Quantum Computation CMU 15-859BB, Fall 2018

WORK #9: Nov. 27 — DEC. 6
12-HOUR BIWEEK
OBLIGATORY PROBLEMS ARE MARKED WITH [#]




1. [Basic Adversary Method.]

(a) [*x] Prove the Basic Adversary Method Theorem (generalizing the Super-Basic Adver-
sary Method Theorem) stated towards the end of the Lecture 20 video. Of course, you
should mimic the proof of the Super-Basic Adversary Method Theorem.

(b) Use that theorem to show a quantum query lower bound of 2 /N/k for the following
promise-decision problem (assuming 1 < k& < N/2): Output “yes” if the input string
w € {0,1}" has at least k 1’s; output “no” if it is the all-0’s tring.



2. [Product probability spaces.]

(a)

Let p € RY be a probability distribution on [d] = {1,2,...,d}. Let ¢ € R® be a
probability distribution on [e] = {1,2,...,e}. Prove that the Kronecker product p ® ¢
(which is a vector naturally indexed by the set [d] x [e]) is the associated “product
probability distribution” on [d] x [e] = {(4,7) : 1 < i < d, 1 < j < e}; i.e, it’s the
distribution gotten by drawing ¢ from p and j from ¢ independently.

[+x] Let (p1, 1)), ..., (Pm, [¥m)) be the mixed state of a d-dimensional particle (meaning
we have probability p; of pure state |1;) € C%, i =1...m). Similarly, let (q1, |¢1)), ...,
(qn,|®n)) be the mixed state of an e-dimensional particle. Write p € €99 for the
density matrix of the first mixed state and o € C¢*¢ for the density matrix of the
second. Suppose the particles were created completely separately and independently,
but we now decide to view them as a joint de-dimensional state. Recalling the rules of
how to do this for pure states, show that the resulting de-dimensional mixed state has
density matrix p ® o, the Kronecker product of p and o.



3. [Positive semidefinite matrices.] A Hermitian matrix M € C?*? is said to be positive,
or positive semidefinite (denoted M > 0 or M = 0) if (u|M|u) > 0 for all vectors |u) € C<.

(a) Prove that M > 0 if and only if (u|M|u) > 0 holds for all unit vectors |u) € C?.

(b) Let M € ©%¥ be a diagonal matrix (meaning all off-diagonal entries are 0). Verify that
M is Hermitian if and only if all its diagonal entries are real. In this case, prove that
M > 0 if and only if each of its diagonal entries is nonnegative.

(c) Let A € C**? be any matrix (possibly rectangular). First show that AfA is Hermitian;
then show that ATA > 0.

(d) Let R, X € C%? be positive semidefinite matrices. Prove that (R, X) > 0. (See
Equation (1) if you forget the definition of (R, X).) You may use the fact that every
Hermitian matrix M can be represented as M = Zle Ai [ )(1);] for some real A1,. .., Ag
and some orthonormal basis |¢1),. .., [1g).



4. [The basics of quantum random variables.] Let p € C?*? be a density matrix. Recall
that for an observable (i.e., Hermitian matrix) X € €C9*¢ we define

d
B, [X] = (p, X) = tr(pX) = tx(pX) = > pi; Xij. (1)

ij=1

In this problem, we will extend the above notation to allow for a non-Hermitian matriz X.
This is not “physically meaningful” (since there is no measurement instrument corresponding
to a non-Hermitian matriz X ), but it will be mathematically convenient to let us reason about
observables.

(a) [¥x| Prove that E,[1] = 1, where 1 denotes the d x d identity matrix.
(b) Prove that E,[XT] = E,[X]*.
(c) [##] Let X,Y € ©%¢ be Hermitian and let o, 3 € C. Prove “linearity of expectation”:

E [aX +8Y] =aE,[X]|+ SE,[Y]. Also, show that aX + BY is Hermitian if o, € R
(otherwise, we can’t be sure).

[+#] Prove that E,[ATA] > 0 for any matrix A € C**?. (You may use Problem 3.)
[

*

%] Let 0 € €94, Referring to Problem 2, prove that E,g,[X ® Y] = E,[X]|E,[Y].
(This generalizes the classical probability fact that if  and y are independent random
variables then E[zy] = E[z| E[y].)

