

WEEK 6 WORK: OCT. 18 — OCT. 25
9-HOUR WEEK
OBLIGATORY PROBLEMS ARE MARKED WITH [**]

1. [Fourier Analysis of Boolean Functions.] Watch these [two videos](#). If you really want to go crazy, you can watch this [playlist](#).

2. [A simple Boolean Fourier formula.] [**] Let $f : \{0, 1\}^n \rightarrow \mathbb{C}$. In class we saw the following nice fact:

$$s = 000 \cdots 0 \implies \hat{f}(s) = \mathbf{E}_{\mathbf{x} \sim \{0,1\}^n} [f(\mathbf{x})],$$

where $\mathbf{E}_{\mathbf{x} \sim \{0,1\}^n} [\cdot]$ denotes “the expected value, when \mathbf{x} is chosen uniformly at random from $\{0, 1\}^n$ ”. (We wrote this as $\text{avg}_x[\cdot]$, but same difference.)

Prove also the following formula:

$$s \neq 000 \cdots 0 \implies \hat{f}(s) = \frac{1}{2} \left(\mathbf{E}_{\mathbf{x} \sim \{0,1\}^n} [f(\mathbf{x}) \mid \chi_s(\mathbf{x}) = +1] - \mathbf{E}_{\mathbf{x} \sim \{0,1\}^n} [f(\mathbf{x}) \mid \chi_s(\mathbf{x}) = -1] \right),$$

where the \mid notation denotes “conditional expectation”.

3. [Hands-on XOR-pattern practice.]

(a) [**] Let $AND : \{0,1\}^2 \rightarrow \{0,1\}$ be the logical-AND function on two bits.

- Write the full truth-table of AND .
- Let $and : \{0,1\}^2 \rightarrow \{\pm 1\}$ be defined by $and(x) = (-1)^{AND(x)}$. Write the full “truth-table” (table of function values) for and .
- Write the quantum state $|and\rangle$ in standard bra-ket notation.
- It's too annoying to keep including the “ $\frac{1}{\sqrt{N}}$ factors” everywhere. So for this problem, if $g : \{0,1\}^n \rightarrow \mathbb{C}$ is a function, let $[g]$ denote the column vector in \mathbb{C}^N of g 's values ($N = 2^n$). Write the four length-4 column vectors $[\chi_s]$, where $\chi_s : \{0,1\}^2 \rightarrow \{\pm 1\}$ are the XOR functions corresponding to the 2-bit Boolean Fourier transform.
- Compute $\widehat{and}(s)$ for each $s \in \{0,1\}^2$.
- Using your solutions to (ii), (iv), and (v), write down the explicit vector form of the true equation

$$[and] = \widehat{and}(00)[\chi_{00}] + \widehat{and}(01)[\chi_{01}] + \widehat{and}(01)[\chi_{10}] + \widehat{and}(11)[\chi_{11}];$$

then write, “Yep.”

(b) [**] Repeat parts (ii), (v), (vi) for the function $MAJ : \{0,1\}^3 \rightarrow \{0,1\}$, defined by $MAJ(x_1, x_2, x_3) =$ the majority bit-value among x_1, x_2, x_3 . (Hint for doing (v) somewhat efficiently: you might perhaps want to use the result in Problem 2.)

(c) Repeat parts (ii), (v), (vi) for the function $SORT : \{0,1\}^4 \rightarrow \{0,1\}$, defined as follows: $SORT(x_1, x_2, x_3, x_4) = 1$ if and only if $x_1 \leq x_2 \leq x_3 \leq x_4$ or $x_1 \geq x_2 \geq x_3 \geq x_4$. (Honestly, you might want to get a computer to help you with this.)

4. [Deutsch–Jozsa.] David and Richard enjoy the fact that one can easily take a classical circuit computing a Boolean function F , and convert it into a quantum circuit which implements the same Boolean function when given “classical inputs” — but which also can accept quantum superpositions of classical inputs. David and Richard did this for a bunch of Boolean functions, including:

- The constantly-0 function $F : \{0, 1\}^n \rightarrow \{0, 1\}$, satisfying $F(x) = 0$ for all x .
- Various *balanced* functions, meaning F having $F(x) = 0$ for 50% of inputs x and $F(x) = 1$ for 50% of inputs x .

