
Quantum Computation CMU 15-859BB, Fall 2018

Work #8: Nov. 4 — Nov. 15
16-hour biweek

Obligatory problems are marked with [∗∗]



1. [The cyclic group.] The cyclic1 group of size N is the set ZN of integers modulo N ,
together with the operation of addition (modulo N). Of course, the neutral element is 0, and
the inverse of u ∈ ZN is −u = N − u.

(a) [∗∗] The order of an element u ∈ ZN , denoted ordZN
(u) or just ord(u), is the least

positive integer r such that

u+ u+ u+ · · ·+ u︸ ︷︷ ︸
r times

= 0. (1)

This is called “order” because it is the order (size) of the subgroup H = {0, u, u+u, u+
u+ u, · · · } of ZN generated by u.

Print a table showing all of the elements of Z96, together with their orders. Obviously,
you will want to use a computer to help you.

(b) [∗∗] Prove that

ord(u) =
N

GCD(u,N)
=

LCM(u,N)

u
,

where LCM(u,N) denotes the least common multiple of u and N , with u and N being
treated as natural numbers. (Nitpick: ignore the LCM formula when u = 0.)

(c) [∗∗] Let 2K be the largest power of 2 dividing N , and assume K ≥ 1 (i.e., that N is
even). Prove that:

� If u ∈ ZN is odd, then the largest power of 2 dividing ord(u) is 2K .

� If u ∈ ZN is even, then the largest power of 2 dividing ord(u) is not 2K .

(d) [∗∗] Let N1 and N2 be even positive integers. Suppose we pick u1 ∈ ZN1 and u2 ∈ ZN2

independently and uniformly at random. Prove that with probability at least 1/2, the
largest power of 2 dividing ordZN1

(u1) is distinct from the largest power of 2 dividing
ordZN2

(u2).

(e) [∗∗] Let N1 and N2 be positive integers. The group ZN1 × ZN2 is the set of all pairs
(u1, u2) where x ∈ ZN1 , y ∈ ZN2 , with the operation + defined by

(u1, u2) + (v1, v2) = (u1 + v1 (mod N1), u2 + v2 (mod N2)),

neutral element (0, 0), and inverse of (u1, u2) being (−u1,−u2).
The order of u = (u1, u2) ∈ ZN1 × ZN2 , denoted ordZN1

×ZN2
(u), is again defined to be

the least positive integer r such that Equation (1) holds. Prove that

ordZN1
×ZN2

(u) = LCM
(

ordZN1
(u1), ordZN2

(u2)
)
.

1This name invites comparisons with the “dihedral group”, discussed in Lecture 17. You can also think of the
cyclic group as all the permutations π : {1, 2, . . . , N} → {1, 2, . . . , N} that are self-isomorphisms of the directed cycle
graph.



2. [The last obligatory number theory problem?] [∗∗] Recall that in Shor’s factoring
algorithm the input was a large number B = P · Q, assumed to be the product of two odd
primes. We argued that it would be easy to factor B given a “nontrivial square root” R of 1
(mod B), meaning a number R ∈ Z∗

B with R2 ≡ 1 and R 6≡ ±1. The strategy for finding R
was:

� Pick A ∈ Z∗
B uniformly at random.

� Use a quantum computer to determine the order L of A, meaning the least positive
integer such that AL ≡ 1 (mod B).

� Hope for two “lucky” things: (i) L is even; (ii) AL/2 6= −1 (mod B).

If both lucky things happen, then we could take R = AL/2 (mod B). (Note that AL/2 6≡ 1
because of the minimality of L.) As stated in class, one can show that the probability (over
the choice of A) that both lucky things happen is at least 1/2. You will show that in this
problem.

Recall from Problem 6, Homework 4 that, for prime P , the elements of Z∗
P are of the form

G,G2, . . . , GP−1 for some “generator” G ∈ Z
∗
P . If you think about it, this means that

the “group Z∗
P with operation multiplication”, is the same as the “cyclic group ZP−1 with

operation addition”, in the sense that if you write down the “operation tables” (multiplication
table in the former case, addition table in the latter case) they’re exactly the same — it’s just
that the “elements have been renamed”. In mathspeak, the two groups are isomorphic. The
“isomorphism” is that Gu ∈ Z∗

P maps to u ∈ ZP−1; then indeed, Gu ·Gv = Gu+v. A remark

that will be important later: the element −1 of Z∗
P must be G

P−1
2 (because (−1)2 = 1); this

maps to the element P−1
2 ∈ ZP−1, the unique element of order 2.

