
A Theorist’s Toolkit (CMU 18-859T, Fall 2013)

Lecture 13: Linear programming I
October 21, 2013

Lecturer: Ryan O’Donnell Scribe: Anonymous

A Generic Reference: Ryan recommends a very nice book “Understanding and Using
Linear Programming” [MG06].

1 Introduction

Linear Programming (LP) refers to the following problem. We are given an input of the
following m constraints (inequalities):

K ⊆ Rn =


a11x1 + a12x2 +· · ·+ a1nxn ≥ b1

a21x1 + a22x2 +· · ·+ a2nxn ≥ b2

· · ·
am1x1 + am2x2 +· · ·+ amnxn ≥ bm

where every aij, bi ∈ Q, for i ∈ [m], j ∈ [n]. Our goal is to determine whether a solution
exists, i.e., K 6= ∅, or to maximize c1x1 +· · ·+ cnxn for some c1· · · cn ∈ Q (we work toward
the first goal for now; we’ll talk about the second goal later). If K 6= ∅ we output a point
in Qn in K; if K = ∅ we output a “proof” that it’s empty. We’ll prove that if K 6= ∅
we can always find a rational solution x∗ (i.e., x∗ ∈ Qn) in K, and define what a proof of
unsatisfiability is in the next section. A remark of this problem:

Remark 1.1. We can change the “≥” in the definition to “≤” since a ·x ≤ b ⇐⇒ −a ·x ≥
−b. We can also allow equality since a · x = b ⇐⇒ a · x ≥ b ∧ a · x ≤ b. However, we
CANNOT allow “>” or “<”.

The significance of this problem is:

Theorem 1.2. [Kha79] LP is solvable in polynomial-time.

2 Fourier-Motzkin Elimination

If some (non-negative) linear combinations of the m input constraints give us 0 ≥ 1, then
clearly the LP is unsatisfiable (we emphasize non-negative so that we don’t change the
direction of inequality). Thus we define:

1

Definition 2.1. A proof of unsatisfiability is m multipliers λ1· · ·λm ≥ 0 such that the sum
over i ∈ [m] of λi times the ith constraint gives us 0 ≥ 1, i.e.,{

λ1a1i + λ2a2i +· · ·+ λmami = n for all i ∈ [n]

λ1b1 + λ2b2 +· · ·+ λmbm = 1

Here’s a few remarks to this definition:

Remark 2.2. We don’t need 0 ≥ 1; 0 ≥ q for any positive q would suffice. However we may
divide every λi by q to get 0 ≥ 1.

Remark 2.3. If our LP algorithm outputs a solution for K 6= ∅ but outputs nothing for
K = ∅, we can use this algorithm to generate the λ′is, since we can see from our definition
that the existence of these λ′is is an LP (with m variables and n+ 1 constraints).

It turns out that if an LP is unsatisfiable, a proof exists.

Theorem 2.4 (Farkas Lemma/LP duality). K 6= ∅ =⇒ such λi’s exist.

We’ll “prove” the result with an example of Fourier-Motzkin Elimination.

Proof. With loss of generality (WLOG), assume we are working with a 3-variable 5-constraint
LP, namely, 

x− 5y + 2z ≥ 7

3x− 2y − 6z ≥ −12

−2x+ 5y − 4z ≥ −10

−3x+ 6y − 3z ≥ −9

−10y + z ≥ −15

Our first step is to eliminate x. We do this by multiplying each constraint with a positive
constant such that the coefficient of x in each constraint is either -1, 1, or 0 (if an original
constraint has 0 as the coefficient of x we just leave it alone). In our example, we get:

x− 5y + 2z ≥ 7

x− 2
3
y − 2z ≥ −4

−x+ 5
2
y − 2z ≥ −5

−x+ 2y − z ≥ −3

−10y + z ≥ −15

We then write the inequalities as x ≥ ciy+diz+ei or x ≤ ciy+diz+ei for some ci, di, ei ∈ Q,
depending on whether x has coefficient 1 or -1 (again, if x has coefficient 0 we just leave it
alone) in the inequality, i.e., 

x ≥ 5y − 2z + 7

x ≥ 2
3
y + 2z − 4

x ≤ 5
2
y − 2z + 5

x ≤ 2y − z + 3

−10y + z ≥ −15

2

In order to satisfy the inequality, for each pair x ≥ ciy + diz + ei, x ≤ cjy + djz + ej, we
must have cjy+ djz + ej ≥ ciy+ diz + ei. Without changing the satisfiability of the original
constraints, we change them (again, we leave alone those without x) into the new ones, i.e.,

