Quantum Computation CMU 15-859BB, Fall 2018

WEEK 6 WORK:  Ocrt. 18 — Oct. 25
9-HOUR WEEK
OBLIGATORY PROBLEMS ARE MARKED WITH [#]




1. [Fourier Analysis of Boolean Functions.] Watch these two videos. If you really want to
go crazy, you can watch this playlist.


https://youtu.be/DebrwgWmToc
https://youtu.be/_C7MBP5MyXs
https://www.youtube.com/playlist?list=PLm3J0oaFux3YypJNaF6sRAf2zC1QzMuTA

2. [A simple Boolean Fourier formula.] [xx] Let f : {0,1}" — C. In class we saw the
following nice fact: R
=000---0 = = E ,
; fy= B, @)
where Eg (0 1}n [-] denotes “the expected value, when @ is chosen uniformly at random from
{0,1}™”. (We wrote this as avg,[-], but same difference.)

Prove also the following formula:

SE0000 = 5= (%{gl}nww) (@) =1 - B [f@) () = —11) ,

where the | notation denotes “conditional expectation”.



3. [Hands-on XOR-pattern practice.]

(a) [#*] Let AND: {0,1}? — {0,1} be the logical-AND function on two bits.

i.

ii.

iii.

iv.

vi.

Write the full truth-table of AND.

Let and : {0,1}?> — {£1} be defined by and(z) = (—1)AVP®) Write the full
“truth-table” (table of function values) for and.

Write the quantum state |and) in standard bra-ket notation.

« 1

It’s too annoying to keep including the ~ factors” everywhere. So for this

problem, if ¢ : {0,1}" — C is a function, let [¢g] denote the column vector in
CN of ¢g’s values (N = 2"). Write the four length-4 column vectors [xs], where
Xs @ {0,1}2 — {+£1} are the XOR functions corresponding to the 2-bit Boolean
Fourier transform.

Compute and(s) for each s € {0,1}2.
Using your solutions to (ii), (iv), and (v), write down the explicit vector form of the
true equation

[and] = and(00)[x00] + and(01)[xo1] + and(01)[x10] + and(11)[x11];

then write, “Yep.”

[*%] Repeat parts (ii), (v), (vi) for the function MAJ : {0,1}3 — {0,1}, defined by
MAJ(x1, x2, x3) = the majority bit-value among x1, z2, x3. (Hint for doing (v) somewhat
efficiently: you might perhaps want to use the result in Problem 2.)
Repeat parts (ii), (v), (vi) for the function SORT : {0,1}* — {0, 1}, defined as follows:
SORT(z1,x2,23,24) = 1 if and only if z; < 29 < z3 < x4 or 1 > T2 > T3 > 24.
(Honestly, you might want to get a computer to help you with this.)



4. [Deutsch—Jozsa.] David and Richard enjoy the fact that one can easily take a classical
circuit computing a Boolean function F', and convert it into a quantum circuit which im-
plements the same Boolean function when given “classical inputs” — but which also can
accept quantum superpositions of classical inputs. David and Richard did this for a bunch of
Boolean functions, including;:

e The constantly-0 function F': {0,1}"™ — {0,1}, satisfying F'(z) = 0 for all .

e Various balanced functions, meaning F having F'(x) = 0 for 50% of inputs x and F(z) = 1
for 50% of inputs x.

Unfortunately, David and Richard forgot to label their quantum circuits, and now they forget
which ones compute what! David and Richard run across an old circuit @F they built which
evidently “sign-implements” some F : {0,1}" — {0, 1}, but they’re not sure if F is all-0, or
if it’s balanced.

(a) [*x] Show that it is possible for David and Richard to tell whether F' is all-0 or bal-
anced by just using Q* once. (Hint: The good old Fourier sampling paradigm. Which
outcome s tells you about the balancedness of F'?7)

(b) [*%] Suppose now you only have access to a classical circuit C' computing a Boolean
function F, promised to be either all-0 or else balanced. Show that if you act determin-
istically, there is no way you can tell the difference unless you apply C' to more than

271 inputs.

(c) [**] On the other hand, suppose that you have the classical C' but you may use random-
ness. Show that by applying C' to only T classical inputs, you can tell the difference
between all-0 F and balanced F' with one-sided error 277



5. [Translated Fourier coefficients.] [+x| Let f : {0,1}" — C. Now for y € {0,1}", define
the function f*¥ : {0,1}" — C by f™¥(x) = f(x +y). (Here the addition is in F%; i.e.,

coordinate-wise mod 2.) Compute f1¥(s) in terms of f(s). How does performing Fourier
sampling of fT¥ compare to performing Fourier sampling on f?



6. [Complex roots of unity.]

(a) Review, if necessary, Problem 2 on Weekly Work 2.

(b) [*x] Let M be a positive integer and let wys € C be the primitive Mth root of unity.
Let 0 <t < M be an integer. Compute

avg {w'™}.
ue{0,1,2,..,M—1}

There should be two possible outcomes, depending on ¢. (Hint.)


https://en.wikipedia.org/wiki/Geometric_series#Formula

7. [Subspaces and Fourier transforms.] Recall our discussion from the last homework about
the vector space F§, the n-dimensional vector space over the field Fo = {0, 1}.

(a)

Suppose A C F} is a linear subspace of dimension k; that is, A is the span of k linearly
independent vectors. Let Al denote the set {s € F} : s-x = 0 Vo € A}, where
s -z denotes the dot product. Show that A is a subspace; specifically, a subspace of
dimension n — k.

Just so you don’t get too comfortable thinking that things are exactly the same as in
R™ or C™: give an example, when n = 2, of a subspace A of dimension k = 1 such that
At = A,

Show that (A1)t = A.

[*%] Given subspace A of dimension k (and hence cardinality 2*), define the function

[\

Noif A
g: {01} 5 C, f@)y=VFE TTED
0 ifx & A,

where N = 2" as usual. (The constant 2% is chosen so that avg,{|g(z)|*} = 1 and
hence |f) is a quantum state.)
Compute H®" |g); equivalently, compute §(s) for each s € {0,1}".



