
Quantum Computation CMU 15-859BB, Fall 2018

Work #9: Nov. 27 — Dec. 6
12-hour biweek

Obligatory problems are marked with [∗∗]



1. [Basic Adversary Method.]

(a) [∗∗] Prove the Basic Adversary Method Theorem (generalizing the Super-Basic Adver-
sary Method Theorem) stated towards the end of the Lecture 20 video. Of course, you
should mimic the proof of the Super-Basic Adversary Method Theorem.

(b) Use that theorem to show a quantum query lower bound of &
√
N/k for the following

promise-decision problem (assuming 1 ≤ k ≤ N/2): Output “yes” if the input string
w ∈ {0, 1}N has at least k 1’s; output “no” if it is the all-0’s tring.



2. [Product probability spaces.]

(a) Let p ∈ Rd be a probability distribution on [d] = {1, 2, . . . , d}. Let q ∈ Re be a
probability distribution on [e] = {1, 2, . . . , e}. Prove that the Kronecker product p ⊗ q
(which is a vector naturally indexed by the set [d] × [e]) is the associated “product
probability distribution” on [d] × [e] = {(i, j) : 1 ≤ i ≤ d, 1 ≤ j ≤ e}; i.e., it’s the
distribution gotten by drawing i from p and j from q independently.

(b) [∗∗] Let (p1, |ψ1〉), . . . , (pm, |ψm〉) be the mixed state of a d-dimensional particle (meaning
we have probability pi of pure state |ψi〉 ∈ Cd, i = 1 . . .m). Similarly, let (q1, |φ1〉), . . . ,
(qn, |φn〉) be the mixed state of an e-dimensional particle. Write ρ ∈ Cd×d for the
density matrix of the first mixed state and σ ∈ Ce×e for the density matrix of the
second. Suppose the particles were created completely separately and independently,
but we now decide to view them as a joint de-dimensional state. Recalling the rules of
how to do this for pure states, show that the resulting de-dimensional mixed state has
density matrix ρ⊗ σ, the Kronecker product of ρ and σ.



3. [Positive semidefinite matrices.] A Hermitian matrix M ∈ Cd×d is said to be positive,
or positive semidefinite (denoted M ≥ 0 or M � 0) if 〈u|M |u〉 ≥ 0 for all vectors |u〉 ∈ Cd.

(a) Prove that M ≥ 0 if and only if 〈u|M |u〉 ≥ 0 holds for all unit vectors |u〉 ∈ Cd.

(b) Let M ∈ Cd×d be a diagonal matrix (meaning all off-diagonal entries are 0). Verify that
M is Hermitian if and only if all its diagonal entries are real. In this case, prove that
M ≥ 0 if and only if each of its diagonal entries is nonnegative.

(c) Let A ∈ Ck×d be any matrix (possibly rectangular). First show that A†A is Hermitian;
then show that A†A ≥ 0.

(d) Let R,X ∈ Cd×d be positive semidefinite matrices. Prove that 〈R,X〉 ≥ 0. (See
Equation (1) if you forget the definition of 〈R,X〉.) You may use the fact that every
Hermitian matrix M can be represented as M =

∑d
i=1 λi |ψi〉〈ψi| for some real λ1, . . . , λd

and some orthonormal basis |ψ1〉 , . . . , |ψd〉.



4. [The basics of quantum random variables.] Let ρ ∈ Cd×d be a density matrix. Recall
that for an observable (i.e., Hermitian matrix) X ∈ Cd×d, we define

Eρ[X] = 〈ρ,X〉 = tr
(
ρ†X

)
= tr(ρX) =

d∑
i,j=1

ρijXij . (1)

In this problem, we will extend the above notation to allow for a non-Hermitian matrix X.
This is not “physically meaningful” (since there is no measurement instrument corresponding
to a non-Hermitian matrix X), but it will be mathematically convenient to let us reason about
observables.

(a) [∗∗] Prove that Eρ[1] = 1, where 1 denotes the d× d identity matrix.

(b) Prove that Eρ[X
†] = Eρ[X]∗.

(c) [∗∗] Let X,Y ∈ Cd×d be Hermitian and let α, β ∈ C. Prove “linearity of expectation”:
Eρ[αX + βY ] = αEρ[X] + βEρ[Y ]. Also, show that αX + βY is Hermitian if α, β ∈ R
(otherwise, we can’t be sure).

(d) [∗∗] Prove that Eρ[A
†A] ≥ 0 for any matrix A ∈ Ck×d. (You may use Problem 3.)

(e) [∗∗] Let σ ∈ Cd×d. Referring to Problem 2, prove that Eρ⊗σ[X ⊗ Y ] = Eρ[X] Eσ[Y ].
(This generalizes the classical probability fact that if x and y are independent random
variables then E[xy] = E[x] E[y].)

(f) [∗∗] Let X,Y ∈ Cd×d, not necessarily Hermitian. Define their covariance with respect
to ρ to be

Covρ[X,Y ] = Eρ[(X − µX1)†(Y − µY )],

where µX = Eρ[X], µY = Eρ[Y ]. Prove that Covρ[X,Y ] = Eρ[X
†Y ]− µ∗XµY .