5
2
y − 2z + 5 ≥ 5y − 2z + 7

5
2
y − 2z + 5 ≥ 2

3
y + 2z − 4

2y − z + 3 ≥ 5y − 2z + 7

2y − z + 3 ≥ 2
3
y + 2z − 4

−10y + z ≥ −15

In this way we eliminate x. We can repeat this process until we have only 1 variable left. In
general we’ll end up with inequalities of the following form:

xn ≥ −3

xn ≥ −6

· · ·
xn ≤ 10

xn ≤ −1

· · ·
0 ≥ −2

0 ≥ −10

· · ·

Then the original LP is satisfiable if and only if the maximum of all qi in inequalities xn ≥ qi
is less than the maximum of all qj in inequalities xn ≤ qj, and every qk in the inequalities
0 ≥ qk is non-positive. All inequalities derived are non-negative linear combinations of
original constraints, so every qi, qj, qk above are rational numbers.

Assume for now that the original constraints are satisfiable. Then we’ll be able to pick a
xn ∈ Q that satisfies the inequalities we end up with. Substituting the xn to the inequalities
we get one step ago, we’ll get some (satisfiable) inequalities of xn−1, so we can keep back-
substituting until we get a solution x∗ = (x1, x2,· · · , xn) ∈ Qn. This proves that if an LP
has solution it must also have a rational one.

We now assume that the original constraints are not solvable, so if we do another step
of Fourier-Motzkin Elimination, we’ll end up with 0 ≥ c for some positive c, which is a
non-negative linear combination of original constraints, thus proving the result.

Notice that Fourier-Motzkin Elimination actually solves LP; however, it’s not polynomial.
During each step, if we start with k inequalities, in the worst case we may end up with
k2/4 = Θ(k2) new inequalities. Since we start with m constraints and must perform n steps,
in the worst case the algorithm may take Θ(m2n) time, which is far too slow. We’ll show
how LP can be solved efficiently in the next section.

3

3 Equational form

Our next goal will be to solve LP in polynomial time. However, it is not immediately clear
that LP is solvable in polynomial time; for example, if every solution of an LP requires
exponentially-many bits to write down, then it would be impossible to solve LP in poly-
time. In this section we’ll prove that this will not be the case, i.e., if an LP is satisfiable,
then we can always find a solution with size polynomial to input size.

Theorem 3.1. Given input

K =


a11x1 + a12x2 +· · ·+ a1nxn ≥ b1

· · ·
am1x1 + am2x2 +· · ·+ amnxn ≥ bm

with input size (number of bits needed to write the input) L, which we denote as 〈K〉 = L,

(1) K 6= ∅ =⇒ ∃ feasible solution x∗ ∈ Qn with 〈x∗〉 = poly(L);

(2) K = ∅ =⇒ ∃ proof λ′is with 〈λi〉 = poly(L) for every i ∈ [m].

Proof. Suffices to prove (1) (by Remark 2.3). Assume K is not empty. If we consider the
geometric meanings of our constraints, we may see that the set of solutions is a closed convex
set in Rn. Here is an example in R2:

Figure 1: A Geometric view of LP

If K 6= ∅, then there exists some feasible vertices/extreme points/basic feasible solutions,
which are the unique intersections of some linearly independent EQUATIONS out of the m
EQUATIONS (we emphasize “equations” because constraints are originally given as inequal-
ities, but we are now considering their equational form. Any vertex x∗ of our solution set is
a solution to a n×n system of equations, which can be found (and written down, of course)
in polynomial time by Gaussian Elimination, and this proves that 〈x∗〉 = poly(L).

4

This proof basically sketches what we are trying to do, but it has problems; consider the
following n = 2,m = 1 case:

Figure 2: x1 + x2 ≥ 1

We don’t have any vertices in it! Then how can we find a polynomial-size solution? We
observe, however, that we can solve the example above by adding the 2 axes. Before we
move on, we give a definition:

Definition 3.2. We sayK is included by a big box if ∀i ∈ [n], xi ≤ B+
i , xi ≥ B−i , 〈B+

i 〉, 〈B−i 〉 =
poly(L).

Observation 3.3. The proof above would be fine if K is included by a big box.

