptive although less biased towards ongoing
plans, wherewith the agent will continually be changing the
current goals without keeping the focus on none of them.

Case 4: the proposed evolutionary mechanism discovered
that in order to preserve the “sensitivity to goal conflicts”, the
value of § must be roughly between 51% and 65% greater
than ~. For a rate lesser than 50%, the BN does not take away
enough activation energy from conflictive goals, whereas a
value of ~ grater than § causes the BN to go in deadlocks
due to the inability of the BN to undo already achieved
goals. Furthermore, the evolutionary mechanism found out
that the value of ¢ must be roughly between 62% and 73%
greater than J, otherwise the BN will not be able to activate
the behavior sequence that resolves the goal conflict (i.e.,
<take-A-from-C>, then <stack-B-on-C>, and then
<stack-A-on-B>) because of it will not receive enough
activation from observed state. Finally, the evolutionary mech-
anism revealed that in goal-conflicting situations the value of
¢ must be lesser than §, otherwise the BN will be more de-
liberative, and therefore, it will execute more activation loops
during which the behaviors that promise to directly achieve
a goal (e.g., <stack-B-on-C> and <stack—-A-on-B>)
will accumulate more activation energy than those behav-
iors that solve conflictive goals through sub-goaling (e.g.,
<take-A-from-C>).

From the obtained results of the above experiments, it is
evident that the global parameters setting is a “multi-objective”
problem, wherewith a single BN solution can not define a
proper setting for all the proposed experimental cases. So,
the solution to this problem requires multiple BNs competing
among them in order to survive into the population, where
only the best BN will be activated according to the situation
observed by the agent.

V. CONCLUSION

In the present paper we have described a hybrid decision-
making approach for autonomous agents which is supported
by the robustness of both Behavior Networks model and
Gene Expression Programming. The proposed model is able
to adaptively build complex decision-making structures as a
result of interacting evolutionary dynamics.

Specifically, the proposed evolutionary model focuses on the
on-line “development” of Behavior Networks (BN) as task-
oriented decision-making structures. BN have been proposed
in previous works [1], [9], [10] as “control mechanisms for

selective focusing of attention”, and we tried to follow the
same philosophy in our approach. However, we argue that this
kind of decision-making structures must have the capacity of
being adaptables and flexibles throughout the agent life cycle,
instead of being pre-wired, hand-coded, and fixed structures.
Thus, we proposed an evolutionary mechanism based on
GEP which evolves the BNs depending on both the dynamic
environmental interactions experienced by the agent and the
internal changing states of itself. From the experimentation, it
is possible to infer that the evolutionary approach was suitably
able to evolve different kinds of BNs. This diversity can
be seen from both a structural perspective (e.g., diverse net
topologies determined by varying relationships of competition
and cooperation among behaviors), and a functional perspec-
tive (e.g., different global parameters configurations determine
diverse features of BN such as goal orientedness vs. situation
relevance, adaptivity vs. bias to ongoing plans, deliberation vs.
reactivity, sensitivity to goal conflicts, etc.).

In our approach it is possible to identify two levels of
planning: (1) a short-term planning carried out by the An-
ticipatory Classifier System and Behaviors, which predicts
the outcomes of action executed in the prior state, so the
agent can opportunely react; and (2) a long-term planning
driven by spreading and accumulation of energy dynamics
of BNs, through which a set of expectations, goals and sub-
goals are pursued. All these levels allow the agent to exhibit a
deliberative behavior focused on goals achievement, although
with the ability to reactively replan and change the course of
action when (internal and external) perturbations from state
require it. Therefore, it is the own system who is in charge
of producing its own plans, mentally execute them (through
internal simulation), check against its real world execution,
and what it is more important, evolve them insofar as time
passed by and feedback is received.
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