(g) [∗∗] Prove that covariance is “translation-invariant” in each argument, meaning Cov[X+
α1, Y+β1] = Cov[X,Y ] for all α, β ∈ C. Prove also that Cov[αX, βY ] = α∗βCov[X,Y ].

(h) [∗∗] Let X ∈ Cd×d, not necessarily Hermitian. Define the variance of X with respect
to ρ to be

Varρ[X] = Covρ[X,X].

Show that Varρ[X] ≥ 0 always, that Varρ[X] is translation-invariant, and that Varρ[αX] =
|α|2 Varρ[X].

(i) We wish to prove the quantum Cauchy–Schwarz inequality : For X,Y ∈ Cd×d,

|Covρ[X,Y ]|2 ≤ Varρ[X]Varρ[Y ]. (2)

It’s a little annoying to handle the cases when Varρ[X] = 0 or Varρ[Y ] = 0, so let’s
assume we don’t need to worry about these cases. Otherwise, show that in attempting to
prove the above, we may assume without loss of generality that Varρ[X] = Varρ[Y ] = 1
and that Covρ[X,Y ] is a nonnegative real. (Hint: consider multiplying X and Y by
scalars.)

(j) Show that it also suffices to assume Eρ[X] = Eρ[Y ] = 0. (Hint: consider subtracting
scalar multiples of the identity.)

(k) Thus it remains to show Covρ[X,Y ] ≤ 1 assuming Varρ[X] = Varρ[Y ] = 1, Covρ[X,Y ] ∈
R≥0, and Eρ[X] = Eρ[Y ] = 0. Prove this.



5. [The Uncertainty Principle.] Let X,Y ∈ Cd×d be observables; i.e., Hermitian matrices.

(a) [∗∗] Prove that X2 and Y 2 are Hermitian.

(b) [∗∗] Prove that XY is Hermitian if and only if X and Y commute (i.e., XY = Y X).

(c) [∗∗] Let ]X,Y [ denote XY + Y X (this is nonstandard notation). Prove that 1
2 ]X,Y [

is Hermitian. (This matrix is the “symmetrization” of XY , or perhaps “Hermitianiza-
tion”.)

(d) [∗∗] Let [X,Y ] denote the matrix XY − Y X, called the “commutator” of X and Y
because it’s 0 if and only if X and Y commute (this is standard notation). Prove that
1
2i [X,Y ] is Hermitian.

(e) [∗∗] Prove that XY = 1
2 ]X,Y [+i · 1

2i [X,Y ].

(f) In 1927, Werner Heisenberg stated his famous Uncertainty Principle for two particular
observables of a quantum particle, its “position” and “momentum”. In 1928, Earle
Kennard properly mathematically proved Heisenberg’s Uncertainty Principle. In 1929,
Bob Robertson generalized the Uncertainty Principle to a statement about any two
observables. Specifically, he proved the following:

σρ[X] · σρ[Y ] ≥
∣∣∣∣Eρ

[
1

2i
[X,Y ]

]∣∣∣∣, (3)

where σρ[X] =
√

Varρ[X] is the standard deviation of the observable X (and similarly
for σρ[Y ]). Here Varρ[X] is as defined in Problem 4h.

Show that if we want to establish (3), we can reduce to the case that Eρ[X] = Eρ[Y ] = 0.
(Hint: use Problem 4h.)

(g) [∗∗] Having made this reduction, prove the Uncertainty Principle (3). (Hint: use the
Cauchy–Schwarz inequality (2) and the decomposition from Problem (5e).)



6. [The SWAP test.] We’ve previously discussed the SWAP gate operating on two qubits,
but it also makes sense as an operator on two qud its. In general, a two-qudit state looks like

|ψ〉 =

d∑
i,j=1

αij |i〉 ⊗ |j〉 ∈ Cd2 . (4)

(Mathematicians would probably prefer to write Cd2 as “Cd⊗Cd” here.) The SWAP operator
is the linear transformation defined by

SWAP |ψ〉 =
d∑

i,j=1

αij |j〉 ⊗ |i〉

when |ψ〉 is as in Equation (4).

(a) [∗∗] Explicitly write the matrix for SWAP in the case of d = 3. Label the rows and
columns using a natural order like |11〉 , |12〉 , |13〉 , |21〉 , . . . , |33〉.

(b) We’re used to SWAP being a quantum gate and thus unitary. Prove that SWAP is also
a Hermitian matrix, hence a valid observable for density matrices % on Cd2 (or Cd⊗Cd,
if you prefer).

(c) [∗∗] Suppose |u1〉 , . . . , |ud〉 is any orthonormal basis for Cd. This means that the set of
all vectors |ui〉 ⊗ |uj〉 (1 ≤ i, j ≤ d) is an orthonormal basis for Cd2 . Show that SWAP
is “basis-independent” in the sense that

|φ〉 =
d∑

i,j=1

βij |ui〉 ⊗ |uj〉 =⇒ SWAP |φ〉 =
d∑

i,j=1

βij |uj〉 ⊗ |ui〉 .