We now give another proof:

Proof. For each constraint a(i)x ≥ bi, we replace it with a(i)x − Si = bi and Si ≥ 0, where
the S ′is are called slack variables. Then, replace each original xi with x+i − x−i and x+i ≥ 0,
x−i ≥ 0. Then the new LP has 2n + m variables, each constrained to be non-negative, and
all the other constraints are equations. We call this converted “Equational Form” of LP
K ′. Then K ′ has exactly the same solutions with K regarding the original variables, and

〈K ′〉 = poly(〈K〉). We write K ′ as K ′ =

{
A′x′ = b′

x′ ≥ 0
, where A′ is a m′ × n′ matrix, where

n′ = 2n+m, and m′ = m. Assume WLOG that A′ has rank m′ (otherwise some constraints
are unnecessary, so we can throw them out). Then K ′ is contained in a positive orthant of
Rn, and A′x′ = b′ is an (n′−m′)-dimensional subspace in Rn. If m′ = n′ then this subspace
is a point, and this point x∗ is a feasible solution with size poly(L), so we’re done. Otherwise
K is the intersection of this subspace and the positive orthant of Rn. Since the subspace
will not be parallel to all coordinates, it must intersect with some axes. Let the intersection
be x∗. Then x∗ is a solution to K ′ and 〈x∗〉 = poly(L).

5

To sum up what we have shown, given an LP problem that asks whether K is empty, we
can, WLOG, include into K a big box, where each 〈B−i 〉, 〈B−i 〉 = poly(L), and if K 6= ∅,
then we can always find a vertex x∗ in K.

4 LP and reduction

Assume we already have a polynomial-time program that decides LP, i.e., it outputs “Yes”
if K 6= ∅ and outputs “No” if K = ∅.

Q: How can we use this program as a black box to solve LP (i.e., outputs a point in Qn

in K if K 6= ∅)?
A: Suppose K 6= ∅. We only need to find a1, a2,· · · an ∈ Q such that K ∩ {∀i ∈

[n]xi = ai} 6= ∅. How? From the last section we know that we can assume every variable
xi is bounded by B−i and B+

i , where 〈B−i 〉 = poly(L), 〈B+
i 〉 = poly(L). Then for each

xi, we can do a binary search, starting with Bi = (B−i + B+
i)/2. If our program tells us

K ∩ {Bi ≤ xi ≤ B+
i } = ∅, we know that B−i ≤ x ≤ Bi, so we continue to search whether

(B−i + Bi)/2 ≤ x ≤ Bi); otherwise we search whether (Bi + B+
i)/2 ≤ x ≤ B+

i , etc. The
binary search takes at most O(log2B

+
i − B−i) = O(log2 2poly(L)) = poly(L) time for each

variable, so we can efficiently find a point in K.
Q: What if K is something like {3x1 = 1}? In that case the binary search may never

end.
A: WLOG assume every aij ∈ N for i ∈ [m], j ∈ [n] and bi ∈ N for i ∈ [n]. Let

c =
∏
|aij|. Since each aij has size L, i.e., |aij| ≤ 2L, we have c ≤ 2mnL = 2poly(L). Then

if K 6= ∅, there must be some vertex v such that cvi ∈ Z for every i ∈ [n], and cvi is
bounded by cB−i and cB+

i , both of which still has size poly(L). Then we can do binary
search efficiently.

Recall that another goal of LP is to maximize c · x for some c ∈ Qn with the constraints K.
Q: Given a program that decides LP, How do we solve max{c · x : x ∈ k}?
A: We can add {c · x ≥ β} as a constraint and do binary search to determine the largest

β such that K ∩ {c · x ≥ β} 6= ∅}. We have to be a bit careful here, however, because the
maximum can be infinity. To fix this, we have the following observation.

Observation 4.1. Suppose c is not parallel to any ai. If max{c · x} is not infinity, then the
maximum must occur at a vertex.

All vertices are bounded by B−i and B+
i , so we can bound max{c · x} with some M by

choosing Bi = B+
i if ci > 0 and Bi = B−i if ci < 0 and set M = c ·B. Now that the maximum

is bounded, we can compute max{cixi|x ∈ K ∪ {c · x ≤ M + 1}} by the way we described
above. If the maximum we get is M + 1, then it is actually infinity; otherwise we get the
maximum we intended.

6

Figure 3: An example of maximizing x1 + x2

Now that we know how to maximize c · x, we switch back to the first goal, and suppose
K 6= ∅.

Q: Instead of any x ∈ K, how can we make sure we output a vertex?
A: From the observation, we may choose an arbitrary c ∈ Qn that is not parallel to any

constraints, and maximize c · x. This guarantees to give us a vertex.

References

[Kha79] LG Khachiyan, A polynomial-time linear programming algorithm, Zh. Vychisl.
Matem. Mat. Fiz 20 (1979), 51–68.

[MG06] Jiŕı Matouek and Bernd Gärtner, Understanding and using linear programming
(universitext), Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

7