Unfortunately, David and Richard forgot to label their quantum circuits, and now they forget which ones compute what! David and Richard run across an old circuit Q^\pm they built which evidently “sign-implements” some $F : \{0, 1\}^n \rightarrow \{0, 1\}$, but they’re not sure if F is all-0, or if it’s balanced.

- (a) [**] Show that it is possible for David and Richard to tell whether F is all-0 or balanced by just using Q^\pm *once*. (Hint: The good old Fourier sampling paradigm. Which outcome s tells you about the balancedness of F ?)
- (b) [**] Suppose now you only have access to a *classical* circuit C computing a Boolean function F , promised to be either all-0 or else balanced. Show that if you act *deterministically*, there is no way you can tell the difference unless you apply C to more than 2^{n-1} inputs.
- (c) [**] On the other hand, suppose that you have the classical C but you may use randomness. Show that by applying C to only T classical inputs, you can tell the difference between all-0 F and balanced F with one-sided error 2^{-T} .

5. [Translated Fourier coefficients.] [**] Let $f : \{0, 1\}^n \rightarrow \mathbb{C}$. Now for $y \in \{0, 1\}^n$, define the function $f^{+y} : \{0, 1\}^n \rightarrow \mathbb{C}$ by $f^{+y}(x) = f(x + y)$. (Here the addition is in \mathbb{F}_2^n ; i.e., coordinate-wise mod 2.) Compute $\widehat{f^{+y}}(s)$ in terms of $\widehat{f}(s)$. How does performing Fourier sampling of f^{+y} compare to performing Fourier sampling on f ?

6. [Complex roots of unity.]

(a) Review, if necessary, Problem 2 on Weekly Work 2.

(b) [**] Let M be a positive integer and let $\omega_M \in \mathbb{C}$ be the primitive M th root of unity. Let $0 \leq t < M$ be an integer. Compute

$$\text{avg}_{u \in \{0,1,2,\dots,M-1\}} \{\omega^{tu}\}.$$

There should be two possible outcomes, depending on t . ([Hint](#).)

7. [Subspaces and Fourier transforms.] Recall our discussion from the last homework about the vector space \mathbb{F}_2^n , the n -dimensional vector space over the field $\mathbb{F}_2 = \{0, 1\}$.

- (a) Suppose $A \subseteq \mathbb{F}_2^n$ is a linear subspace of dimension k ; that is, A is the span of k linearly independent vectors. Let A^\perp denote the set $\{s \in \mathbb{F}_2^n : s \cdot x = 0 \ \forall x \in A\}$, where $s \cdot x$ denotes the dot product. Show that A^\perp is a subspace; specifically, a subspace of dimension $n - k$.
- (b) Just so you don't get too comfortable thinking that things are exactly the same as in \mathbb{R}^n or \mathbb{C}^n : give an example, when $n = 2$, of a subspace A of dimension $k = 1$ such that $A^\perp = A$.
- (c) Show that $(A^\perp)^\perp = A$.
- (d) [**] Given subspace A of dimension k (and hence cardinality 2^k), define the function

$$g : \{0, 1\}^n \rightarrow \mathbb{C}, \quad f(x) = \begin{cases} \sqrt{\frac{N}{2^k}} & \text{if } x \in A, \\ 0 & \text{if } x \notin A, \end{cases}$$

where $N = 2^n$ as usual. (The constant $\sqrt{\frac{N}{2^k}}$ is chosen so that $\text{avg}_x\{|g(x)|^2\} = 1$ and hence $|f\rangle$ is a quantum state.)

Compute $H^{\otimes n} |g\rangle$; equivalently, compute $\hat{g}(s)$ for each $s \in \{0, 1\}^n$.