(d) [∗∗] Suppose you have some quantum apparatus that produces a d-dimensional particle
in a mixed state with density matrix ρ ∈ Cd×d. Write the eigenvalues of ρ as λ1, . . . , λd,
with associated eigenvectors |u1〉 , · · · , |ud〉. Let % = ρ ⊗ ρ, which is the d2-dimensional
density matrix corresponding to the state you get if you run your quantum apparatus
two times independently and then treat the two particles as a joint system. Prove that

E%[SWAP] =
d∑
i=1

λ2i .

(e) [∗∗] The quantity
∑d

i=1 λ
2
i is called the purity of the mixed state ρ. Show that the

maximum possible value of the purity is 1 and it occurs when ρ is a pure state. Show
also that the minimum possible value of the purity is 1/d, and it occurs when ρ is the
maximally mixed state 1

d1d×d.

(f) Let p ∈ Rd be a probability distribution, and consider the following experiment: make
two independent draws from i, j from p, and let S be the random variable which is 1 if
(i, j) = (j, i) and is 0 otherwise. Show that E[S] =

∑d
i=1 p

2
i . Prove that this quantity

has maximal value 1, occurring when p has all of its probability on a single outcome;
and, prove that this quantity has minimal value 1/d, occurring when p is the uniform
distribution 1

d
~1 = (1/d, . . . , 1/d).



7. [Zero-error state discrimination.] Back in Lecture 4.5, we considered the following task.
There were two fixed qubit states |u〉 , |v〉 ∈ R2 which we assumed had real amplitudes for
simplicity. We were given access to an unknown qubit state |ψ〉 ∈ R2 (with real amplitudes)
and were promised that either |ψ〉 = |u〉 or |ψ〉 = |v〉. Our goal was to try to guess which is
the case. In Lecture 4.5 we saw the optimal algorithm allowing for “two-sided error”, and the
optimal algorithm allowing for “one-sided error”. We also saw a natural “zero-sided error”
algorithm, but observed that it couldn’t be optimal. In this problem we will see the optimal
zero-sided error algorithm (though we won’t prove its optimality). Assume henceforth that
the angle between |u〉 and |v〉 is 0 < θ < π/2. Also, write

∣∣u⊥〉 for a unit vector perpendicular
to |u〉, and

∣∣v⊥〉 for a unit vector perpendicular to |v〉.

(a) [∗∗] Let Π1 =
∣∣u⊥〉〈u⊥∣∣, the linear operator on R2 that projects onto the

∣∣u⊥〉 vector.
Show that Π1 = 1− |u〉〈u| (where 1 denotes the 2× 2 identity matrix) and that this is
a positive operator. We’ll similarly let Π2 =

∣∣v⊥〉〈v⊥∣∣.
(b) [∗∗] The idea of the algorithm is to define E1 = 1

cΠ1 and E2 = 1
cΠ2, where c is a positive

scalar that is just large enough such that E0 = 1 − E1 − E2 is a positive operator.
Having done this, {E0, E1, E2} becomes a valid POVM. Suppose we then measure the
unknown state ρ = |ψ〉〈ψ| with this POVM. Show that when |ψ〉 = |u〉, the probability
of outcome 1 is 0, and similarly when |ψ〉 = |v〉, the probability of outcome 2 is 0.

(c) [∗∗] In light of the previous problem, we see that if we get outcome 1 we can safely guess
|ψ〉 = |v〉, and if we get outcome 2 we can safely guess |ψ〉 = |u〉. If we get outcome 0, we
will guess “don’t know”. Our goal, therefore, is to minimize the probability of getting
outcome 0. Show that this probability is 1− 1−cos2 θ

c .

(d) [∗∗] In light of the previous problem, we clearly want c to be as small as possible. As
mentioned, we have the restriction that E0 must be a positive operator. Show that if
|w〉 ∈ R2 is any unit vector, 〈w|E0|w〉 = 1− sin2 θ1+sin2 θ2

c , where θ1 is the angle from |u〉
to |w〉 and θ2 is the angle from |w〉 to |v〉. We have the restriction θ1 + θ2 = θ. Hence

the least possible c for which E0 is positive is the least c such that 1− sin2 θ1+sin2 θ2
c ≥ 0

whenever θ1 + θ2 = θ. Show that this least c is c = 1 + cos θ.

(e) [∗∗] Deduce that there is a zero-sided error qubit discrimination algorithm with failure
probability cos θ, as claimed at the end of Lecture 4.5.



8. [Quantum information theory.] Learn more about it by watching these lectures of Rein-
hard Werner on Tobias Osborne’s YouTube channel.

https://www.youtube.com/watch?v=vb0ZEsATUcw&list=PLDfPUNusx1EoBAn8vXYjcF95R7mI_eR6o
https://www.youtube.com/watch?v=vb0ZEsATUcw&list=PLDfPUNusx1EoBAn8vXYjcF95R7mI_eR6o


9. [A primer on the statistics of longest increasing subsequences and quantum
states.] Take a look at this survey paper describing some research on quantum learn-
ing/statistics.

http://www.cs.cmu.edu/~odonnell/papers/tomography-survey.pdf