Recall also the Chinese Remainder Theorem from Problem 7, Homework 5. It effectively shows
that the group Z∗

B with operation multiplication is “equivalent” (isomorphic) to the group
Z
∗
P × Z∗

Q with operation componentwise multiplication. (The isomorphism maps X ∈ Z∗
B

to the pair (S, T ) ∈ Z∗
P × Z∗

Q, where S = X (mod P ) and T = X (mod Q). In particular,
1 ∈ Z∗

B is mapped to (1, 1) ∈ Z∗
P × Z∗

Q and −1 ∈ Z∗
B is mapped to (−1,−1) ∈ Z∗

P × Z∗
Q.)

Combining all our “isomorphisms”, we get that the group Z∗
B with operation multiplication

is equivalent to the “product of cyclic groups” ZP−1 × ZQ−1 with operation componentwise

addition. In particular, −1 ∈ Z∗
B is mapped to (P−1

2 , Q−1
2 ).

Upshot: To analyze our strategy for finding a nontrivial square-root R of 1 (mod B), we may
equivalently analyze the following:

� Pick u1 ∈ ZP−1 and u2 ∈ ZQ−1 independently and uniformly at random. Let u =
(u1, u2) ∈ ZP−1 × ZQ−1.

� Let L = ordZP−1×ZQ−1
(u).

� Hope for two “lucky” things: (i) L is even; (ii) u+ u+ · · ·+ u (L/2 times) is not equal
to (P−1

2 , Q−1
2 ).

Prove that if the largest power of 2 dividing ordZP−1
(u1) is distinct from the largest power

of 2 dividing ordZQ−1
(u2), then both lucky things happen. Conclude that the probability of

both lucky things happening is at least 1/2. (Of course, you will want to use the last few
parts of Problem 1 in this problem.)



3. [Miller–Rabin primality test.] Having completed the preceding problems, you are now
in the perfect position to understand the Miller–Rabin algorithm for classically efficiently
(though probabilistically) testing whether a given number is prime. If you have never done this
before, take this once-in-a-lifetime opportunity to study one of the infinitely many expositions
of this algorithm/proof findable on the Internet. My particular recommendation is Chapters
10.8.1, 10.8.2 (and Exercises 10.39, 10.40) from the book The Nature of Computation by
Moore and Mertens.



4. [Order-finding reduces to factoring.] Having completed the proof that factoring a num-
ber B classically efficiently (though probabilistically) reduces to “order-finding” in Z∗

B, show
the opposite reduction, thereby showing that factoring and order-finding are of “equivalent”
complexity. More precisely, suppose you had a subroutine that could factor any number
B = P ·Q (for simplicity, just consider the product of two primes). Using it, give an efficient
(deterministic) algorithm for finding the order of A ∈ Z∗

B, given A and B.



5. [The semiclassical Quantum Fourier Transform — or, how to do it with 1-qubit
gates.] The content of this problem is due to CMU’s own (emeritus) Prof. Bob Griffiths and
Chi-Sheng Niu, from 1996. It is of considerable practical importance for the implementation of
any quantum algorithm that computes the quantum Fourier transform and then immediately
measures the result (as Shor’s algorithm does).

(a) [∗∗] Recall the “controlled phase gates” used in Lecture 14: if the control qubit is |1〉 then
the unitary Vj is applied to the target qubit, where Vj leaves |0〉 alone and puts a phase

of ω2n−1−j

N onto |1〉. Show that these 2-qubit controlled phase gates are “symmetric”, in
the sense that they have the same operation if you reverse which qubit is the control
and which qubit is the target.

(b) [∗∗] As a consequence of the previous problem, instead of drawing the circuit for the
quantum Fourier transform like this —

Figure 1: Original form of the QFT; the top output wire is the most significant bit of S.

— you can equivalently draw it like this —-

Figure 2: Equivalent form of the QFT.

Incidentally, you can much more beautifully draw the circuit like this:



Figure 3: Beautiful form of the QFT circuit diagram. Since the controlled phase gates are sym-
metric, they can be depicted symmetrically, as big dots connecting two wires. The shading of these
dots indicates how much phase is applied; the darker the dot, the larger the phase (i.e., the smaller
the j in Vj , or the more “important” the phase). By the way, the very pale dots are the ones that
you simply omit if you’re doing the approximate version of the QFT.

Returning to Figure 2, notice that in this form, all the qubits’ lifetimes end by being
control bits. Suppose that (as in Shor’s algorithm), we plan on immediately measuring all
the qubits output by this circuit. Reminiscent of the Principle of Deferred Measurement,
show that we’ll obtain equivalent results if we measure each qubit after its Hadamard
gate, and then use the outcome to classically control whether or not to apply the 1-qubit
Vj gates, as in this diagram:2

Figure 4: Equivalent form to Figure 2, assuming we are planning to measure at the end. M stands
for measurement, and y0, y1, y2, y3 are what we usually called s0, s1, s2, s3.