(f) [##] Let X,Y € €©%? not necessarily Hermitian. Define their covariance with respect
to p to be

*

Cov,[X,Y] = Ep[(X — pux1)T(Y — )],
where px = E,[X], uy = E,[Y]. Prove that Cov,[X,Y] = E,[XTY] — w5 uy.
(g) [#%] Prove that covariance is “translation-invariant” in each argument, meaning Cov|[X +
al,Y+p1] = Cov[X, Y] forall a, 8 € C. Prove also that Cov]a X, fY]| = a*f Cov[X,Y].

(h) [#+] Let X € €C%*? not necessarily Hermitian. Define the variance of X with respect
to p to be
Var,[X]| = Cov,[X, X].
Show that Var,[X] > 0 always, that Var,[X] is translation-invariant, and that Var,[aX]| =
|a|? Var, [ X].
(i) We wish to prove the quantum Cauchy-Schwarz inequality: For X,Y € C¥*9,

|Cov,[X,Y]|* < Var,[X]Var,[Y]. (2)

It’s a little annoying to handle the cases when Var,[X] = 0 or Var,[Y] = 0, so let’s
assume we don’t need to worry about these cases. Otherwise, show that in attempting to
prove the above, we may assume without loss of generality that Var,[X]| = Var,[Y] =1
and that Cov,[X,Y] is a nonnegative real. (Hint: consider multiplying X and Y by
scalars.)

(j) Show that it also suffices to assume E,[X]| = E,[Y] = 0. (Hint: consider subtracting
scalar multiples of the identity.)

(k) Thus it remains to show Cov,[X,Y] < 1 assuming Var,[X] = Var,[Y] =1, Cov,[X,Y] €
R=% and E,[X] = E,[Y] = 0. Prove this.



5. [The Uncertainty Principle.] Let X,Y € C%*? be observables; i.e., Hermitian matrices.

(a)
(b)
()

[*+] Prove that X2 and Y? are Hermitian.
[*x] Prove that XY is Hermitian if and only if X and Y commute (i.e., XY =Y X).

[+#] Let |X, Y[ denote XY 4 Y X (this is nonstandard notation). Prove that 1]X,Y|
is Hermitian. (This matrix is the “symmetrization” of XY, or perhaps “Hermitianiza-
tion”.)

[*x] Let [X,Y] denote the matrix XY — Y X, called the “commutator” of X and Y
because it’s 0 if and only if X and Y commute (this is standard notation). Prove that
2[X, Y] is Hermitian.

[++] Prove that XY = 1] X, Y[+i - 5[X,Y].

In 1927, Werner Heisenberg stated his famous Uncertainty Principle for two particular
observables of a quantum particle, its “position” and “momentum”. In 1928, Earle
Kennard properly mathematically proved Heisenberg’s Uncertainty Principle. In 1929,
Bob Robertson generalized the Uncertainty Principle to a statement about any two
observables. Specifically, he proved the following:

0 [X]-0,[¥] = ‘Ep [;Z.[X, Y]] ‘ (3)

where 0,[X] = \/Var,[X] is the standard deviation of the observable X (and similarly
for o,[Y]). Here Var,[X] is as defined in Problem 4h.

Show that if we want to establish (3), we can reduce to the case that E,[X] = E,[Y] = 0.
(Hint: use Problem 4h.)

[*x] Having made this reduction, prove the Uncertainty Principle (3). (Hint: use the
Cauchy-Schwarz inequality (2) and the decomposition from Problem (5e).)



6. [The SWAP test.] We've previously discussed the SWAP gate operating on two qubits,
but it also makes sense as an operator on two qudits. In general, a two-qudit state looks like

d

W)= > ayli) @ 15) € ©F. (4)

ij=1

(Mathematicians would probably prefer to write C¥ as “CloC® here.) The SWAP operator
is the linear transformation defined by

d
SWAP [y) = Y ayi i) ® i)

ij=1
when |v) is as in Equation (4).

(a) [++] Explicitly write the matrix for SWAP in the case of d = 3. Label the rows and
columns using a natural order like |11),]12),[13),]21),...,|33).

(b) We're used to SWAP being a quantum gate and thus unitary. Prove that SWAP is also
a Hermitian matrix, hence a valid observable for density matrices ¢ on c® (or C¢® T4,
if you prefer).

