
Quantum Computation CMU 15-859BB, Fall 2018

Week 6 work: Oct. 18 — Oct. 25
9-hour week

Obligatory problems are marked with [∗∗]

1. [Fourier Analysis of Boolean Functions.] Watch these two videos. If you really want to
go crazy, you can watch this playlist.

https://youtu.be/DebrwgWmToc
https://youtu.be/_C7MBP5MyXs
https://www.youtube.com/playlist?list=PLm3J0oaFux3YypJNaF6sRAf2zC1QzMuTA

2. [A simple Boolean Fourier formula.] [∗∗] Let f : {0, 1}n → C. In class we saw the
following nice fact:

s = 000 · · · 0 =⇒ f̂(s) = E
x∼{0,1}n

[f(x)],

where Ex∼{0,1}n [·] denotes “the expected value, when x is chosen uniformly at random from
{0, 1}n”. (We wrote this as avgx[·], but same difference.)

Prove also the following formula:

s 6= 000 · · · 0 =⇒ f̂(s) =
1

2

(
E

x∼{0,1}n
[f(x) | χs(x) = +1]− E

x∼{0,1}n
[f(x) | χs(x) = −1]

)
,

where the | notation denotes “conditional expectation”.

3. [Hands-on XOR-pattern practice.]

(a) [∗∗] Let AND : {0, 1}2 → {0, 1} be the logical-AND function on two bits.

i. Write the full truth-table of AND.

ii. Let and : {0, 1}2 → {±1} be defined by and(x) = (−1)AND(x). Write the full
“truth-table” (table of function values) for and.

iii. Write the quantum state |and〉 in standard bra-ket notation.

iv. It’s too annoying to keep including the “ 1√
N

factors” everywhere. So for this

problem, if g : {0, 1}n → C is a function, let [g] denote the column vector in
CN of g’s values (N = 2n). Write the four length-4 column vectors [χs], where
χs : {0, 1}2 → {±1} are the XOR functions corresponding to the 2-bit Boolean
Fourier transform.

v. Compute ând(s) for each s ∈ {0, 1}2.
vi. Using your solutions to (ii), (iv), and (v), write down the explicit vector form of the

true equation

[and] = ând(00)[χ00] + ând(01)[χ01] + ând(01)[χ10] + ând(11)[χ11];

then write, “Yep.”

(b) [∗∗] Repeat parts (ii), (v), (vi) for the function MAJ : {0, 1}3 → {0, 1}, defined by
MAJ(x1, x2, x3) = the majority bit-value among x1, x2, x3. (Hint for doing (v) somewhat
efficiently: you might perhaps want to use the result in Problem 2.)

(c) Repeat parts (ii), (v), (vi) for the function SORT : {0, 1}4 → {0, 1}, defined as follows:
SORT(x1, x2, x3, x4) = 1 if and only if x1 ≤ x2 ≤ x3 ≤ x4 or x1 ≥ x2 ≥ x3 ≥ x4.
(Honestly, you might want to get a computer to help you with this.)

4. [Deutsch–Jozsa.] David and Richard enjoy the fact that one can easily take a classical
circuit computing a Boolean function F , and convert it into a quantum circuit which im-
plements the same Boolean function when given “classical inputs” — but which also can
accept quantum superpositions of classical inputs. David and Richard did this for a bunch of
Boolean functions, including:

� The constantly-0 function F : {0, 1}n → {0, 1}, satisfying F (x) = 0 for all x.

� Various balanced functions, meaning F having F (x) = 0 for 50% of inputs x and F (x) = 1
for 50% of inputs x.

Unfortunately, David and Richard forgot to label their quantum circuits, and now they forget
which ones compute what! David and Richard run across an old circuit Q± they built which
evidently “sign-implements” some F : {0, 1}n → {0, 1}, but they’re not sure if F is all-0, or
if it’s balanced.

(a) [∗∗] Show that it is possible for David and Richard to tell whether F is all-0 or bal-
anced by just using Q± once. (Hint: The good old Fourier sampling paradigm. Which
outcome s tells you about the balancedness of F?)

(b) [∗∗] Suppose now you only have access to a classical circuit C computing a Boolean
function F , promised to be either all-0 or else balanced. Show that if you act determin-
istically, there is no way you can tell the difference unless you apply C to more than
2n−1 inputs.

(c) [∗∗] On the other hand, suppose that you have the classical C but you may use random-
ness. Show that by applying C to only T classical inputs, you can tell the difference
between all-0 F and balanced F with one-sided error 2−T .

5. [Translated Fourier coefficients.] [∗∗] Let f : {0, 1}n → C. Now for y ∈ {0, 1}n, define
the function f+y : {0, 1}n → C by f+y(x) = f(x + y). (Here the addition is in Fn

2 ; i.e.,

coordinate-wise mod 2.) Compute f̂+y(s) in terms of f̂(s). How does performing Fourier
sampling of f+y compare to performing Fourier sampling on f?

6. [Complex roots of unity.]

(a) Review, if necessary, Problem 2 on Weekly Work 2.

(b) [∗∗] Let M be a positive integer and let ωM ∈ C be the primitive Mth root of unity.
Let 0 ≤ t < M be an integer. Compute

avg
u∈{0,1,2,...,M−1}

{ωtu}.

There should be two possible outcomes, depending on t. (Hint.)

https://en.wikipedia.org/wiki/Geometric_series#Formula

7. [Subspaces and Fourier transforms.] Recall our discussion from the last homework about
the vector space Fn

2 , the n-dimensional vector space over the field F2 = {0, 1}.

(a) Suppose A ⊆ Fn
2 is a linear subspace of dimension k; that is, A is the span of k linearly

independent vectors. Let A⊥ denote the set {s ∈ Fn
2 : s · x = 0 ∀x ∈ A}, where

s · x denotes the dot product. Show that A⊥ is a subspace; specifically, a subspace of
dimension n− k.

(b) Just so you don’t get too comfortable thinking that things are exactly the same as in
Rn or Cn: give an example, when n = 2, of a subspace A of dimension k = 1 such that
A⊥ = A.

(c) Show that (A⊥)⊥ = A.

(d) [∗∗] Given subspace A of dimension k (and hence cardinality 2k), define the function

g : {0, 1}n → C, f(x) =

{√
N
2k

if x ∈ A,
0 if x 6∈ A,

where N = 2n as usual. (The constant
√

N
2k

is chosen so that avgx{|g(x)|2} = 1 and

hence |f〉 is a quantum state.)

Compute H⊗n |g〉; equivalently, compute ĝ(s) for each s ∈ {0, 1}n.