2I borrowed all three diagrams from Mermin’s book Quantum Computer Science: An Introduction, though he
borrowed the beautiful third diagram from Griffiths and Niu.



6. [Experimentally realizing Shor’s algorithm.] Both of the papers mentioned in this
problem consider doing Shor’s algorithm with the semiclassical quantum Fourier transform
described in the previous problem.

(a) [∗∗] Read the paper Pretending to factor large numbers on a quantum computer by
Smolin, Smith, and Vargo. Write a paragraph summarizing their main critique of prior
experiments.

(b) What was your favorite joke or easter egg in the paper?

(c) [∗∗] Read the paper Realization of a scalable Shor algorithm by Monz et al. Do you feel
it adequately addresses the criticisms in the Smolin–Smith–Vargo paper? Why or why
not?

https://arxiv.org/pdf/1301.7007.pdf
http://sci-hub.tw/http://science.sciencemag.org/content/351/6277/1068


7. [Cosets.] Let G be a finite group with operation ◦. Let H be a subgroup of G (potentially
generated by any number of elements). Prove the following facts about cosets of H, used in
Lecture 17.

(a) For all x ∈ G, the coset xH has the same number of elements as the subgroup H.

(b) Any two cosets xH and yH are either identical, or disjoint.

(c) The set of all cosets of H forms a partition of G (meaning every element of G is in
exactly one distinct coset).



8. [Graph Isomorphism via the Hidden Subgroup Problem.] Suppose G is an undi-
rected graph with vertex set {1, 2, . . . , n} and edge set E. Let Sn denote the group of all
permutations π : {1, 2, . . . , n} → {1, 2, . . . , n}, with the usual operation of composition ◦.
Then Aut(G) is defined to be the subset of all permutations π ∈ Sn that are automorphisms
(self-isomorphisms) of G. Informally, this means that if you apply π to the vertex-names
of G, you get the same graph G back. A bit more formally, it means that

E =
{
{π(u), π(v)} : {u, v} ∈ E

}
.

(a) [∗∗] Show that if π and σ ∈ Aut(G) then π◦σ and π−1 are also in Aut(G). Conclude that
Aut(G) is a subgroup of Sn. (I suppose you should do this according to our definition
that H is a subgroup of G if H is obtained from some “generators” h1, . . . , hk ∈ G
by starting with the neutral element e and applying ◦ with h1, . . . , hk, h

−1
1 , . . . , h−1

k “as
much as possible”. Note that there is no harm in taking “more generators than you
need”.)

(b) [∗∗] Let G be a graph with vertex set {1, 2, . . . , n}, and let COLORS be the set of
all n × n adjacency matrices of undirected graphs on vertex set {1, 2, . . . , n}. Define
fG : Sn → COLORS by letting fG(π) be the adjacency matrix of the graph obtained by
permuting G’s vertices according to π. Prove that fG is “Aut(G)-periodic”, as defined
in Lecture 17: for each coset of Aut(G), fG gives the same “color” to all the elements of
the coset; and, fG gives different colors to different cosets.

(c) Argue that there is an “efficient” (poly(n)-step) classical algorithm that, given n-vertex
graph G (in adjacency matrix format) outputs (the description of) a classical circuit C
computing the function fG from the previous part — and hence there is also an ef-
ficient classical algorithm computing (the description of) a quantum circuit QF that
“implements” fG.

(d) [∗∗] Let G1 and G2 be graphs, each with vertex set {1, 2, . . . , n}. We assume that G1

and G2 are connected graphs. Recall that G1 and G2 are said to be isomorphic if there
exists a permutation π ∈ Sn such that when π is applied to the vertices of G1, the result
is G2. As a remark, the “Graph Isomorphism problem” — i.e., the computational task
of determining whether two given G1, G2 are isomorphic or not — is not known to be
solvable efficiently by any classical algorithm.3

Let G = G1tG2 be the 2n-vertex graph formed by taking a disjoint copy of G1 and G2,
and consider Aut(G) ⊆ S2n. Show that G1 and G2 are isomorphic if and only if there
exists σ ∈ Aut(G) that “maps between halves”, meaning σ(i) = j for some i ≤ n and
j > n.

(e) [∗∗] Suppose an algorithm obtains some generators h1, . . . , hk for a subgroup H of S2n.
Show that it can efficiently determine if there exists σ ∈ H that “maps between halves”.

(f) [∗∗] Suppose there were an efficient quantum algorithm for solving the Hidden Subgroup
Problem for the group S2n. Show that there would be an efficient quantum algorithm
for solving the Graph Isomorphism problem.

3Recently Babai showed the problem could be solved in npolylog n steps, but he is also on record as believing that
it cannot be solved in fewer than nlogn steps.



9. [Visualization of quantum physics.] Watch this video, which I thought was nice.

https://youtu.be/p7bzE1E5PMY