(c) [#] Suppose |u1),...,|uq) is any orthonormal basis for €C¢. This means that the set of
all vectors |u;) ® |u;) (1 <14,j < d) is an orthonormal basis for C%. Show that SWAP
is “basis-independent” in the sense that

d d
6y = Y Bij i) ® |u;) = SWAP @) = > Bijus) & Jus) .

i,j=1 1,j=1

(d) [*%] Suppose you have some quantum apparatus that produces a d-dimensional particle
in a mixed state with density matrix p € C4*¢. Write the eigenvalues of p as A1, ..., A,
with associated eigenvectors |u;),--- , |ug). Let o = p ® p, which is the d?>-dimensional
density matrix corresponding to the state you get if you run your quantum apparatus
two times independently and then treat the two particles as a joint system. Prove that

d
E [SWAP] =) "%,
=1

(e) [*x] The quantity 25:1 A? is called the purity of the mixed state p. Show that the
maximum possible value of the purity is 1 and it occurs when p is a pure state. Show
also that the minimum possible value of the purity is 1/d, and it occurs when p is the
maximally mixed state %]ldxd.

(f) Let p € R? be a probability distribution, and consider the following experiment: make
two independent draws from ¢, j from p, and let S be the random variable which is 1 if
(1,7) = (4,7) and is O otherwise. Show that E[S] = Zle p7. Prove that this quantity
has maximal value 1, occurring when p has all of its probability on a single outcome;
and, prove that this quantity has minimal value 1/d, occurring when p is the uniform
distribution éff =(1/d,...,1/d).



7. [Zero-error state discrimination.] Back in Lecture 4.5, we considered the following task.
There were two fixed qubit states |u), |v) € R? which we assumed had real amplitudes for
simplicity. We were given access to an unknown qubit state |¢) € R? (with real amplitudes)
and were promised that either [¢)) = |u) or 1)) = |v). Our goal was to try to guess which is
the case. In Lecture 4.5 we saw the optimal algorithm allowing for “two-sided error”, and the
optimal algorithm allowing for “one-sided error”. We also saw a natural “zero-sided error”
algorithm, but observed that it couldn’t be optimal. In this problem we will see the optimal
zero-sided error algorithm (though we won’t prove its optimality). Assume henceforth that
the angle between |u) and |v) is 0 < § < 7/2. Also, write |u™) for a unit vector perpendicular
to |u), and ‘UL> for a unit vector perpendicular to |v).

(a) [#x] Let II; = |u’)Xu"|, the linear operator on R? that projects onto the |u’) vector.
Show that Iy = 1 — |u)(u| (where 1 denotes the 2 x 2 identity matrix) and that this is
a positive operator. We’ll similarly let Il = |UJ‘><’UJ“.

(b) [**] The idea of the algorithm is to define E; = %Hl and Fy = %Hg, where c is a positive
scalar that is just large enough such that £y = 1 — Fy — E5 is a positive operator.
Having done this, {Fy, E1, E2} becomes a valid POVM. Suppose we then measure the
unknown state p = [)(¢p| with this POVM. Show that when |¢)) = |u), the probability
of outcome 1 is 0, and similarly when [¢)) = |v), the probability of outcome 2 is 0.

(c) [#*] In light of the previous problem, we see that if we get outcome 1 we can safely guess
|) = |v), and if we get outcome 2 we can safely guess |¢) = |u). If we get outcome 0, we
will guess “don’t know”. Our goal, therefore, is to minimize the probability of getting
outcome 0. Show that this probability is 1 — %.

(d) [*#] In light of the previous problem, we clearly want ¢ to be as small as possible. As
mentioned, we have the restriction that Fy must be a positive operator. Show that if
|w) € R? is any unit vector, (w|Ep|w) =1-— M, where 6 is the angle from |u)
to |w) and 62 is the angle from |w) to |v). We have the restriction 6; + 62 = 0. Hence
the least possible ¢ for which Ej is positive is the least ¢ such that 1 — M >0

whenever 61 4+ 3 = 0. Show that this least ¢ is ¢ = 1 + cos 6.

(e) [#x] Deduce that there is a zero-sided error qubit discrimination algorithm with failure
probability cos @, as claimed at the end of Lecture 4.5.



8. [Quantum information theory.] Learn more about it by watching these lectures of Rein-
hard Werner on Tobias Osborne’s YouTube channel.


https://www.youtube.com/watch?v=vb0ZEsATUcw&list=PLDfPUNusx1EoBAn8vXYjcF95R7mI_eR6o
https://www.youtube.com/watch?v=vb0ZEsATUcw&list=PLDfPUNusx1EoBAn8vXYjcF95R7mI_eR6o

9. [A primer on the statistics of longest increasing subsequences and quantum
states.] Take a look at this survey paper describing some research on quantum learn-
ing/statistics.


http://www.cs.cmu.edu/~odonnell/papers/tomography-survey.pdf

